
U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 124 – 135, 2006.
© Springer-Verlag Berlin Heidelberg 2006

BioFuice: Mapping-Based Data Integration
in Bioinformatics

Toralf Kirsten and Erhard Rahm

University of Leipzig, Germany
tkirsten@izbi.uni-leipzig.de, rahm@informatik.uni-leipzig.de

Abstract. We introduce the BioFuice approach for integrating data from
different private and public data sources and ontologies. BioFuice follows a
peer-to-peer-like data integration based on bidirectional mappings. Sources and
mappings are associated with a domain model to support a semantically mean-
ingful interoperability. BioFuice extends the generic iFuice integration platform
which utilizes specific operators for data fusion and workflow-like script pro-
grams. BioFuice supports explorative data analysis and query and search capa-
bilities. We outline the integration approach by an illustrating scenario, the
architecture of BioFuice and its query interface.

1 Introduction

Many biological and medical applications require access to a variety of molecular-
biological objects, such as genes, proteins, their interrelationships and functions, and
their correlations with phenotypical effects. These objects are maintained in a high
number of diverse web-accessible data sources [Ga05] as well as in local (private)
data sources, e.g. specific analysis results such as a particular list of genes or medical
data on patients participating in clinical trials. Typically, such data is highly diverse
so that their integration is laborious and error-prone and difficult to perform by do-
main experts.

Traditional data integration approaches like data warehousing and mediators are
often applicable but also time-consuming to deploy and may lack sufficient support
for features such as explorative data analysis. These integration approaches typically
require a unified global schema to obtain a consistent view over data from different
sources. However, creating such a schema for more than a few data sources is almost
impossible due to the high diversity, complexity and fast evolution of sources. Each
new source to consider may require adapting the global schema as well as applica-
tions built upon this schema.

A promising alternative to the traditional data warehousing and mediator solutions
using a global schema are so-called peer-to-peer approaches for data integration
[Ha03]. They are based on bilateral mappings between autonomous data sources,
called data peers, instead of mappings between data sources and a global schema.
Adding a new data source can thus be achieved by mapping it to only one existing
peer instead of adapting the global schema and mapping the source to it. In bioinfor-
matics, a peer-to-peer approach seems especially appropriate since bilateral mappings
can often be derived from existing cross-references between objects of different

 BioFuice: Mapping-Based Data Integration in Bioinformatics 125

sources. Such cross-references refer to so-called accessions, i.e. unique object identi-
fiers, and are omnipresent in public data sources. The cross-references are typically
maintained by domain experts and thus of high quality. However, they are currently
used mostly for manual web navigation which is unsuitable for evaluating large sets
of objects, e.g. for gene expression analysis. Moreover, the semantics of the cross-
references is typically not made explicit making it difficult for the user to find and
correctly use all relevant sources and mappings for a given application task.

iFuice (information Fusion utilizing instance correspondences and peer mappings)
[Ra05] is a recently proposed approach for peer-to-peer data integration. It utilizes
mappings, e.g. sets of cross-references, to combine or fuse information from different
sources. Sources and mappings are related to a domain model to support semantically
meaningful information fusion. The iFuice architecture incorporates a mapping me-
diator offering both interactive and script-driven, workflow-like access to the sources
and their mappings. The script programmer can use powerful generic operators to
execute and manipulate mappings and their results. iFuice is a generic data integration
approach which is not targeted for a specific application domain. An initial use case
of iFuice was to combine bibliographic data for a citation analysis of database publi-
cations [Ra05, RT05].

In this paper we describe how iFuice and its extension BioFuice can be used for
data integration in bioinformatics applications. Key characteristics of BioFuice in-
clude:

• Peer-to-peer integration: By following the iFuice paradigm BioFuice aims at
utilizing instance-level cross-references which already exist, e.g. as web links,
or can be generated by bioinformatics tools, such as BLAST. New sources can
be dynamically integrated as needed by mapping the new source to (at least)
one already integrated source.

• Semantic integration: To address semantic integration, BioFuice utilizes a
high-level domain model containing domain-specific object types and map-
ping types. The domain model is used to categorize specific sources and
mappings so that they can be selected and accessed according to current appli-
cation requirements.

• Comprehensive query capabilities: BioFuice utilizes the high-level operators
and scripting facility of iFuice to perform data access, mapping execution and
data fusion. This infrastructure makes it possible to react to new application
needs and to support complex data integration and analysis workflows. Bio-
Fuice substantially extends the generic iFuice facilities by providing a graphi-
cal query interface for explorative analysis and automatically generating script
programs from interactively specified queries. Both predefined queries as well
as keyword searches are supported.

• Local data sources: BioFuice integrates both public and local (private) data
sources. In particular, query and script results or copies of entire sources may
be stored within a local database for later reuse. BioFuice can also be operated
in an offline mode (e.g. on a notebook) by only evaluating local data sources.

The rest of the paper is organized as follows. In the next section we introduce the
basic idea of the BioFuice approach by using an illustrating scenario. We also outline
selected high-level operators and their usage. In Section 3, we introduce the BioFuice

126 T. Kirsten and E. Rahm

system architecture. Section 4 describes the interactive query and search capabilities
for explorative analysis. We discuss related work in Section 5 before we conclude in
Section 6.

2 Illustrating Scenario

To illustrate our data integration approach we consider an analysis task on human
expressed sequence tag (EST) sequences. Typically, such ESTs are short DNA se-
quences of a specific organism that are generated by sequence machines. We assume
that the analysis application needs to classify EST sequences into three classes which
are represented by the following queries:

Query 1 (Q1): Return all unaligned EST sequences of a given set, i.e. EST sequences
for which no corresponding DNA sequence can be found.

Query 2 (Q2): Return all EST sequences of a given set that are associated with pro-
tein-coding DNA sequences.

Query 3 (Q3): Return all EST sequences of a given set that are associated with non-
coding DNA sequences.

Such a classification is a typical data integration problem since the given set of
EST sequences has to be combined with further molecular-biological data on genes
and proteins to decide which sequences fall into which class.

Figure 1a shows four (physical) sources and associated mappings we want to use
for this scenario within a so-called source mapping model (SMM). There are three
public data sources (Ensembl [Bi04], NetAffx [Li03], SwissProt [Bo03]) and one
local data source, MyEstSet, specifying the EST sequences of interest. A physical
data source (PDS), e.g. Ensembl, may offer objects of different types. We call
the object types of one PDS the logical data sources (LDS). The notation <Ob-
jectType>@<PhysicalDataSource> is used to denote a specific LDS, e.g. Gene@En-
sembl or Protein@SwissProt. Each LDS has an identifying attribute (accession) plus
additional attributes.

Object types of any source are represented in the abstract domain model (Figure 1b).
Each mapping between source instances has a mapping type which is also represented
in the domain model. For example, mappings of type GeneCodedProteins relate gene
instances to their associated proteins. The domain model is used to semantically cate-
gorize data sources and mappings and at a much higher conceptual level than a global
schema. We do not include attributes for object types to accommodate a large variety
of data sources and to make it easy to construct the domain model. In many cases, we
expect a small set of object and mapping types to be sufficient.

New sources can be flexibly included by adopting relevant metadata, i.e. the physi-
cal source name and its associated object type (building the new LDS) as well as
definitions for querying and searching within the source. In addition, at least one
mapping should be defined to connect the new LDS to an existing LDS so that the
new LDS can be used together with others. The domain model is automatically
adapted to the changes made within the source mapping model.

 BioFuice: Mapping-Based Data Integration in Bioinformatics 127

Mappings can often be represented by sets of cross-references between ob-
jects/instances of different LDS. For instance, the mapping between Gene@Ensembl
and Protein@SwissProt can be derived from the existing SwissProt references in the
Ensembl gene instances. Alternatively, mappings can be derived on demand by exe-
cuting queries or a program (script). In our example, the private source MyEstSet
contains ESTs that are only described by a sequence. Hence, neither the PDS MyEst-
Set nor the public PDS Ensembl provide correspondences between the instances they
offer. In this case, a BLAST1-like tool can be used to determine for a set of EST se-
quences the most similar DNA sequences within Ensembl. This creates a mapping
between EstSequence@MyEstSet and SequenceRegion@Ensembl thereby integrating
the local source into the peer-to-peer network represented by the SMM. Special map-
ping types are so-called same-mappings interrelating semantically equivalent in-
stances of the same object type. In Figure 1a there is one same-mapping on genes
between Ensembl and NetAffx.

Ensembl

Gene

Sequence
Region

SwissProt

Protein

MyEstSet

Est
Sequence

Extraction

Sequence
Region

Gene

Protein

SequenceExons

GeneCodedProteins

OrthologousGenes

EST
Sequence

EST DNA Alignment

Exon Exon
GeneOfExon

b) Domain modela) Source mapping model

Physical Source

Mapping

(same:)

Legend

Object type

Mapping type

NetAffx

Gene

E
st

D
na

B
la

st
.h

sa Ensembl.
SRegionExons

Ensembl.
ExonGene

Ensembl.
GeneProteins

Ensembl.
sameGenes

Fig. 1. Data integration scenario

To process data and mappings, iFuice and thus BioFuice offer a set of high-level op-
erators which can be combined within script programs. Table 1 shows a selection of
these operators that are relevant for the examples in this paper; the full definitions are
given in [Ra05]. The operators typically operate on a set of input objects, e.g. an entire
LDS, and generate a set of output objects which can be used as the input of further op-
erators. In Table 1, OI denotes a set of object instances from one object type; objects are
identified by their ids which are assumed to also identify the LDS the objects belong to.

To solve the EST classification problem posed in the beginning of this section we
can use the following simple script determining three sets of EST sequences:

$alignedEstMR:=map(MyEstSet,{EstDnaBlast.hsa});
$unalignedEstOI:=diff(MyEstSet,domain($alinedEstMR));
$codingEstMR:=compose($alignedEstMR,
 map(range($alignedEstMR),{Ensembl.SRegionExons}));
$proteinCodingEstOI:=(domain($codingEstMR));
$nonCodingEstOI:= diff (domain($alignedEstMR), $proteinCodingEstOI);

1 BLAST stands for Basic Local Alignment Search Tool [Al90].

128 T. Kirsten and E. Rahm

Table 1. Selected iFuice script operators (OI = set of object instances)

Operator Description
OI:=queryInstances(LDS, query condition) executes a query on the specified LDS and returns

object instances (OI) meeting the query condition
OI:=searchInstances(LDS, {keywords}) executes a keyword search on the specified LDS

and returns object instances containing at least one
of the specified keywords

OI:=getInstances(OI) returns complete instances for objects identified by
their id values

OI:=traverse(OI,{mapping names}) traverse specified mappings on input instances;
multiple mappings are automatically composed

OI:=traverseSame(OI,PDS) traverse same mappings to target PDS
MR:=map(OI,{mapping names}) returns a mapping result MR (mapping table) that

associates each input object to the corresponding
output objects by executing specified mappings

OI:=domain(MR) returns the domain (input objects) of a MR
OI:=range(MR) returns the range (output objects) of a MR
MR:=compose(MR,MR) composes two given mapping results
OI:=diff(OI,OI) returns the difference set of object instances be-

tween the first and second input set
AO:=aggregateSame(OI,PDS) fuses objects of two different PDS interrelated by a

same mapping

In the first step, we associate each EST sequence of the local source MyEstSet to
the associated DNA sequence regions in Ensembl by executing the map operator on
mapping EstDnaBlast.hsa. This mapping was created by performing a BLAST search
during the integration of MyEstSet. The map result is stored in variable alignedEstMR
indicating the EST sequences which could be mapped. The set of unaligned ESTs is
computed by taking the difference between all given ESTs in MyEstSet and the
aligned ESTs in (the domain of) alignedEstMR as shown in Step 2 (answer to query
Q1). To further distinguish between protein-coding and non-coding aligned EST se-
quences, we consider that genes typically consist of multiple intron and exon
sequences. Usually, intron sequences are spliced out before the protein coding (trans-
lation) process starts. Therefore, sequence regions within introns are typically non-
coding sequences. Conversely, exon sequences are highly involved in the protein
coding process. In Step 3 we apply the mapping Ensembl.SRegionExons to determine
the exons associated with the aligned DNA sequence regions. The domain of this
composed mapping thus corresponds to the protein-coding aligned EST sequences
(Step 4; answer to Q2). The set of non-coding and aligned EST sequences can be
derived as the difference set between all aligned ESTs and all protein-coding and
aligned EST sequences (Step 5; answer to Q3).

The example illustrates the power of the set-oriented operators for interconnecting
data from different sources. The operators make it also easy to react to new analysis
needs. For instance, we can associate the found protein-coding EST sequences not
only to SwissProt proteins but also to genes of Ensembl and NetAffx, e.g. for mi-
croarray-based gene expression analysis. This is achieved by the following script
extension.

 BioFuice: Mapping-Based Data Integration in Bioinformatics 129

$codingEstProteinMR:=compose($codingEstMR, map(range($codingEstMR),
{Ensembl.ExonGene,Ensembl.GeneProteins}));

$codingEstGeneOI:=traverse(range($codingEstMR),{Ensembl.ExonGene});
$fusedGeneAO:=aggregateSame($codingEstGeneOI,NetAffx);

The first statement returns a mapping result associating each protein-coding EST to
the corresponding protein in SwissProt, the second statement determines all associ-
ated genes available in the Ensembl data source. This set of genes can further be fused
with information on genes of the NetAffx source by traversing the corresponding
same mapping. The fused gene information contains the attributes of both LDS,
Gene@Ensembl and Gene@NetAffx.

3 BioFuice Architecture

Figure 2 gives an overview of the BioFuice system architecture. It consists of two
main components, the iFuice core and the BioFuice query component. BioFuice util-
izes the generic iFuice core to execute script programs and fuse data from several
sources. The BioFuice query component provides interactive query functionality,
supports local storage of analysis results and meets specific bioinformatics require-
ments, e.g. to export genomic sequences in specific formats for later use in other
analysis tools. BioFuice query and iFuice core may run on the same machine or dif-
ferent machines. The BioFuice query component can also be run in stand-alone mode
independent of iFuice, e.g. offline on a laptop. In this case analysis and query process-
ing are restricted to local data sources. BioFuice is already in use for different applica-
tions, in particular for gene expression analysis, protein interaction analysis and
analysis of non-coding RNAs.

B
 i

o
F

 u
 i

c
e iFuice script

BioFuice Interface Script
Editor

Keyword
Search

Model-based
Querying

script result

Query Manager
Query Translation
and Execution
Unit

query specification query result

iFuice core Web Service Wrapper

metadata

request response

Snapshot
Data

MetadataSchema Handler

Data Handler

Predefined
Queries

Snapshot Management

Generic Mapping
Execution Services

Relational
Database

XML
Database

XML
File

XML
Stream

Appli-
cationi F

 u
 i

c
e

 C
 o

 r
 e

Web-
Service

W e b S e r v i c e A P I

Fusion Control Unit
and Repository

Mediator Interface

Mapping Handler
Repository Cache

responserequest

mapping callmapping call mapping result

Duplicate Detection

iFuice Wrapper

i F u i c e c o r e A P I

B
 i

o
F

 u
 i

c
e

Q

 u
 e

 r
 y Object and

Sequence Exporter

Mapping Layer Mappings retrieving data of a single LDS but also interconnecting different LDS

Fig. 2. BioFuice system architecture

130 T. Kirsten and E. Rahm

The iFuice core consists of mapping execution services, a fusion control unit, a re-
pository and the mediator interface. The mediator interface supports access to the
iFuice functionality by a basic application interface but also by specific web service
methods (so that iFuice core may run on a separate server machine). Typically, the
interface is used to start a script combining multiple data and mapping operations.
The mapping handler executes the script, temporarily caches the results and provides
the results to the application via the mediator interface. The iFuice repository contains
all metadata of the source mapping model and the domain model. In particular, it
stores all LDS descriptions and mapping definitions. Each mapping definition is asso-
ciated with mapping execution services that implement the specified mapping, e.g. a
web service, Java application or SQL query. The spectrum of available mapping exe-
cution services supports mappings for sources of different formats, such as relational
databases, XML-based sources but also application tools. The implementation of
mappings by bioinformatics tools allows complex analysis and integration workflows,
e.g. to perform search (blast) and data cleaning tasks.

Like the iFuice core the BioFuice query component is modularly structured. Sub-
components include a user interface, a query translation and execution unit and a local
snapshot management unit. The user interface not only supports query specification
but also visualization and export of query results. Query capabilities include prede-
fined structured queries and unstructured keyword search, and are further described in
the next section. The query manager translates interactively specified queries into an
internal query format and automatically generates an iFuice script whenever the user
decides to utilize the original (non-local) sources. Alternatively, queries may be re-
stricted to local data, in particular materialized analysis results and copies (snapshots)
of public sources. In this case, the query manager maps user queries to the corre-
sponding statements on local sources, e.g. SQL statements for snapshots stored within
a relational database.

4 Interactive Query Processing

BioFuice provides different query and search capabilities for explorative analysis and
repeated execution of predefined analysis workflows. In addition to the iFuice script-
ing facility BioFuice supports canned queries, model-based querying, and a keyword
search. Canned queries are parameterized predefined queries. Query parameters are
provided by the user at runtime to specify specific query conditions.

Since predefined queries are sometimes too static on the one hand and the scripting
capability could be too complex for end users on the other hand, BioFuice provides
the model-based querying and keyword search. Model-based querying directly util-
izes the source mapping and the domain models. Figure 3a shows the GUI for this
query capability. Both models are illustrated as graphs on the GUI's left hand side
(top: domain model, bottom: source mapping model). The nodes represent object
types (logical sources) and edges stand for mapping types (mappings) within the do-
main model (source mapping model).

Users can use the GUI to select relevant sources and specify query conditions
(keywords) for specific LDS on the right hand side of the interface. Furthermore, the
query targets are specified, i.e. LDS for which object instances are finally retrieved.

 BioFuice: Mapping-Based Data Integration in Bioinformatics 131

Objects of target LDS sharing the same object type can be aggregated, i.e. attribute
sets of corresponding instances from these LDS are merged. BioFuice automatically
determines available mapping paths from the source mapping model connecting the
selected LDS and query targets; the paths are visualized on the right hand side for
user selection. Before the query is executed the user can also specify whether the
original sources or the local snapshots should be used to answer the specified query.

a) Model-based query formulation

b) Keyword search

Graph-based model
representation

Keyword search
specification

Search result sepa-
rated in overview
and details

utilize original sources
or local snapshots

Aggreagted Query
result separated in
overview and details

Query specification
by selecting query
targets, conditions
and available paths

Fig. 3. Selected BioFuice query capabilities

Figure 3a illustrates such a query specification for a simple explorative analysis
task. The goal is to find all genes of the source NetAffx corresponding to Chemokine
proteins, i.e. special proteins that are responsible for cell-cell interactions. Based on
the SMM of Figure 1, the plan is to use SwissProt to determine the relevant proteins
and to traverse to the associated genes in Ensembl and then to the corresponding
genes in NetAffx. BioFuice translates the interactively specified query into the fol-
lowing iFuice script:

$Proteins:=searchInstances(Protein@SwissProt,"CXCL CCL XCL CX3C");
$Genes:=traverse($Proteins,{Ensembl.ProtGenes});
$FusedGenes:=aggregateSame($Genes,NetAffx);

132 T. Kirsten and E. Rahm

In Step 1, we utilize the LDS Protein@SwissProt to search for Chemokine proteins.
[Ta05] provides a list of such proteins that are systematically classified in four groups
CXC, CC, XC, and CX3C2. These group names can be used to search for relevant
proteins since they are part of the protein name. In Step 2, the found proteins are as-
sociated with Ensembl genes which are fused with NetAffx genes in Step 3 as result.

In contrast to the model-based query capability, the keyword search looks either
for objects of one selected LDS or of all LDS with the same chosen object type by
considering the specified keywords. Figure 3b shows an example for keyword search
within the GUI where the user is interested in finding relevant Hox genes of the En-
sembl data source. This query specification is then taken by the query manager and
either translated into an iFuice script program or a snapshot query in dependence of
the user choice. In the first case, the query manager generates the following iFuice
script which returns all object instances of the LDS containing the specified keyword.

$HoxGenes:=searchInstances(Gene@Ensembl,"Hox");

5 Related Work

Previous data integration approaches in bioinformatics [HK04, LC03, Iv05] have
already made heavy use of cross-references between data sources and navigational
access. In the simplest case, users have to manually navigate between sources and
objects by following hypertext links, e.g. supported by a portal. Widely used systems
like Entrez [Sc96] and SRS [Et03] support automatic navigational access in combina-
tion with web-based search and retrieval but are limited to sources at NCBI (Entrez)
or local copies (SRS). BioFuice similarly utilizes cross-references to interrelate ob-
jects of different sources, but offers more query flexibility through its use of high-
level operators. In particular, BioFuice utilizes operators fusing objects from different
sources which is currently not possible with Entrez and SRS. Furthermore, BioFuice
provides a semantic domain model for both sources and mappings helping to identify
relevant sources and focusing the analysis on semantically meaningful mappings. Our
previous integration approaches of [DR04] (GenMapper) and [KDKR05] also utilize
existing cross-references but do not consider the semantics of objects and mappings.
Moreover, they use a central database to store all cross-references. Like SRS, BIS
[La03], and others, BioFuice is not limited to pre-existing cross-references but can
also compute mappings, e.g. by queries or bioinformatics tools such as BLAST.

Many data warehouse and mediator systems utilize a global schema aiming at a
consistent view over different data sources. As discussed in the introduction, such a
schema is hard to create and maintain due to the large number of relevant sources and
their high degree of heterogeneity. Some approaches such as ALADIN [LN05],
HumMer [Bi05], AutoMed Toolkit [Ma05], and ANNODA [PC05] try to address this
problem by using automatic schema matching. Other approaches simply take the
union of the local schemas as the global schema. This exposes the heterogeneity and
complexity to the user but still suffers from the need to change the global schema
(and thus dependent mappings and applications) whenever one of the sources changes
or a new source is added. In contrast to these approaches, BioFuice avoids the

2 The additional character 'L' within the script identifies ligand proteins.

 BioFuice: Mapping-Based Data Integration in Bioinformatics 133

construction of a global schema but uses bidirectional peer mappings between
sources. The domain model used is at a much higher abstraction level than a global
schema and does not include details like the exact set of source attributes.

The BioFuice domain model can be seen as a domain-specific ontology. Ontolo-
gies provide a common understanding of a domain and thus are of interest for data
integration. An overview of ontology-based approaches for data integration is pre-
sented in [Wa01]. While BioFuice currently utilizes user-defined object types as
concepts and mapping types as their semantic relationships, other approaches reuse
pre-defined ontologies [Me00] and focus on efficient query processing and rewriting
by applying description logic [St03], different kinds of rules [NF05] and a quality
model [He05]. Moreover, associating each relevant source attribute to an ontology
concept need much more fine-grained ontologies than we use in BioFuice. Creating
and maintaining fine-grained ontologies has similar problems than a global schema.

Peer-to-peer data management systems typically avoid the construction of a global
schema. Database-oriented systems like Piazza [Ha03], PeerDB [Ng03] and Orchestra
[Iv05] allow queries to be formulated on one peer and to be propagated through the
system. Conversely, BioFuice can execute queries as well as mappings containing
instance correspondences between sources, and can aggregate data from different
sources. In contrast to Orchestra, BioFuice does not need to copy remote sources to
local copies but uses the source schemas and their instances as provided.

6 Conclusions

We presented the BioFuice approach to integrate data from decentralized private and
public data sources and ontologies. BioFuice follows a peer-to-peer-like data integra-
tion based on bidirectional mappings. Sources and mappings are associated with a
domain model to support a semantically meaningful interoperability. BioFuice ex-
tends the generic iFuice integration platform which utilizes specific operators for data
fusion and workflow-like script programs. BioFuice supports explorative data analy-
sis and interactive query and search capabilities. BioFuice is operational and being
used in different applications, such as for gene expression analysis, protein interac-
tions analysis, and detection and analysis of non-coding RNAs.

Acknowledgements

The authors thank Andreas Thor, Nick Golovin and David Aumüller for useful dis-
cussions and their collaboration in developing the iFuice core component. We also
thank the unknown reviewers for their constructive hints to improve the paper. The
work is supported by the German Research Foundation, grant BIZ 1/3-1.

References

[Al90] Altschul, S. F. et al.: Basic Local Alignment Search Tool. Journal of Molecular
Biology 215(3):403-10, 1990.

[Bi04] Birney, E. et al.: An Overview of Ensembl. Genome Research 14: 925-928, 2004.

134 T. Kirsten and E. Rahm

[Bi05] Bilke, A. et al: Automatic Data Fusion with HumMer. Proc. 31st VLDB Conf.,
Demo description, 2005.

[Bo03] Boeckmann, B. et al.: The SWISS-PROT protein knowledgebase and its supple-
ment TrEMBL in 2003. Nucleic Acids Research 31: 365-370, 2003.

[Et03] Etzold, T. et al.: SRS: An Integration Platform for Databanks and Analysis Tools
in Bioinformatics. In [LC03]: 109-145.

[DR04] Do, H.-H.; Rahm, E.: Flexible Integration of Molecular-biological Annotation
Data: The GenMapper Approach. Proc. EDBT Conf., 2004.

[Ga05] Galperin, M. Y.: The Molecular Biology Database Collection: 2005 Update”,
Nucleic Acids Research, 33, D5-D24, 2005.

[Ha03] Halevy, A. et al.: Piazza: data management infrastructure for semantic web appli-
cations. Proc. WWW, 2003.

[He05] Heese, R. et al: Self-extending Peer Data Management. Proc. Database Systems in
Business, Technology and Web (BTW), 2005.

[HK04] Hernandez, T.; Kambhampati, S.: Integration of Biological Sources: Current
Systems and Challenges Ahead. SIGMOD Record 33(3), 2004.

[Iv05] Ives, Z. et al.: Orchestra: Rapid, Collaborative Sharing of Dynamic Data. Proc. of
Conf. on Innovative Data Systems Research (CIDR), 2005.

[KDKR05] Kirsten, T.; Do, H.-H.; Körner, C.; Rahm, E.: Hybrid Integration of molecular-
biological Annotation Data. Proc. 2nd Int. Workshop on Data Integration in the
Life Sciences (DILS), 2005.

[La03] Lacroix, Z. et al.: The Biological Integration System. Proc. 5th ACM Int. Work-
shop on Web Information and Data Management, 2003.

[LC03] Lacroix, Z.; Critchlow T. (Eds.): Bioinformatics: Managing Scientific Data. Mor-
gan Kaufmann, 2003.

[Li03] Liu, G. et al.: NetAffx: Affymetrix probesets and annotations. Nucleic Acids
Research, 31(1): 82-86, 2003.

[LN05] Leser, U.; Naumann, F.: (Almost) Hands-Off Information Integration for the Life
Sciences. Proc. 2nd Conf. on Innovative Data Systems Research (CIDR), 2005.

[Ma05] Maibaum, M. et al.: Cluster based Integration of heterogeneous biological Data-
bases using the AutoMed Toolkit. Proc. 2nd Int. Workshop on Data Integration in
the Life Sciences (DILS), 2005.

[Me00] Mena, E. et al.: Observer: An Approach fro Query processing in Global Informa-
tion Systems based on Interoperation across pre-existing Ontologies. Distributed
and Parallel Databases 8(2): 223-271, 2000.

[NF05] Necib, C. B.; Freytag, J.-C.: Query Processing Using Ontologies. Proc. 17th Conf.
on Advanced Information Systems Engineering (CAISE), 2005.

[Ng03] Ng, W. S. et al.: PeerDB A P2P-based System for Distributed Data Sharing. Proc.
19th Int. Conf. on Data Engineering, 2003.

[PC05] Prompramote, S.; Chen, Y.P.: Annonda: Tool for integrating molecular-biological
Annotation Data. Proc. 21st Int. Conf. on Data Engineering (ICDE), 2005.

[Ra05] Rahm, E. et al.: iFuice - Information Fusion utilizing Instance Correspondences
and Peer Mappings. Proc. 8th Int. Workshop on the Web & Databases (WebDB),
2005.

[RT05] Rahm, E.; Thor, A.: Citation analysis of database publications. SIGMOD Record
34(4), 2005.

[Sc96] Schuler, G. D. et al.: Entrez: Molecular biology database and retrieval system.
Journal of Methods in Enzymology 266:141-62, 1996.

 BioFuice: Mapping-Based Data Integration in Bioinformatics 135

[St03] Stevens, R. et al.: Complex Query Formulation over diverse Information Sources
in TAMBIS. In [LC03], 190-224, 2003.

[Ta05] Tanaka, Toshiyuki et al.: Chemokines in tumor progression and metastasis. Can-
cer Science 96(6): 317-322, 2005.

[Wa01] Wache, H. et al.: Ontology-based Integration of Information - A Survey of exist-
ing Approaches. Proc. Workshop on Ontologies and Information Sharing (IJCAI),
2001.

	Introduction
	Illustrating Scenario
	BioFuice Architecture
	Interactive Query Processing
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

