
U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 124 – 135, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

BioFuice: Mapping-Based Data Integration 
in Bioinformatics 

Toralf Kirsten and Erhard Rahm 

University of Leipzig, Germany 
tkirsten@izbi.uni-leipzig.de, rahm@informatik.uni-leipzig.de 

Abstract. We introduce the BioFuice approach for integrating data from  
different private and public data sources and ontologies. BioFuice follows a 
peer-to-peer-like data integration based on bidirectional mappings. Sources and 
mappings are associated with a domain model to support a semantically mean-
ingful interoperability. BioFuice extends the generic iFuice integration platform 
which utilizes specific operators for data fusion and workflow-like script pro-
grams. BioFuice supports explorative data analysis and query and search capa-
bilities. We outline the integration approach by an illustrating scenario, the  
architecture of BioFuice and its query interface. 

1   Introduction 

Many biological and medical applications require access to a variety of molecular-
biological objects, such as genes, proteins, their interrelationships and functions, and 
their correlations with phenotypical effects. These objects are maintained in a high 
number of diverse web-accessible data sources [Ga05] as well as in local (private) 
data sources, e.g. specific analysis results such as a particular list of genes or medical 
data on patients participating in clinical trials. Typically, such data is highly diverse 
so that their integration is laborious and error-prone and difficult to perform by do-
main experts. 

Traditional data integration approaches like data warehousing and mediators are 
often applicable but also time-consuming to deploy and may lack sufficient support 
for features such as explorative data analysis. These integration approaches typically 
require a unified global schema to obtain a consistent view over data from different 
sources. However, creating such a schema for more than a few data sources is almost 
impossible due to the high diversity, complexity and fast evolution of sources. Each 
new source to consider may require adapting the global schema as well as applica-
tions built upon this schema. 

A promising alternative to the traditional data warehousing and mediator solutions 
using a global schema are so-called peer-to-peer approaches for data integration 
[Ha03]. They are based on bilateral mappings between autonomous data sources, 
called data peers, instead of mappings between data sources and a global schema. 
Adding a new data source can thus be achieved by mapping it to only one existing 
peer instead of adapting the global schema and mapping the source to it. In bioinfor-
matics, a peer-to-peer approach seems especially appropriate since bilateral mappings 
can often be derived from existing cross-references between objects of different 
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sources. Such cross-references refer to so-called accessions, i.e. unique object identi-
fiers, and are omnipresent in public data sources. The cross-references are typically 
maintained by domain experts and thus of high quality. However, they are currently 
used mostly for manual web navigation which is unsuitable for evaluating large sets 
of objects, e.g. for gene expression analysis. Moreover, the semantics of the cross-
references is typically not made explicit making it difficult for the user to find and 
correctly use all relevant sources and mappings for a given application task. 

iFuice (information Fusion utilizing instance correspondences and peer mappings) 
[Ra05] is a recently proposed approach for peer-to-peer data integration. It utilizes 
mappings, e.g. sets of cross-references, to combine or fuse information from different 
sources. Sources and mappings are related to a domain model to support semantically 
meaningful information fusion. The iFuice architecture incorporates a mapping me-
diator offering both interactive and script-driven, workflow-like access to the sources 
and their mappings. The script programmer can use powerful generic operators to 
execute and manipulate mappings and their results. iFuice is a generic data integration 
approach which is not targeted for a specific application domain. An initial use case 
of iFuice was to combine bibliographic data for a citation analysis of database publi-
cations [Ra05, RT05]. 

In this paper we describe how iFuice and its extension BioFuice can be used for 
data integration in bioinformatics applications. Key characteristics of BioFuice in-
clude:  

• Peer-to-peer integration: By following the iFuice paradigm BioFuice aims at 
utilizing instance-level cross-references which already exist, e.g. as web links, 
or can be generated by bioinformatics tools, such as BLAST. New sources can 
be dynamically integrated as needed by mapping the new source to (at least) 
one already integrated source. 

• Semantic integration: To address semantic integration, BioFuice utilizes a 
high-level domain model containing domain-specific object types and map-
ping types. The domain model is used to categorize specific sources and  
mappings so that they can be selected and accessed according to current appli-
cation requirements. 

• Comprehensive query capabilities: BioFuice utilizes the high-level operators 
and scripting facility of iFuice to perform data access, mapping execution and 
data fusion. This infrastructure makes it possible to react to new application 
needs and to support complex data integration and analysis workflows. Bio-
Fuice substantially extends the generic iFuice facilities by providing a graphi-
cal query interface for explorative analysis and automatically generating script 
programs from interactively specified queries. Both predefined queries as well 
as keyword searches are supported. 

• Local data sources: BioFuice integrates both public and local (private) data 
sources. In particular, query and script results or copies of entire sources may 
be stored within a local database for later reuse. BioFuice can also be operated 
in an offline mode (e.g. on a notebook) by only evaluating local data sources. 

The rest of the paper is organized as follows. In the next section we introduce the 
basic idea of the BioFuice approach by using an illustrating scenario. We also outline 
selected high-level operators and their usage. In Section 3, we introduce the BioFuice 
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system architecture. Section 4 describes the interactive query and search capabilities 
for explorative analysis. We discuss related work in Section 5 before we conclude in 
Section 6. 

2   Illustrating Scenario 

To illustrate our data integration approach we consider an analysis task on human 
expressed sequence tag (EST) sequences. Typically, such ESTs are short DNA se-
quences of a specific organism that are generated by sequence machines. We assume 
that the analysis application needs to classify EST sequences into three classes which 
are represented by the following queries: 

Query 1 (Q1): Return all unaligned EST sequences of a given set, i.e. EST sequences 
for which no corresponding DNA sequence can be found. 

Query 2 (Q2): Return all EST sequences of a given set that are associated with pro-
tein-coding DNA sequences. 

Query 3 (Q3): Return all EST sequences of a given set that are associated with non-
coding DNA sequences. 

Such a classification is a typical data integration problem since the given set of 
EST sequences has to be combined with further molecular-biological data on genes 
and proteins to decide which sequences fall into which class.  

Figure 1a shows four (physical) sources and associated mappings we want to use 
for this scenario within a so-called source mapping model (SMM). There are three 
public data sources (Ensembl [Bi04], NetAffx [Li03], SwissProt [Bo03]) and one 
local data source, MyEstSet, specifying the EST sequences of interest. A physical 
data source (PDS), e.g. Ensembl, may offer objects of different types. We call  
the object types of one PDS the logical data sources (LDS). The notation <Ob-
jectType>@<PhysicalDataSource> is used to denote a specific LDS, e.g. Gene@En-
sembl or Protein@SwissProt. Each LDS has an identifying attribute (accession) plus 
additional attributes. 

Object types of any source are represented in the abstract domain model (Figure 1b). 
Each mapping between source instances has a mapping type which is also represented 
in the domain model. For example, mappings of type GeneCodedProteins relate gene 
instances to their associated proteins. The domain model is used to semantically cate-
gorize data sources and mappings and at a much higher conceptual level than a global 
schema. We do not include attributes for object types to accommodate a large variety 
of data sources and to make it easy to construct the domain model. In many cases, we 
expect a small set of object and mapping types to be sufficient. 

New sources can be flexibly included by adopting relevant metadata, i.e. the physi-
cal source name and its associated object type (building the new LDS) as well as 
definitions for querying and searching within the source. In addition, at least one 
mapping should be defined to connect the new LDS to an existing LDS so that the 
new LDS can be used together with others. The domain model is automatically 
adapted to the changes made within the source mapping model. 
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Mappings can often be represented by sets of cross-references between ob-
jects/instances of different LDS. For instance, the mapping between Gene@Ensembl 
and Protein@SwissProt can be derived from the existing SwissProt references in the 
Ensembl gene instances. Alternatively, mappings can be derived on demand by exe-
cuting queries or a program (script). In our example, the private source MyEstSet 
contains ESTs that are only described by a sequence. Hence, neither the PDS MyEst-
Set nor the public PDS Ensembl provide correspondences between the instances they 
offer. In this case, a BLAST1-like tool can be used to determine for a set of EST se-
quences the most similar DNA sequences within Ensembl. This creates a mapping 
between EstSequence@MyEstSet and SequenceRegion@Ensembl thereby integrating 
the local source into the peer-to-peer network represented by the SMM. Special map-
ping types are so-called same-mappings interrelating semantically equivalent in-
stances of the same object type. In Figure 1a there is one same-mapping on genes 
between Ensembl and NetAffx. 
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Fig. 1. Data integration scenario 

To process data and mappings, iFuice and thus BioFuice offer a set of high-level op-
erators which can be combined within script programs. Table 1 shows a selection of 
these operators that are relevant for the examples in this paper; the full definitions are 
given in [Ra05]. The operators typically operate on a set of input objects, e.g. an entire 
LDS, and generate a set of output objects which can be used as the input of further op-
erators. In Table 1, OI denotes a set of object instances from one object type; objects are 
identified by their ids which are assumed to also identify the LDS the objects belong to. 

To solve the EST classification problem posed in the beginning of this section we 
can use the following simple script determining three sets of EST sequences:  

$alignedEstMR:=map(MyEstSet,{EstDnaBlast.hsa}); 
$unalignedEstOI:=diff(MyEstSet,domain($alinedEstMR)); 
$codingEstMR:=compose($alignedEstMR, 
                  map(range($alignedEstMR),{Ensembl.SRegionExons})); 
$proteinCodingEstOI:=(domain($codingEstMR)); 
$nonCodingEstOI:= diff (domain($alignedEstMR), $proteinCodingEstOI); 

                                                           
1 BLAST stands for Basic Local Alignment Search Tool [Al90]. 
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Table 1. Selected iFuice script operators (OI = set of object instances) 

Operator Description 
OI:=queryInstances(LDS, query condition) executes a query on the specified LDS and returns 

object instances (OI) meeting the query condition 
OI:=searchInstances(LDS, {keywords}) executes a keyword search on the specified LDS 

and returns object instances containing at least one 
of the specified keywords 

OI:=getInstances(OI) returns complete instances for objects identified by 
their id values 

OI:=traverse(OI,{mapping names}) traverse specified mappings on input instances; 
multiple mappings are automatically composed 

OI:=traverseSame(OI,PDS) traverse same mappings to target PDS 
MR:=map(OI,{mapping names}) returns a mapping result MR (mapping table) that 

associates each input object to the corresponding 
output objects by executing specified mappings 

OI:=domain(MR) returns the domain (input objects) of a MR 
OI:=range(MR) returns the range (output objects) of a MR 
MR:=compose(MR,MR) composes two given mapping results 
OI:=diff(OI,OI) returns the difference set of object instances be-

tween the first and second input set 
AO:=aggregateSame(OI,PDS) fuses objects of two different PDS interrelated by a 

same mapping  

In the first step, we associate each EST sequence of the local source MyEstSet to 
the associated DNA sequence regions in Ensembl by executing the map operator on 
mapping EstDnaBlast.hsa. This mapping was created by performing a BLAST search 
during the integration of MyEstSet. The map result is stored in variable alignedEstMR 
indicating the EST sequences which could be mapped. The set of unaligned ESTs is 
computed by taking the difference between all given ESTs in MyEstSet and the 
aligned ESTs in (the domain of) alignedEstMR as shown in Step 2 (answer to query 
Q1). To further distinguish between protein-coding and non-coding aligned EST se-
quences, we consider that genes typically consist of multiple intron and exon  
sequences. Usually, intron sequences are spliced out before the protein coding (trans-
lation) process starts. Therefore, sequence regions within introns are typically non-
coding sequences. Conversely, exon sequences are highly involved in the protein 
coding process. In Step 3 we apply the mapping Ensembl.SRegionExons to determine 
the exons associated with the aligned DNA sequence regions. The domain of this 
composed mapping thus corresponds to the protein-coding aligned EST sequences 
(Step 4; answer to Q2). The set of non-coding and aligned EST sequences can be 
derived as the difference set between all aligned ESTs and all protein-coding and 
aligned EST sequences (Step 5; answer to Q3). 

The example illustrates the power of the set-oriented operators for interconnecting 
data from different sources. The operators make it also easy to react to new analysis 
needs. For instance, we can associate the found protein-coding EST sequences not 
only to SwissProt proteins but also to genes of Ensembl and NetAffx, e.g. for mi-
croarray-based gene expression analysis. This is achieved by the following script 
extension. 
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$codingEstProteinMR:=compose($codingEstMR, map(range($codingEstMR), 
{Ensembl.ExonGene,Ensembl.GeneProteins})); 

$codingEstGeneOI:=traverse(range($codingEstMR),{Ensembl.ExonGene}); 
$fusedGeneAO:=aggregateSame($codingEstGeneOI,NetAffx); 

The first statement returns a mapping result associating each protein-coding EST to 
the corresponding protein in SwissProt, the second statement determines all associ-
ated genes available in the Ensembl data source. This set of genes can further be fused 
with information on genes of the NetAffx source by traversing the corresponding 
same mapping. The fused gene information contains the attributes of both LDS, 
Gene@Ensembl and Gene@NetAffx. 

3   BioFuice Architecture 

Figure 2 gives an overview of the BioFuice system architecture. It consists of two 
main components, the iFuice core and the BioFuice query component. BioFuice util-
izes the generic iFuice core to execute script programs and fuse data from several 
sources. The BioFuice query component provides interactive query functionality, 
supports local storage of analysis results and meets specific bioinformatics require-
ments, e.g. to export genomic sequences in specific formats for later use in other 
analysis tools.  BioFuice query and iFuice core may run on the same machine or dif-
ferent machines. The BioFuice query component can also be run in stand-alone mode 
independent of iFuice, e.g. offline on a laptop. In this case analysis and query process-
ing are restricted to local data sources. BioFuice is already in use for different applica-
tions, in particular for gene expression analysis, protein interaction analysis and 
analysis of non-coding RNAs. 
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The iFuice core consists of mapping execution services, a fusion control unit, a re-
pository and the mediator interface. The mediator interface supports access to the 
iFuice functionality by a basic application interface but also by specific web service 
methods (so that iFuice core may run on a separate server machine). Typically, the 
interface is used to start a script combining multiple data and mapping operations. 
The mapping handler executes the script, temporarily caches the results and provides 
the results to the application via the mediator interface. The iFuice repository contains 
all metadata of the source mapping model and the domain model. In particular, it 
stores all LDS descriptions and mapping definitions. Each mapping definition is asso-
ciated with mapping execution services that implement the specified mapping, e.g. a 
web service, Java application or SQL query. The spectrum of available mapping exe-
cution services supports mappings for sources of different formats, such as relational 
databases, XML-based sources but also application tools. The implementation of 
mappings by bioinformatics tools allows complex analysis and integration workflows, 
e.g. to perform search (blast) and data cleaning tasks. 

Like the iFuice core the BioFuice query component is modularly structured. Sub-
components include a user interface, a query translation and execution unit and a local 
snapshot management unit. The user interface not only supports query specification 
but also visualization and export of query results. Query capabilities include prede-
fined structured queries and unstructured keyword search, and are further described in 
the next section. The query manager translates interactively specified queries into an 
internal query format and automatically generates an iFuice script whenever the user 
decides to utilize the original (non-local) sources. Alternatively, queries may be re-
stricted to local data, in particular materialized analysis results and copies (snapshots) 
of public sources. In this case, the query manager maps user queries to the corre-
sponding statements on local sources, e.g. SQL statements for snapshots stored within 
a relational database. 

4   Interactive Query Processing 

BioFuice provides different query and search capabilities for explorative analysis and 
repeated execution of predefined analysis workflows. In addition to the iFuice script-
ing facility BioFuice supports canned queries, model-based querying, and a keyword 
search. Canned queries are parameterized predefined queries. Query parameters are 
provided by the user at runtime to specify specific query conditions. 

Since predefined queries are sometimes too static on the one hand and the scripting 
capability could be too complex for end users on the other hand, BioFuice provides 
the model-based querying and keyword search. Model-based querying directly util-
izes the source mapping and the domain models. Figure 3a shows the GUI for this 
query capability. Both models are illustrated as graphs on the GUI's left hand side 
(top: domain model, bottom: source mapping model). The nodes represent object 
types (logical sources) and edges stand for mapping types (mappings) within the do-
main model (source mapping model). 

Users can use the GUI to select relevant sources and specify query conditions 
(keywords) for specific LDS on the right hand side of the interface. Furthermore, the 
query targets are specified, i.e. LDS for which object instances are finally retrieved. 
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Objects of target LDS sharing the same object type can be aggregated, i.e. attribute 
sets of corresponding instances from these LDS are merged. BioFuice automatically 
determines available mapping paths from the source mapping model connecting the 
selected LDS and query targets; the paths are visualized on the right hand side for 
user selection. Before the query is executed the user can also specify whether the 
original sources or the local snapshots should be used to answer the specified query. 
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Fig. 3. Selected BioFuice query capabilities 

Figure 3a illustrates such a query specification for a simple explorative analysis 
task. The goal is to find all genes of the source NetAffx corresponding to Chemokine 
proteins, i.e. special proteins that are responsible for cell-cell interactions. Based on 
the SMM of Figure 1, the plan is to use SwissProt to determine the relevant proteins 
and to traverse to the associated genes in Ensembl and then to the corresponding 
genes in NetAffx. BioFuice translates the interactively specified query into the fol-
lowing iFuice script: 

$Proteins:=searchInstances(Protein@SwissProt,"CXCL CCL XCL CX3C"); 
$Genes:=traverse($Proteins,{Ensembl.ProtGenes}); 
$FusedGenes:=aggregateSame($Genes,NetAffx); 
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In Step 1, we utilize the LDS Protein@SwissProt to search for Chemokine proteins. 
[Ta05] provides a list of such proteins that are systematically classified in four groups 
CXC, CC, XC, and CX3C2. These group names can be used to search for relevant 
proteins since they are part of the protein name. In Step 2, the found proteins are as-
sociated with Ensembl genes which are fused with NetAffx genes in Step 3 as result. 

In contrast to the model-based query capability, the keyword search looks either 
for objects of one selected LDS or of all LDS with the same chosen object type by 
considering the specified keywords. Figure 3b shows an example for keyword search 
within the GUI where the user is interested in finding relevant Hox genes of the En-
sembl data source. This query specification is then taken by the query manager and 
either translated into an iFuice script program or a snapshot query in dependence of 
the user choice. In the first case, the query manager generates the following iFuice 
script which returns all object instances of the LDS containing the specified keyword. 

$HoxGenes:=searchInstances(Gene@Ensembl,"Hox"); 

5   Related Work 

Previous data integration approaches in bioinformatics [HK04, LC03, Iv05] have 
already made heavy use of cross-references between data sources and navigational 
access. In the simplest case, users have to manually navigate between sources and 
objects by following hypertext links, e.g. supported by a portal. Widely used systems 
like Entrez [Sc96] and SRS [Et03] support automatic navigational access in combina-
tion with web-based search and retrieval but are limited to sources at NCBI (Entrez) 
or local copies (SRS). BioFuice similarly utilizes cross-references to interrelate ob-
jects of different sources, but offers more query flexibility through its use of high-
level operators. In particular, BioFuice utilizes operators fusing objects from different 
sources which is currently not possible with Entrez and SRS. Furthermore, BioFuice 
provides a semantic domain model for both sources and mappings helping to identify 
relevant sources and focusing the analysis on semantically meaningful mappings. Our 
previous integration approaches of [DR04] (GenMapper) and [KDKR05] also utilize 
existing cross-references but do not consider the semantics of objects and mappings. 
Moreover, they use a central database to store all cross-references. Like SRS, BIS 
[La03], and others, BioFuice is not limited to pre-existing cross-references but can 
also compute mappings, e.g. by queries or bioinformatics tools such as BLAST. 

Many data warehouse and mediator systems utilize a global schema aiming at a 
consistent view over different data sources. As discussed in the introduction, such a 
schema is hard to create and maintain due to the large number of relevant sources and 
their high degree of heterogeneity. Some approaches such as ALADIN [LN05], 
HumMer [Bi05], AutoMed Toolkit [Ma05], and ANNODA [PC05] try to address this 
problem by using automatic schema matching. Other approaches simply take the 
union of the local schemas as the global schema. This exposes the heterogeneity and 
complexity to the user but still suffers from the need to change the global schema  
(and thus dependent mappings and applications) whenever one of the sources changes 
or a new source is added. In contrast to these approaches, BioFuice avoids the  

                                                           
2 The additional character 'L' within the script identifies ligand proteins. 
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construction of a global schema but uses bidirectional peer mappings between 
sources. The domain model used is at a much higher abstraction level than a global 
schema and does not include details like the exact set of source attributes. 

The BioFuice domain model can be seen as a domain-specific ontology. Ontolo-
gies provide a common understanding of a domain and thus are of interest for data 
integration. An overview of ontology-based approaches for data integration is pre-
sented in [Wa01]. While BioFuice currently utilizes user-defined object types as  
concepts and mapping types as their semantic relationships, other approaches reuse 
pre-defined ontologies [Me00] and focus on efficient query processing and rewriting 
by applying description logic [St03], different kinds of rules [NF05] and a quality 
model [He05]. Moreover, associating each relevant source attribute to an ontology 
concept need much more fine-grained ontologies than we use in BioFuice. Creating 
and maintaining fine-grained ontologies has similar problems than a global schema. 

Peer-to-peer data management systems typically avoid the construction of a global 
schema. Database-oriented systems like Piazza [Ha03], PeerDB [Ng03] and Orchestra 
[Iv05] allow queries to be formulated on one peer and to be propagated through the 
system. Conversely, BioFuice can execute queries as well as mappings containing 
instance correspondences between sources, and can aggregate data from different 
sources. In contrast to Orchestra, BioFuice does not need to copy remote sources to 
local copies but uses the source schemas and their instances as provided. 

6   Conclusions 

We presented the BioFuice approach to integrate data from decentralized private and 
public data sources and ontologies. BioFuice follows a peer-to-peer-like data integra-
tion based on bidirectional mappings. Sources and mappings are associated with a 
domain model to support a semantically meaningful interoperability. BioFuice ex-
tends the generic iFuice integration platform which utilizes specific operators for data 
fusion and workflow-like script programs. BioFuice supports explorative data analy-
sis and interactive query and search capabilities. BioFuice is operational and being 
used in different applications, such as for gene expression analysis, protein interac-
tions analysis, and detection and analysis of non-coding RNAs. 
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