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Abstract— We propose a new graph-based framework for
business intelligence called BIIIG supporting the flexible eval-
uation of relationships between data instances. It builds on the
broad availability of interconnected objects in existing business
information systems. Our approach extracts such interconnected
data from multiple sources and integrates them into an integrated
instance graph. To support specific analytic goals, we extract
subgraphs from this integrated instance graph representing
executed business activities with all their data traces and involved
master data. We provide an overview of the BIIIG approach and
describe its main steps. We also present initial results from an
evaluation with real ERP data.

I. INTRODUCTION

Traditional business intelligence based on data warehouses

is limited in its flexibility by the underlying data warehouse

schema, e.g. star, snowflake or galaxy schema. Only predefined

kinds of facts, dimensional objects and their relationships cap-

tured in the schema can be evaluated by the data analyst. While

this is sufficient in many cases, it does not support a more

elaborate analysis and mining of relationships between data

objects to better understand the causes of certain results, e.g.,

in which way certain employees contribute to profit. Such rela-

tionships are frequently recorded in the underlying information

systems but are not transferred to the data warehouse due to the

typical focus on simple dimensional relationships. We there-

fore propose a new graph-based approach to business analysis

supporting a more comprehensive analysis of relationships in

addition to standard analysis techniques. For this purpose, we

extract instances and their relationships from the relevant data

sources and integrate them within a comprehensive instance

graph that preserves existing relationships.

Enterprises typically use different heterogeneous but interre-

lated information systems for their daily business such as ERP

(enterprise resource planning) or CIT (customer issue tracking)

systems. The data objects within these systems represent either

transactional or master data. Transactional data refer to busi-

ness activities such as quotations, invoices, emails or calendar

entries while master data (non-transactional data) refer to

more static reference data such as customers, products or

employees. Transactional data instances are typically related to

other transactional data instances as well as to relevant master

objects. We will capture such relationships referring to the

same business activity within so-called business transaction

graphs (BTG) in order to allow a fine-grained analysis of

business activities. There are also frequent references between

information systems, e.g. to link an activity to a remotely

controlled transactional object or master object. For example,

tickets in the CIT system may be related to sales orders in

the ERP system or orders in the ERP system may refer to

customer master data in other systems. Such links between

systems are typically implemented by cross-system identifiers

for customers, sales order etc. and can be maintained by

dedicated middleware like enterprise service bus [16] software.

We will utilize such existing links for integrating instances

from different systems.

A. Motivating Example

For illustration, we consider a trade company with business

activities supported by an ERP system and a separate CIT

system, both keeping transactional and master data. The ERP

system is used to process purchase orders and sales of products

while the CIT system manages customer complaints. A non-

trivial analysis task is to evaluate employees considering not

only the frequency but also the way they contribute to the profit

of the company. Our intended solution is to aggregate BTGs

to determine profit and analyze occuring patterns of employee

involvement.

Figure 4 shows a simplified sample for a sales process

containing transactional (white nodes) and involved Employee

objects (gray nodes) from both, the ERP and CIT system.

Master data about Employee Alice is available in both sources

and thus shown as a cross-system node. The calculation of

profit has to consider all revenue-related (SalesInvoice; rev-

enue 5,000) and expense-related objects (PurchaseInvoice

and Ticket; total expense 4,000) resulting in a profit of

1,000. Information about employee involvement is available

from relationship paths between transactional and Employee

objects. In particular the combination of master data (e.g. em-

ployee name) and transactional metadata (relationship types,

transactional classes) provides meaningful patterns about who

was how involved in which kind of business activity. For



Fig. 1: BIIIG Overview

comprehensive analytics we have to aggregate profit-related

measures and consider the involvement of all employees across

relationship paths in not only one but all relevant BTGs.

B. Framework Overview

The motivating example illustrates only one possible kind of

analytical questions answerable by the evaluation of business

transaction graphs. Generally, the identification of frequent

relationship patterns in BTGs of interest is promising high

analytical value. Relationship-driven evaluations are not only

valuable for business applications but also for other domains

and different kinds of information systems. For example, staff-

related treatment success in hospitals could be evaluated with

data from clinical information systems. This can be supported

by connecting all clinical records associated to the treatment of

a certain patient within a BTG and the analysis of relationship

patterns across all such BTGs.

To support this kind of evaluations we propose a new graph-

based framework for business analytics called BIIIG (Business

Intelligence with Integrated Instance Graphs). BIIIG uses

a native graph database (currently Neo4j [3]) to efficiently

manage even large graphs and to utilize the advantages of

graph databases for the integration of heterogeneous data and

the flexible evaluation of relationships. While data integration

happens mainly on the instance level, BIIIG also captures the

metadata from the data sources to uniformly and semantically

describe instances and relationships. As shown in Fig. 1, the

BIIIG approach entails four main steps:

(1) Metadata Acquisition and Unification: We first extract

the schema for every data source and translate it into a

generic graph format. The schema will be used not only to

semantically describe the data but also enables the automated

extraction of instance objects and relationships in step 2.

(2) Automated Graph Integration: In our main data

store, called integrated instance graph (IIG), each data object

(transactional or master data) is a node and each relationship is

an edge. It can be very large and is stored in a graph database.

The integration process is fully automated based on the unified

metadata and requires no source-specific ETL design.

(3) Business Transaction Graphs: To support specific

analytical tasks, we extract business transaction graphs (BTG)

from the IIG. A BTG contains interrelated transactional data

as well as involved master data. BTGs typically represent

business activities and are often the granularity of interest.

(4) Graph Analytics: Both the IIG and the set of BTGs

can be the basis for graph-based business analytics. With an

appropriate user interface, analysts can intuitively navigate

in the graphs to access any piece of recorded data with its

relationships. In addition, declarative query languages enable

new kinds of OLAP queries involving relationship pattern.

Furthermore, graph mining techniques can be applied to both

the IIG or the set of BTGs, e.g., to determine frequent patterns

or to predict the outcome of future business activities.

The main contribution of this paper is outlining the BIIIG

framework for graph-based business intelligence with its dedi-

cated support of business transaction graphs. The approach has

already been implemented in an initial version and could be

applied to a real use case. In the next section, we briefly dis-

cuss related work about graph databases and graph analytics.

After the introduction of our metadata and instance models

(section III), we present the main steps of the framework in

sections IV, V and VI. We then show the results of a first use

case with data from a real ERP system (section VII). Finally,

we summarize and conclude with an outlook to future work.

II. RELATED WORK

Graph databases [21] and graph data models [5] have found

increasing interest and adoption in recent years. Even business

intelligence platform providers aim at providing graph data

analysis, e.g., for SAP HANA [19] or Teradata [4]. However,

these efforts are still under development so that the final

capabilities are yet unknown. The property graph model [18]

is applied in several systems and will also be used in BIIIG.

It is simple but flexible due to a uniform representation of

objects and relationships with different properties. State-of-the

art graph query languages such as Neo4j Cypher [1] provide

already useful analytical features for graph pattern matching

and aggregation.



Fig. 2: Sample database tables of two interlinked systems

Fig. 3: Sample Unified Metadata Graph (simplified); master

data classes are gray and transactional classes are white

Fig. 4: Sample Business Transaction Graph with node classes,

edge types and selected properties; master data is shown as

gray and transactional data as white nodes

Graph databases are also popular in the semantic web

community where RDF graphs [12] are stored in dedicated

triple stores [10] and analyzed with the standardized query

language SPARQL. However, RDF and SPARQL have not

been widely used for business intelligence so far. RDF triples

lead to an extremely fine-grained and voluminous data rep-

resentation. Furthermore, SPARQL has limitations for graph

analysis compared to languages such as Cypher, e.g. to find

and return variable paths and graph patterns of interest [22].

While BIIIG aims at a general and comprehensive end-to-

end solution for graph-based data integration and business

intelligence, previous related studies mostly focussed on spe-

cific aspects. Several graph-based frameworks focus on the

transformation of source data into problem-specific [14][7] or

more general [15] graph-based data warehouse models but

do not aim at preserving all relationships from the source

systems that might become of interest in unexpected ways.

A notable exception is DB2SNA [23] that extracts social

networks from relational databases and analyzes them, albeit

it is not concerned with business analytics. The automated

extraction of interrelated data objects from ERP systems is

discussed in [17], but without using a graph model and for

the single analytical goal of process mining.

The majority of analytical graph algorithms, e.g. for pattern-

mining [9], are based on graph models with homogenous data

objects and relationships while we aim at analyzing graphs

with heterogeneous data. Still, there are some approaches to

find similar patterns in more complex graph models. PathSim

[24] is a similarity measure for graph patterns in heterogeneous

metadata. In [13] graph summarization is used for the visual-

ization of similar patterns in multiple labelled graphs and [20]

discusses the aggregation of property graphs by rule-based

summarization. Further on, there are different approaches

of graph-based OLAP frameworks. GraphCube [26] enables

the graph-based aggregation of graphs with nodes providing

a set of predefined dimensions. Graph OLAP [8] aims at

aggregating multiple snapshots of homogenous networks and

HMGraph OLAP [25] extends this approach by the support of

heterogenous nodes and edges. While these approaches show

the opportunities for OLAP on graph data, they either do not

support heterogenous data [8], [26] or rely on a static data

warehouse schema [25].

III. DATA MODEL

BIIIG is based on simple but generic and flexible models

to uniformly represent and integrate the metadata and instance

data of heterogeneous data sources. In contrast to data ware-

houses we are not trying to define a specific global schema

to which subsets of the data sources need to be mapped. We

follow a bottom-up approach for data integration that preserves

the sources metadata as well as instance data and relationships

but integrate them into uniform graph models. At the metadata

level, we describe sources in terms of classes and associations

to which instance objects and their relationships belong. In

the following, we first introduce the so-called unified metadata

graph (UMG) representing the metadata from all data sources.

We then specify the instance graph model.

A. Unified Metadata Graph

The UMG is used to describe the classes and associations

for every source as well as the associations between sources.

We can semi-automatically derive the UMG representation

for diverse data sources, in particular for relational databases.

Furthermore, we can derive mappings from the data sources to

the UMG that support an automatic extraction and integration

of instance data. The UMG also provides additional value for

the data analyst, as it reveals available classes and associations

in a model of a, compared to the instance graph, compact size.

The UMG is defined as a pair GM = 〈V,E〉 with the set of

classes v as nodes and the set of associations E as edges. Each

class v ∈ V (GM ) is defined as v = 〈d, c, t, ai, A, µ〉 with data



source name d, class name c, class type t (transactional or mas-

ter data), identity attribute ai, the optional set of class attributes

A and a schema translation (mapping) µ. An association

e ∈ E(GM ) is defined as e = 〈r, vs, ve, as, ae, i, A, µ〉 with

relationship type r, start class vs, end class ve, start reference

attribute as, end reference attribute ae, the direction indicator

i, the optional set of association attributes A and a mapping

µ. If the direction indicator is true-valued, associations will

be directed from vs to ve. Based on the definition, each class

of the UMG is associated to a single source. By contrast,

associations can link either classes from the same source or

from different sources and thus support data integration.

To simplify data integration for heterogeneous sources, we

limit the mandatory attributes for classes and associations to

the minimal information required for identity and reference.

Attributes for classes and associations in A thus are optional

and document what attributes have been defined within a

source. For schema-less sources (e.g., XML documents), we

can document the attributes found in the instance properties.

This information is intended to provide the analyst with the

attributes available for analysis. The schema and instance

translation between data sources and the UMG is described

by class and association-specific mappings µ. The implemen-

tation of these mappings depends on the kind of data source.

For relational sources it can be based on SQL statements

(see section IV). To help generate nodes and edges of the

integrated instance graphs, the mappings should specify the

derivation of class and association instances from a source

to a generic representation as pair-sets {〈a1, b1〉, .., 〈an, bn〉}
with attributes a (identity, reference or property attribute) and

values b.

Fig. 3 illustrates an example UMG for the two interlinked

relational sources shown in Fig. 2; it also covers the classes

and relationship types in the instance example of Fig. 4. The

three tables of the CIT source are represented by two similarly

named classes and an undirected association representing the

n:m relationship between tickets and employees. In the UMG

model, we have an Employee class for each source since

both sources have an employee table (with different attributes

and ids). However, the UMG contains a sameAs association

between the Employee classes as well as another cross-system

association between the Ticket and SalesOrder classes.

B. Integrated Instance Graph

Data objects and relationships from all sources are uni-

formly represented and integrated within the integrated in-

stance graph (IIG). With this central data structure, BIIIG uti-

lizes the versatility of graphs to represent heterogeneous data

and to support the flexible analysis of data and relationships.

For this purpose, the IIG should meet the following specific

requirements:

• uniform representation of transactional and master data

instances of different classes from different sources

• relationships of different semantic kinds

• directed relationships between any two objects

• multiple relationships between any two objects

• unrestricted number of named properties for objects and

relationships.

The IIG as well as business transaction graphs (section V)

are instance graphs that are defined as follows. An instance

graph GI = 〈V,E〉 consists of a set of nodes V and a set

of edges E. A node representing a data object v ∈ V (GI)
is defined as v = 〈u, S, c, t, P 〉 with the unique identifier u,

the set of source identifiers S, the class name c, the node

type t (master or transactional data) and the set of named

properties P . Class names refer to classes of the UMG.

Corresponding objects for sameAs-connected classes from

different sources are combined within one node. In this case

we have multiple source identifiers in S referring to the

original data objects to provide provenance information. An

edge e ∈ E(GI) is defined as e = 〈f, r, vs, ve, P 〉, with

edge identifier f , relationship type r, the connected nodes

vs, ve and the set of properties P. Relationship types refer

to associations of the UMG. The identifier f differentiates

multiple relationships between the same two nodes and the

sequence of vs and ve expresses the relationship direction. For

undirected associations we maintain edges in both directions.

For both, nodes and edges, the set of properties may contain

arbitrarily many pairs P = {〈a1, b1〉, .., 〈an, bn〉} of attribute

a and value b.

For integrated objects we can merge the properties from

the sources. For the example in Fig. 2, we can combine

employees objects with CIT.employees.erp empl number =

ERP.EmplyeeTable.number and merge their properties from

both sources (name, degree, dob, address, phone).

It is easy to see that instance graphs meet all mentioned

requirements. Nodes and edges can be heterogeneous as they

may belong to different classes and relationship types and

consist of different sets of properties. The support of node

classes and edge types also ensures a semantic expressiveness

of the graph structure for business-oriented analysis tasks. This

graph model can be implemented with graph database systems

supporting the property graph model.

IV. METADATA AND INSTANCE INTEGRATION

The generation of the UMG can partially be automated but

needs support by an expert knowing the data sources. By

contrast, the integration of data objects and relationships into

the IIG is fully automated based on the UMG and its schema

translations.

A. Metadata Acquisition

Metadata acquisition requires that each data source is ex-

pressed by classes and associations as defined in the UMG

model. Furthermore, we need to link data sources at the

metadata level either by utilizing existing references across

sources or by specifying additional ones.

The source-specific metadata acquisition is inherently de-

pendent on the underlying data model and chosen modeling

decisions. While our approach can accommodate different

kinds of data sources, we have so far focussed on the inte-

gration of relational databases due to their dominant role in



enterprise information systems. For UMG generation we need

information about all tables including their primary key and

foreign key constraints. Ideally we can query tables T, primary

keys PT, foreign keys FT1,T2n and all further columns CTn from

the standardized SQL Information Schema of a database D.

We then try to automatically derive classes and associations

assuming that tables either represent classes or complex (n:m)

associations while n:1 or 1:1 relationships are expressed by

foreign key constraints within class-like tables. Deviations

from this common modeling approach need to be dealt with

manually after the automatic translation steps.

For a class-like table T with primary key PT we derive a class

description v = 〈d, c, t, ai, A, µ〉 where we set the source name

d = D, the class name c = T and the identity attribute ai = PT.

All further column names CTn except the foreign keys are

included in A. The class type t has to be specified manually.

Mapping µ is expressed by an SQL statement selecting all

class instances with their primary key ai and values for all

further attributes in A. For the example class Ticket the

mapping is thus simply :

SELECT id, description

FROM CIT.tickets.

For a foreign key FT1,T2n in a class-like table T1 referencing

a table T2, we derive a directed n:1 (or 1:1) association

e = 〈r, vs, ve, as, ae, i, A, µ〉 where vs and ve are the classes

mapped to T1 and T2, the start reference attribute is the primary

key as = PT1 and relationship type r = F as well as the

reference attribute ae = F are the foreign key column. We

further assume no association-specific attributes (A = ∅) and

directed associations (direction indicator i =true) from the

referencing to the referenced class. Mapping µ is expressed by

a SQL statement to select all association instances with the id

values of the inter-related objects. For the example association

processedBy between SalesOrder and Employee in the ERP

system this is achieved by the following SQL statement :

SELECT number, processedBy

FROM ERP.SalesOrderTable

WHERE processedBy IS NOT NULL.

For an association table T1 representing a binary n:m rela-

tionship via foreign keys F
T1,T2
1 and F

T1,T3
2 without a further

primary key we derive an undirected association (i=false)

and use the table name as the relationship type (r = T1), the

foreign keys as reference attributes (as = F1, ae = F2), the

classes corresponding to the two referenced tables T2,T3 as

cs and ce, and include all further column names in A. The

SQL statement for mapping µ thus selects the foreign keys to

specify the two inter-related objects and all further association

attributes. For association processedBy between Ticket and

Employee in the CIT system the SQL mapping is :

SELECT ticket id, empl id, responsible

FROM CIT.ticket employee.

The automatically generated classes and associations need to

be enhanced by an expert, in particular to categorize classes

as master or transactional data and to deal with cases not

covered by the sketched translation approach. Furthermore,

the expert can rename classes, associations and attributes to

improve understandability for business analysts. An expert can

also specify associations between different sources. Existing

cross-system links need to be specified by dedicated asso-

ciations in the UMG, such as the sameAs and openedFor

associations in Fig. 3. In the example, these associations can be

derived from foreign keys in the CIT tables (erp empl number,

erp so number) referring to the ERP system. An example

mapping for the latter is an SQL statement equivalent to other

n:1 associations :
SELECT id, erp so number

FROM CIT.tickets

WHERE erp so number IS NOT NULL.

Associations between sources can be also determined with the

help of a link discovery or schema matching tool [6].

B. Instance Graph Integration

The generation of the integrated intance graph is an au-

tomatic process with three main steps. First, class mappings

are used to transform each source data object into a node

in the IIG. Second, we use assocation mappings to generate

edges representing relationships between objects. Finally, we

combine corresponding data objects that are interconnected by

a sameAs edge (relationship).

Algorithm 1 describes these steps in more detail. The

input of the algorithm is the UMG including the class and

association mappings, the result is the IIG. First, all source

data objects are added as nodes to the integrated instance

graph within a loop over all classes (lines 2-11). The class

specific mapping µ (e.g. SQL statement) is used to query or

extract the instances from a data source in order to represent

them uniformly as data objects consisting of sets of attribute-

value pairs (3). Every new node (4) obtains the class name

and type from the currently processed class (5,6). The set of

source identifiers S is implemented as an array. Initially, it

contains only one identifier represented as the concatenation

of the data source and class names as well as the object identity

(7). The attribute name for the object identifier class.id attr

corresponds to ai of the class definition. The chosen identifier

format allows tracing back any node to its originating data

source (provenance). In particular, it enables querying nodes

by source identifiers as implemented in our edge integration.

We further include all nonempty properties of the data object

into the node, except the one already included in identity (8)

and add the constructed node to the IIG (9).

Second, all relationships are added as edges to the IIG

within a loop over all associations (12-29). Analogous to

nodes, the association-specific mapping µ is used to query

relationships, represented as sets of attribute-value pairs (13).

The connected nodes will be queried from the IIG by their

source identifier, after those identifiers have been concatenated

with their respective source and class names (15,16). We will

only continue with the current edge, if we find a node for

both identifiers (17). The edge obtains its relationship type

from the currently processed association (18) and receives all

nonempty property values of the relationship except the ones

already included in reference attributes (19). At the end the



Algorithm 1 Automated Instance Graph Integration

Input: unified metadata graph (umg)
Output: integrated instance graph (iig)

1: iig = new Graph
2: for all cls in umg.classes() do
3: for all obj in cls.instances() /* µ */ do

4: node = new Node
5: node.type = cls.type
6: node.class = cls.name
7: node.sids = [concat(cls.source,cls.name,obj[cls.id attr])]
8: node.properties = obj.where(value != NULL and attr != cls.id attr)
9: iig.add(node)

10: end for

11: end for
12: for all asn in umg.associations() do
13: for all rel in asn.instances() /* µ */ do
14: edge = new Edge
15: start sid = concat(asn.start class.source,start class.name,rel.start attr)
16: end sid = concat(asn.end class.source,asn.end class.name,rel.end attr)
17: if edge.start node = iig.get node(start sid)

and edge.end node = iig.get node(end sid) then

18: edge.type = asn.type
19: edge.properties = rel.where(value != NULL

and attr != asn.start attr and attr != asn.end attr)
20: iig.add(edge)
21: if not asn.directed then
22: edge2 = edge.clone()
23: edge2.start node = edge.end node
24: edge2.end node = edge.start node
25: iig.add(edge2)
26: end if
27: end if

28: end for
29: end for
30: while edge = iig.first edge of type(sameAs) do
31: edge.end node.sids += edge.start node.sids
32: edge.end node.properties += edge.start node.properties
33: edge.start node.edges.redirect to(edge.end node)
34: iig.delete(edge)
35: iig.delete(edge.start node)
36: end while
37: return iig

constructed edge is added to the IIG (20). In the case of an

undirected relationship we construct a second edge with same

relationship type and properties (22) but switched start and

end nodes (23,24) and add it to the IIG (25).

In the final step, we fuse nodes representing the same logical

object (30-37). For that, all sameAs edges are processed (30)

and the start node is merged into the end node. First, the

identifier array and the set of properties of the end node are

merged with those of the start node (31,32) and second, all

in- and outgoing edges of the start node are redirected to the

end node (33). Finally, the sameAs edge as well as the initial

start node are deleted (34,35).

V. BUSINESS TRANSACTION GRAPHS

A main feature of BIIIG is the analysis of business ac-

tivities represented by subgraphs of the IIG called business

transaction graphs (BTG). The notion of BTGs is based on

the observation that transactional data objects represent steps

within business activities, e.g. the provision of a product

quotation is represented by a corresponding quotation object.

Such activity steps cause further actions, for example a sales

order represented by its own transactional data object and

Algorithm 2 Business Transaction Graph Isolation

Input: integrated instance graph (iig)
Output: set of business transaction graphs (btgs)

1: btgs = new GraphSet
2: trans nodes = iig.get nodes by type(Transactional)
3: while trans nodes.size() > 0 do

4: btg = new Graph // business transaction graph

5: seed node = trans nodes.random()
6: btg.add(seed node)
7: cc nodes = new NodeSet // causally connected nodes

8: cc nodes.add(seed node)
9: while cc nodes.size() > 0 do

10: node = cc nodes.random()
11: for all edge in node.edges() do
12: if not btg.contains(edge) then
13: if node == edge.start node then
14: next node = edge.end node
15: else
16: next node = edge.start node
17: end if
18: if not btg.contains(next node) then

19: btg.add(next node)
20: if next node.type == Transactional then
21: cc nodes.add(next node)
22: end if

23: end if
24: btg.add(edge)
25: end if

26: cc nodes.remove(node) // all edges traversed

27: trans nodes.remove(node) // allocated to single btg

28: end for
29: end while

30: btgs.add(btg)
31: end while
32: return btgs

so on. Assuming a data object has to be existent before it

can be linked, edge directions provide information about the

(inverse) sequence of corresponding business activities without

the need for timestamps. Thus, we consider such relationships

between transactional objects as causal connections that are

represented by edges or paths between transactional nodes

in the IIG. Transactional data objects also have relationships

with master data objects (e.g., the employee providing the

quotation), with corresponding master data nodes and edges

in the IIG. However, a path between transactional nodes via

master data nodes is in general no hint for a causal connection.

For example, if two quotations involve the same product, these

quotations can be completely independent. Hence, we define

that two transactional nodes will be considered as causally

connected, if they have at least one connection through an

edge or a path involving only transactional data objects.

We therefore define a business transaction graph as a sub-

graph of the integrated instance graph, where all transactional

nodes are causally connected. Because of their fundamental

analytical value, a business transaction graph also contains all

master data nodes connected to the transactional nodes.

Based on this BTG definition, the IIG can be transferred to

a set of BTGs, which may overlap in master data nodes but not

in transactional nodes or edges. Algorithm 2 shows how BTGs

can be derived from the IIG. It starts with a candidate set of all

transactional nodes contained in the IIG (2). The generation

of a single BTG starts with an arbitrary transactional seed



node from this set (5) and is followed by the traversal of all

connecting paths, where all passed nodes and edges are stored

in a BTG (9-29). The traversal is stopped as soon as a master

data node is reached (20). Every traversed node is removed

from the candidate set to ensure that any transactional node as

well as connected edges are exactly processed once (27). This

leads to a linear time complexity of O(|V (G)|+ |E(G)|).

VI. INSTANCE GRAPH ANALYTICS

BIIIG aims at supporting comprehensive graph-based busi-

ness analytics including graph mining and the evaluation of

relationship patterns (like our motivating example). The design

of the analysis capabilities for BIIIG has just begun and will

be described in future publications. To get a first impression

of our approach we sketch a few basic operators for selection,

projection and aggregation. Projection and aggregation gener-

ate tabular results supporting a flexible and powerful OLAP

post-processing using standard relational technology. Since

BIIIG currently uses the graph database Neo4j to manage the

IIG as well as the set of BTGs we can also use its query

functionality for analysis, in particular the query language

Cypher. At the end of this section we briefly discuss how

well our requirements are already met by Neo4j and Cypher.

A. Operators

As the basis for analytical operations, we consider the set

of BTGs as an indexed set of n graphs G = {Gi}1≤i≤n.

a) Selection: The selection operator σH,θ(Gi) returns a

set of m subgraphs {Gj
i | 1 ≤ j ≤ m;Gj

i ⊆ Gi} each

matching a specified search pattern. A search pattern consists

of a search predicate θ referring to node and edge variables

in a variable definition H = 〈V,E〉. The simplest search

pattern for employee involvement describes a direct edge

from a transactional node to an employee node, expressed by

Hex = 〈{v1, v2}, {e1}〉 and θex : t(v1) = Transactional ∧
c(v2) = Employee ∧ vs(e1) = v1 ∧ ve(e1) = v2. The result

of σHex,θex(Gi) is a set of subgraphs each containing exactly

two nodes and one edge or will be an empty set, if the pattern

does not occur.

b) Projection: The projection operator returns specified

metadata and property values of graphs as a table. Projection

is typically applied to the results of a selection operation. The

projection πa1(x1),..,ak(xl),m1(x1),..,mn(xl)(σH,θ(Gi)) extracts

values of k properties ai and n metadata elements mj of

node or edge variables x ∈ V (H) ∪ E(H). The result is

a table Ti = {〈b1, .., bk+n〉
j} with one row of k+n values

per subgraph G
j
i ⊆ Gi of the selection result. Reviewing

our example the projection πc(v1),r(e1),name(v2)(σHex,θex(Gi))
determines for every employee involvement its kind of busi-

ness activity (transactional class c(v1)), relationship type

r(e1) and employee name. An example result row would be

〈SalesQuotation, sentBy, Alice〉.
c) Aggregation: In business analytics we frequently want

to derive aggregated values such as the profit per BTG.

Similar to projection, aggregation is typically applied to the

result of a selection operation, in particular with a search

pattern locating the base values to aggregate. The aggregation

γa(x)(σH,θ(Gi)) applies an aggregation function γ (e.g. SUM

or AVG) on values of a specified property a for a node or

edge variable x ∈ V (H) ∪ E(H). Aggregation extracts the a

values from all subgraphs of the selection result and aggregates

them into a single measure value. We can use separate search

patterns for revenue-related nodes Hr = 〈{v1}, ∅〉 with θr :
c(v1) = SalesInvoice and expense-related nodes He =
〈{v2}, ∅〉 with θe : c(v2) = PurchaseInvoice ∨ c(v2) =
Ticket to calculate the profit for BTG Gi by profiti =
SUMRevenue(v1)(σHr,θr (Gi))− SUMExpense(v2)(σHe,θe(Gi)).

B. Relational Postprocessing

Since projections determine relational tables and aggre-

gations determine scalar values we can use these results

for a relational postprocessing to support a comprehensive

analytics across all BTGs G = {Gi}. For this purpose,

we extend projection result tables T = {Ti} with an BTG

index column and unite all records into a single table Tp =
{〈i, b1, .., bk+n〉}. Similarly, we can maintain all aggregation

results in a combined table Tm = {〈i,m1,m2, ...〉} with

a column i for the BTG index and one additional column

per BTG measure m such as profit or number of customer

complaints. To relate measures and projection results we can

apply a natural join Tp ⋊⋉ Tm via the BTG index i. Since

projections often express relationship patterns of interest, e.g.

on employee involvement, the resulting join table supports

comprehensive, multidimensional grouping and aggregations

across BTGs. For our example, we can thus determine the

employees, business activities or relationship types that are

most frequently involved in high profit BTGs or those with

customer complaints.

C. Capabilities of Neo4j and Cypher

A fundamental lack of Neo4j is the missing support for

managing and thus also querying sets of graphs. Furthermore,

the projection to non-graph structures (e.g. tables) in the

RETURN clause is mandatory. While this satisfies our cur-

rent approach, it might be limiting for analytics involving

chained graph operations. It is also not possible to apply

further relational operations on multiple selections, which are

projected to tables. As the major positive point, our selection

and projection operators on single graphs are well covered.

Cypher supports the specification of search patterns, where

the MATCH and WHERE clauses correspond to H and θ. The

following example query implements our example projection

for employee involvements:

MATCH (v1)-[e1]->(v2)

WHERE v1.type="Transactional" AND v2.class="Employee"

RETURN v1.class,type(e1),v2.Name;

Cypher also supports the aggregation of property values. The

following example query corresponds to the revenue part of

our profit example :

MATCH (v1)

WHERE v1.class="SalesInvoice"

RETURN SUM(v1.Revenue);



VII. EXPERIMENTAL EVALUATION

For an initial evaluation of the BIIIG framework, we used

data of a real installation of the open source ERP system ERP-

Next [2]. The used data is kept in a MySQL database and cov-

ers fictive business activities for application development and

testing. While the database size is relatively small we found

the data realistic and useful for an initial proof-of-concept. We

could automatically determine the tables, columns and primary

keys following the approach of IV-A. However, the metadata

description of the ERP database was missing foreign keys and

we had to support the generation of the UMG by a custom

script. In particular, foreign key candidates were chosen based

on names and datatypes and validated by table joins. In the

result, we derived 102 classes and 583 associations. Initially,

class names were chosen corresponding to table names and

association names corresponding to foreign key column names

or (for n:m relationships) the name of the reference table.

These names turned out to be meaningful for a person familar

to ERP systems but we translated class and association names

to more common business terms and also typified classes as

transactional or master data. We implemented algorithm 1 in

Java and used it together with the generated UMG to create

the IIG. The IIG for the used ERP data has 8,358 nodes,

38,892 edges and 87,746 nonempty properties. The integration

process took about 10 seconds on commodity hardware and

the IIG size for the graph database Neo4j is about 30 MB

on disk. Algorithm 2 was implemented using the native API

of the graph database. In our current implementation we use

a second database instance with isolated subgraphs (including

redundant master data), where every node provides a dedicated

property btg id representing its BTG index. We generated

1,983 BTGs in about 2 seconds. The BTG size ranges from 2

to 221 nodes and 2 to 883 edges. Spot tests of BTGs yielded

only reasonable results in the context of business activities, for

example interrelated transactional data objects from first sales

activities over product purchase and invoicing up to general

ledger accounting as well as the involved master data such

as employees, customers and products. We expect real-world

BTGs containing such data to have at least the size of the

biggest ones resulting from the experiment dataset. Finally,

we could successfully execute queries corresponding to the

examples in section VI-C.

VIII. CONCLUSION AND FUTURE WORK

We proposed the BIIIG framework for graph-based data

integration and business intelligence. It utilizes simple but

flexible graph models to uniformly represent metadata and

instance data of diverse sources such as ERP and related sys-

tems. Metadata acquisition and instance integration are largely

automatic and retain valuable relationships represented in the

source data for later business analysis. BIIIG also includes the

automatic generation of so-called business transaction graphs

to enable the focused analysis of business activities with all

their steps and involved people as well as other resources.

BIIIG will provide comprehensive query and data mining facil-

ities based on graph patterns although the analysis component

is still under development. An initial version of BIIIG for

relational data sources based on an existing graph database

has already been implemented and was successfully applied

to a real ERP use case. In future work, we will complete

the specification and implementation of the BIIIG analysis

capabilities. We will also investigate the need and implications

for more general BTGs where transactional objects can be used

in more than one BTG to represent cross-BTG dependencies as

already addressed in [11]. We will further apply and evaluate

BIIIG for more and larger use cases.
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