
it 8/16

Scalable Business Intelligence
with Graph Collections
André Petermann and Martin Junghanns

Abstract: Using graph data models for business intelligence applications is a novel and
promising approach. In contrast to traditional data warehouse models, graph models
enable the mining of relationship patterns. In our prior work, we introduced an approach
to graph-based data integration and analytics called BIIIG (Business Intelligence with
Integrated Instance Graphs). In this work, we compare state-of-the-art systems for graph
data management and analytics with regard to the support for our approach in Big Data
scenarios. To exemplify the analytical value of graph models for business intelligence, we
propose an analytical workflow to extract knowledge from graph-integrated business
data. Finally, we show how we use Gradoop, a novel framework for distributed graph
analytics, to implement our approach.

ACM CCS: Information systems → Business intelligence, Graph-based database
models, Data mining, Parallel and distributed DBMSs,

Keywords: business intelligence, property graph model, graph pattern mining

1 Introduction

Graph data models enable flexible and powerful evalua-
tions of domain objects and their relationships. Thus,
graph analytics and graph mining has become popular
among researchers of different domains, for example, to
analyze social networks, the world wide web or chemi-
cal and biological structures. Also business data can be
abstracted as a graph where vertices represent heteroge-
neous domain objects like products, sales orders or pho-
ne calls and edges represent relationships between those
objects. However, the use of graph models for business
intelligence has found not much attention yet.

In our prior work [1], we introduced an approach to
graph-based data integration and business intelligence.
Beside analyzing single graphs, we proposed the use of
graph collections to analyze interrelated data objects
and their relationships. In a respective graph collection
G = 〈G1, G2, .., Gn〉, every graph G reflects a case (e.g.,
a business process execution) and all its related data ob-
jects and relationships. This representation enables the
aggregation of business measures (e.g., the financial re-
sult) for each case and the comparison to other cases,
for example, to reveal correlations between certain mea-
sure value ranges (e.g., profit and loss) and meaningful
graph patterns. Applying our approach to data of lar-
ge scale enterprises may lead to millions of graphs with
hundreds of vertices and edges each.

Beside scalability, implementing our approach requires
a data model supporting graph collections, respective
operators and the composition of operators to analyti-
cal workflows. We already performed a first evaluation
of our approach on top of a state-of-the-art graph data-
base system [2]. Although we thoroughly chose a mature
system providing advanced analytical features, it could
not fulfill all of our requirements. In particular, the data
model was lacking support for graph collections and the
system did not scale well in Big Data scenarios.

In this article, we present further findings of our ongoing
work on graph-based business intelligence. Our major
contributions are as follows:

• We provide a comparison of recent systems for graph
data management and analytics with regard to their
functionality and scalability.

• We highlight the novel analytical capabilities enab-
led by graph collections using an example business
intelligence workflow.

• We show how to use Gradoop, a novel framework for
scalable graph analytics, to implement such workflows
based on distributed computing.

The remainder of this article is organized as follows: In
Section 2, we provide a comparison of current systems
for graph data management and analytics and briefly in-
troduce the Gradoop framework. In Section 3, we review
our prior work on business intelligence with integrated
graph data. In Section 4, we exemplify analytics with

it – Information Technology 58 (2016) 8 © de Gruyter Oldenbourg 1



Graph Graph Graph Extensions
Database Processing of Distributed Gradoop
Systems Systems Dataflow Framew.

Examples Neo4j, Titan Pregel, Giraph Gelly, GraphX

Workload OLTP/Queries Analytical Analytical Analytical
Data Model PGM Generic Generic EPGM
Workflows No No Yes Yes

Graph Collections No No No Yes

Table 1: Feature comparison of different approaches to graph data management and analytics.

graph collections including the adoption to Gradoop.
Finally, in Section 5, we discuss related work and end
with conclusions and future work in Section 6.

2 Systems for Graph Data Management
and Graph Analytics

In this section, we compare existing approaches to graph
data management and analytics. An important criterion
is the support for graph collections. Representing data
by graph collections is not only suitable for business in-
telligence but also for other analytics based on the com-
parison of graphs or subgraphs, for example, to analyze
communities in a social network. Beside the abstraction
of graph collections, such analytics also require the sup-
port for graph attributes, e.g., to store graph measures,
analytical collection operators and the composition of
such operators to analytical workflows.

2.1 System Comparison

In recent years, different systems for management and
analytics of graph data appeared in research and indu-
stry. One can group those systems into the three cate-
gories of graph database systems, graph processing sy-
stems and graph processing extensions for distributed
dataflow frameworks. A comparative overview of com-
mon and distinctive features of the considered system
categories is shown in Table 1. We leave out dedica-
ted RDF stores [10] as expressing complex entities using
RDF requires reification and leads to very voluminous
representations of attributed vertices and edges [11].

The most significant difference between graph databa-
se systems (GDBS) [6] and graph processing systems
(GPS) is their application focus. While GDBS like
Neo4j1 or Titan2 primarily focus on OLTP and query
workload, GPS, such as Google Pregel [7] and its open
source implementation Apache Giraph3, are dedicated
to graph analytics. With regard to their respective foci,
GDBS support CRUD operations for vertices and edges
as well as efficient local queries. Here, the term local re-
fers to queries relative to one or more fixed entry points,
for example, to find paths between two given users in

1 http://neo4j.com/
2 http://thinkaurelius.github.io/titan/
3 http://giraph.apache.org/

a social network. However, many analytical algorithms,
for example, to calculate the page rank of websites, re-
quire processing the whole graph iteratively (global pro-
cessing). While GDBS typically show poor scalability
for such algorithms on very large graphs, GPS use dis-
tributed in-memory execution to enable their efficient
execution.

Another fundamental difference between GDBS and
GPS are the supported data models. GDBS offer seman-
tically rich data models like the property graph model
(PGM) [5], where vertices and edges are labeled and at-
tributed. The use of such a predefined data model allows
GDBS to offer query languages and advanced visualiza-
tion features. In contrast, the data models of GPS are
generic, which means only a plain abstraction of vertices
and edges is provided but the format of attached data
needs to be defined by the user. In consequence, ope-
rators need to be user-defined, too. For example, these
systems allow simulating the property graph model by
attaching strings and key-value maps to vertices and ed-
ges but provide no built-in operators involving labels or
attributes.

In contrast to dedicated graph systems like GDBS
and GPS, distributed dataflow frameworks like Apa-
che Spark4 and Apache Flink5 were developed to sup-
port generic analytical workflows in Big Data proces-
sing. Although they are designed for workflows of set-
oriented operations on static and streaming data, ad-
ditional graph processing extensions like GraphX [8] on
Spark or Gelly on Flink allow them acting as GPS, whe-
re their characteristics are the same as those of GPS.
However, the support for operator workflows provided
by the underlying frameworks additionally allows chai-
ning multiple graph operations as well as mixing graph
and set-oriented operations within the same distributed
execution environment.

Some GDBS, for example Titan, support the distributed
storage of very large graphs and the virtual integration
of GPS and distributed dataflow frameworks6. However,
in this approach data needs to be moved from the da-
tabase to the GPS and vice versa for each processing
step.

4 http://spark.apache.org/
5 http://flink.apache.org/
6 http://s3.thinkaurelius.com/docs/titan/1.0.0/

2



None of the systems discussed so far supports graph col-
lections including graph attributes and collection opera-
tors. Motivated by that, the Leipzig University started
developing a research platform for large-scale graph ana-
lytics on heterogeneous graphs named Gradoop [3]. The
data model of Gradoop is designed to support single gra-
phs and graph collections including respective operators.
Although Gradoop focuses on analytical workload, the
framework offers distributed graph processing in combi-
nation with a semantically rich data model, a large set
of built-in analytical operators and a declarative way
to specify workflows, which differentiates Gradoop from
graph extensions for distributed dataflow frameworks.

2.2 Introduction to Gradoop

Gradoop is an open source framework for scalable graph
analytics. After an initial prototype based on MapRe-
duce and Apache Giraph [3], the current version [4] is
implemented on top of the distributed dataflow frame-
work Apache Flink, the successor of the former rese-
arch project Stratosphere [9]. Gradoop maps graph re-
presentation and graph operators to the data model and
transformations provided by Flink and benefits from its
distributed execution environment to provide scalability
for very large data volumes.

The development of Gradoop was motivated by missing
functionalities of graph processing systems and the in-
sufficient scalability of graph databases. In particular,
Gradoop supports the declaration of analytical work-
flows including operators for single graphs and graph
collections. Graph representation and respective opera-
tors are part of the so-called Extended Property Graph
Model (EPGM) . Like the basic property graph model
[5], the EPGM describes directed and attributed multi-
graphs. To support the definition of graph collections,
it additionally provides the concept of logical graphs. In
the following, we provide a brief overview of the EPGM
and its analytical operators. However, we introduce only
selected operators used in the remainder of this paper.
Gradoop is work in progress and a complete and con-
stantly updated list of operators can be found online7.

Graphs are represented within an EPGM database, for-
mally an octuple DB = 〈V, E ,L, T, τ,K,A, κ〉, where
V = {vi} is the vertex space, E = {ek} is the edge space
and L = {Gm} is the set of logical graphs. Vertices, ed-
ges and (logical) graphs are identified by the respective
indices i, k,m ∈ N. Edges 〈vs, vt〉 ∈ E | vs, vt ∈ V direct
from vs to vt and support loops (i.e., s = t). The data-
base further contains the alphabet of type labels T , the
alphabet of property keys K and the value set A. Verti-
ces, edges and graphs show type labels, described by the
mapping τ : (V ∪ E ∪ L)→ T , and may have arbitrary
properties (key-value pairs), expressed by the function
κ : (V ∪ E ∪ L)×K → A.

A logical graph 〈V,E〉 ∈ L is a pair of a subset of vertices

7 http://www.gradoop.com/

V ⊆ V and a subset of edges E ⊆ E . The vertices and ed-
ges of two logical graphs may overlap without redundant
storage, for example, to represent different communities
in a social network containing common users. A graph
collection is defined to be a n-tuple of logical graphs
G ⊆ Ln and, thus, allows sorting graphs, for example,
by graph measure values.

To aggregate such measures, Gradoop provides an ag-
gregation operator. The operator is called for a logi-
cal graph G′ = G.aggregate(kα, α), where an aggregate
function α : L → A is applied to an input graph G and
the result is stored in a property with key kα, such that
κ(G′, kα) = α(G). Aggregation functions may evaluate
structural information (e.g., vertex count) as well as ver-
tex and edge properties (e.g., summation of numerical
values).

Some analytics only need to consider a part of a graph
collection, for example graphs showing an aggregated
measure within a specific interval. Therefore, Gradoop
provides a selection operator. The operator is called for a
graph collection G′ = G.select(ϕ(G)) with a given pre-
dicate function ϕ : L → {true, false} and returns a col-
lection G′ where ∀G ∈ G : G ∈ G′ ∨ ϕ(G) = false.

Removing and manipulating properties with regard to
the requirements of specific evaluations is advantageous,
especially for very large data volumes. Therefore, Gra-
doop offers the transformation operator. The operator
is called for a logical graph G′ = G.transform(γ, ν, ε),
where three functions define transformations of the
graph itself γ : L → L as well as transformations of its
vertices ν : V → V and edges ε : E → E . Those functi-
ons allow the modification of labels and properties, but
preserve identifiers and the graph structure.

Graph operators like aggregation or transformation will
not only be useful for single graphs, but also if exe-
cuted for all graphs of a collection. Thus, Gradoop
provides the auxiliary operator apply, which is called
for a graph collection G′ = G.apply(op(G)) with an ar-
bitrary graph operator op : L → L as argument. Let
G = 〈G1, G2, .., Gn〉 be an input collection, then the out-
put is G′ = 〈op(G1), op(G2), .., op(Gn)〉 under preserva-
tion of cardinality and order.

As Gradoop is a framework for general-purpose graph
analytics, there may be use cases requiring the executi-
on of specific algorithms which are not covered by the
provided operators. For such cases, Gradoop offers the
generic call operator. There are four variants of the
call operator to cover all possible in- and output com-
binations L → L, L → Ln, Ln → L and Ln → Ln. For
example, G′ = G.callForCollection(alg(G), P ) is cal-
led for a single graph G, executes a fitting algorithm
alg : L → Ln under given parameters P = {p0, .., pn}
and outputs a graph collection G′. To use custom al-
gorithms with one of the call operators, they need to be
implemented using the Java programming language and
match one of four respective interfaces.

3



Figure 1: Overview of the BIIIG approach.

3 The BIIIG Approach

In our prior work [1], we proposed an approach to graph-
based business intelligence called BIIIG (Business
Intelligence with Integrated Instance Graphs). An over-
view of its components is shown in Figure 1. After a
semi-automated data integration process, data from one
or more sources is represented within a single integrated
instance graph (IIG). In this graph, every domain data
object is represented by a vertex and every relationship
by an edge. Both, vertices and edges are self-descriptive
by providing a type label and arbitrary named proper-
ties. Details about our data integration strategy can be
found in [1].

The integrated instance graph can be used as the base
for single graph analytics, for example, creating summa-
ries of a business data network by grouping vertices and
edges based on types and properties [4]. However, one
can also apply a specific algorithm to isolate a collec-
tion of subgraphs representing logical partitions of this
graph, for example, to represent communities in a soci-
al network or to outline interrelated domain objects. In
this way, BIIIG also enables graph collection analytics,
where the remainder of this paper will focus on.

In this section, we first discuss the analytical foundation
of our approach, where some domain knowledge is in-
troduced to provide comprehensibility. Additionally, we
review our representation of interrelated business data
by a graph collection, which is the base for the analytics
discussed in the next section.

3.1 Analytical Foundation

We observed that typical data recorded by business in-
formation systems can be categorized into master and
transactional data. Handling both kinds of data accor-
ding to their particular characteristics is fundamental
to the BIIIG approach. In the following, we describe
these characteristics, their origin in source data and the
respective treatment in analytics. For better understan-
ding, we first introduce some domain specific basics:

Independent from the field of business, the daily opera-
tions of enterprises can be abstracted by high-level busi-
ness processes like trading items, manufacturing goods
or providing services. We denote a single execution of a
business process by the term case. Every case triggers
the creation of transactional data objects (e.g., phone
calls and sales orders) with references to master data
objects (e.g., customers and products). For business ana-

Process TD types MD types Measure

Trade Phone call Customer Financial
Sales order Product result

Car Assembly step Worker Assembly
assembly Car (instance) Car model time

Medical Examination Doctor Recovery
treatment Prescription Drug rate

Table 2: Example transactional (TD) types, master data (MD)
types and measures of different high-level business processes.

lytics, the outcome of a case can be qualified by business
measures (e.g., financial result). Table 2 shows examp-
les of transactional data types, master data types and
business measures for different business processes.

First, we define transactional data (TD) to be data, that
is created exclusively for a single case. The main charac-
teristic of TD is their documenting nature, in particular
TD objects document the facts of a case. For example,
phone call logs document customer interaction or sales
orders document sold goods. Further on, TD provides
the source values of business measures like monetary
values or time durations.

Second, we define master data (MD) to be data, which is
referenced by many cases. While TD reflects the facts of
a case, referenced MD reveals the context of those facts,
for example, which customer sent an order, which pro-
ducts were ordered or which employee processed the or-
der. MD typically provides dimensional attributes (e.g.,
product group or customer name).

In a typical data warehouse model (e.g., star schema),
selected transactional data and master data is represen-
ted type-wise by fact and dimension tables. However,
those models are designed to evaluate facts of a sin-
gle type by a set of predefined dimensional attributes,
which makes them not suitable for evaluations on the
case-level. For example, certain cases of car assembly
may result in a failed final audit and the analyst wants
to identify the reasons. However, there are potentially
hundreds of TD objects of tens of types that may have
led to this result. Additionally, those TD objects refer
to each other and to MD objects.

One can abstract a case as an instance network of
domain objects with mostly m:n relationships. With
BIIIG, we implement this natural abstraction using a
schema-less graph model and graph collections. Thus,
we are able to:

• aggregate base values of transactional data to measu-
res on the case level.

• compute occurrence and quantities of transactional
data types to represent the facts happened in a case.

• consider relationships within transactional data to
evaluate mutual inferences between facts.

• consider relationships between transactional and ma-
ster data as well as selected dimensional attributes to
reveal the context of facts.

4



Figure 2: Example cutouts of business transaction graphs with
aggregated graph measures ’isClosed’ and ’soCount’.

3.2 Business Transaction Graphs

According to our analytical foundation, information
about a case can be retrieved from the transactional
data created during its execution, from the referenced
master data and from all relationships in between. A
graph spanned by those data objects and relationships
is a natural representation of a case. We denote such
graphs by business transaction graphs.

Figure 2 shows an example collection of four busi-
ness transaction graphs in EPGM representation, whe-
re single graphs are bounded by rectangles. Verti-
ces and graphs show type labels (e.g., Employee and
BusinessTransactionGraph) as well as properties (e.g.,
status:closed and soCount:1). For simplification, we
show only selected vertex properties and leave out pro-
perties and types of edges. Graph properties represent
aggregated measures of a graph, where the text color
indicates the connection to their base data. For ex-
ample, the property soCount displays the number of
SalesOrder vertices contained in a graph.

The type labels of vertices represent class names. A gray
background of vertices indicates them to be instances
of master data classes and a white background to be
transactional data. The distinction of classes in master
and transactional data happens before data integration
on the metadata level (see [1]).

Figure 3: business transaction graph (id=1) after transforma-
tion for pattern mining.

The property sid is shown for all vertices and marks
their mandatory source identifier. Source identifiers are
globally unique, required for data integration (see [1])
and provide provenance information. They are often
meaningful to domain experts as they include source-
specific business identifiers (e.g., customer numbers).
They further act as the finest granularity of dimensio-
nal hierarchies (e.g., customer number ← customer city
← customer country). For better understanding, we use
natural language to represent business identifiers in our
example graphs (e.g., Alice, ACME or Apple).

In Figure 2, every graph represents a case of a trade
process. For simplification, they cover only the initial
steps from quotation to order. In particular, they show
quoted products, the related customer, sales activities
(emails and phone calls), the employees executing these
activities and sales orders based on the shown quotati-
ons. It should be mentioned, that graphs covering a full
trade process are much larger and more heterogeneous
as they also include other subprocesses such as purcha-
sing, logistics or accounting. Further on, although not
shown in our example, also edge types and properties
provide useful information, for example, the amount of
quoted products.

In [1], we proposed an algorithm to extract business
transaction graphs from the integrated instance graph.
Our algorithm is based on the observation, that tran-
sactional data objects of the same case and their re-
lationships form connected components. Relationships
between transactional data objects (represented by bold
edges in Figure 2) exist in source systems to provide tra-
ceability of interrelated data. For example, every sales
order is related to a prior quotation. Such relationships
also exist across data sources. For example, sales pho-
ne calls can be logged in a telemarketing system and
every log entry provides a reference to a specific quo-
tation stored in a dedicated system for customer relati-
onship management. The proposed algorithm identifies
such components and extends them by referenced ma-
ster data vertices and the connecting edges. In the result,
one MD vertex may be part of multiple business transac-
tion graphs. For example, in Figure 2, all graphs contain
the same customer. However, shared master data is no
hint for a common case. For example, two sales orders
containing the same products may have been processed
completely independently.

5



4 Graph Collections Analytics

Potential analytics with graph collections are mani-
fold. For example, one can compare metrics of different
communities in a social network or mine frequent sub-
structures of chemical compounds. In connection with
the BIIIG approach, graph collections enable analyzing
the k-neighborhoods of customers or evaluating busi-
ness process executions using the abstraction of business
transaction graphs.

In this section, we describe an example analytical sce-
nario and propose an approach to identify correlations
between aggregated graph measures and the occurrence
of certain graph patterns. We also show, how such graph
collection analytics can be implemented on top of the
Gradoop framework.

4.1 Analytical Scenario

In our example scenario, an analyst wants to identify
reasons for won and lost quotations in sales cases. The-
refore, closed cases should be evaluated to give recom-
mendations for sales activities in open cases. A case is
considered to be closed, if there are no open quotations.
In Figure 2, the first three graphs represent closed cases
and the fourth graph an open one. Further on, a closed
case is considered to be won, if at least one sales order
was created, and to be lost, otherwise. Consequently, the
first two graphs of Figure 2 represent won cases and the
third graph a lost one.

Reasons for won and lost cases should be represented by
meaningful patterns like ’a phone call made by Alice’.
However, patterns should not be limited to such sim-
ple statements, but also reflect compositions like ’Alice
made a phone call and Bob sent an email regarding the
same quotation’. Additionally, patterns must not be tri-
vial. For example, if a pattern occurs frequently in won
cases but also in lost cases, it cannot be considered to
be characteristic for either of the outcome categories.

4.2 Graph Pattern Mining

From our analytical scenario, we can derive the follow-
ing generalized problem definition: Let G = 〈G1, .., Gn〉
be a collection of business transaction graphs, C =
{c1, .., cm} be a set of categories (e.g., C = {won, lost})
and ζ : G → C be a mapping associating every graph to
a category, then we want to identify a graph collection
representing patterns P = 〈P1, .., Pk〉, where each pat-
tern is considered to be characteristic for a category,
formally another mapping π : P → C.

To identify P and π, we use an approach based on fre-
quent subgraph mining (FSM), in particular the tran-
sactional setting, which aims at identifying subgraphs
supported by a minimum number of graphs (threshold)
in a collection [15]. However, our problem definition dif-
fers from typical FSM scenarios. In the following, we
discuss the differences and our adaption.

First, existing FSM algorithms are based on label equa-
lity [15] but we also need to consider selected dimensio-
nal attributes (e.g., source identifiers of master data) to
achieve meaningful patterns. To represent relevant fea-
tures of business transaction graphs within vertex and
edge labels, we apply a transformation (see Section 2.2)
to generate our search space G′ and consider patterns to
be subgraphs supported by image graphs of the search
space. More precisely, let G be a business transaction
graph and let G′ be its transformed image, then G and
G′ belong to the same measure category ζ(G) = ζ(G′)
and every image subgraph P ⊆ G′ is considered to be a
pattern of the original graph G.

In Figure 2, we highlighted two example patterns. The
pattern in blue color represents ’a phone call made by
Alice’ and the one in red color ’an email sent by Bob’.
Figure 3 shows the first graph of Figure 2 after the trans-
formation. The transformation removes all vertex pro-
perties and replaces type labels by source identifiers for
master data vertices. One can see, that pattern informa-
tion previously embedded in properties is now retrieva-
ble by mining of vertex labels.

Our problem further differs from typical FSM scenarios,
as we require patterns not just to be frequent but to be
characteristic for a measure category. For example, the
blue pattern is interesting, as it occurs in all of the won
cases but not in the lost one. By contrast, the red pat-
tern occurs in all graphs of both categories. Therefore,
we use an interestingness measure comparing the fre-
quency of a subgraph in different categories. We define
the interestingness of a pattern P in a category c ∈ C
as follows:

interestingness(P, c) 7→ relSupport(P, c)

avgRelSupport(P,C)

The function evaluates the relative support of a pattern
within a category in relation to its average relative sup-
port in all categories. Values ≥ 1 imply an exceptional
frequency in the corresponding category. Based on this
measure, the analyst sets an interestingness threshold to
prune patterns by minimum interestingness.

However, we further need to avoid unnecessary compu-
tation, as FSM includes the subgraph isomorphism pro-
blem, which is known to be NP-complete. Therefore,
we additionally require a candidate threshold defining
the minimum relative support of a pattern inside a ca-
tegory to be reported as a candidate for characteriza-
tion. Setting this threshold is a trade-off between result
completeness and computing time. A high value leads
to fewer candidates and in consequence a low value to
more results. Choosing the right value also depends on
the analytical goal. For example, the identification of
rare interesting patterns (e.g., fraud detection) requires
a nearly complete result but the identification of pat-
terns occurring systematically (e.g., to extract process
models) may not require the computation of outliers.

6



4.3 Implementation as Gradoop Workflow

The extended property graph model used by Gradoop
well suits the abstraction of business transaction graphs,
as shown in Figure 2. We just require two additional
properties with reserved keys mandatory for all vertices,
in particular superType to express the association to
either master or transactional data and sid to mark the
source identifier.

Business intelligence often combines different techni-
ques. For example, to answer our analytical question, we
need to identify closed cases, categorize them by either
lost or won cases and identify characteristic patterns for
each group. In Script 1, we illustrate how such workflows
can be implemented using Gradoop. In future releases,
Gradoop will provide a domain specific language with
a syntax similar to the shown pseudocode. Currently,
such workflows are expressed using the Java program-
ming language, where operators provide a declarative
API. The aim of this example is not only the work-
flow itself but also the general analytical value of graph
collections and the composition of workflows including
collection operators.

The input of our workflow is a BIIIG integrated instan-
ce graph (iig). In line 4, we embed a custom algorithm
[1] to extract the collection of business transaction gra-
phs (btgs) using the call operator. After that, we mark
closed cases using aggregation. Line 6 shows the defini-
tion of an according aggregate function. In the function
body, the vertices of the input graph g.V are filtered to
those of type Quotation providing a property with key
status and value open. The function will return true, if
the filtered vertex set is empty, i.e., the graph contains
no such vertex. In line 10, the function is executed for all
graphs using the apply operator and the aggregation re-
sult is stored into a graph property with key isClosed.
This property is used within a predicate in line 13 to
select graphs representing closed cases.

In the second step, we categorize closed cases. The ca-
tegorization of business transaction graphs requires a
categorical property, which associates a graph to a sin-
gle value within a finite range. Such ranges may reflect
natural ranges like customer countries or describe inter-
vals of numerical measures, for example to categorize
the financial result of a case into profit and loss. In line
15 to 19, we apply a further aggregate function to count
the number of sales orders per case. Based on that mea-
sure, we categorize cases as either won or lost within a
graph transformation function in line 21.

To form a search space for meaningful patterns, we al-
so define transformation functions for vertices in line 26
and edges in line 31. The vertex function keeps only the
label for transactional vertices but uses the source iden-
tifier as master data vertex label and the edge function
keeps only edge labels. The functions are applied to all
graphs in line 33 to generate the search space for our

1 Input: LogicalGraph iig ,
2 Output: GraphCollection

4 btgs = iig.callForCollection (: BTGIsolation , {})

6 isClosedFunc = (g => g.V.filter(
7 v => v.label == "Quotation" &&
8 v[" status "] == "open "). isEmpty ())

10 btgs = btgs.apply(
11 g => g.aggregate (" isClosed", isClosedFunc ))

13 btgs = btgs.select(g => g[" isClosed "])

15 soCountFunc = (g => g.V.filter(
16 v => v.label == "SalesOrder "). size ())

18 btgs = btgs.apply(
19 g => g.aggregate (" soCount", soCountFunc ))

21 gFunc = (gIn , gOut =>
22 if gIn[" soCount "] > 0
23 then gOut[" category "]=" won"
24 else gOut[" category "]=" lost")

26 vFunc = (vIn , vOut =>
27 if vIn[" superType "] == "MasterData"
28 then vOut.label = vIn["sid"]
29 else vOut.label = vIn.label)

31 eFunc = (eIn , eOut => eOut.label = eIn.label)

33 btgs = btgs.apply(
34 g => g.transform(gFunc , vFunc , eFunc))

36 interestingPatterns = btgs
37 .callForCollection(
38 :CategoryCharacteristicSubgraphs , {
39 categoryKey: "isClosed",
40 candidateThreshold: 0.5,
41 interestingnessThreshold: 1.2 })

43 return interestingPatterns

Script 1: BIIIG workflow on Gradoop.

custom pattern mining algorithm, which is called under
specific parameters in line 36.

The workflow results in a new graph collection, whe-
re every graph represents a characteristic pattern inclu-
ding a property reflecting its category association. This
collection can be presented to the analyst, for example
using an appropriate graph visualization.

The shown workflow is currently executable, except the
mining algorithm. The implementation progress can be
traced on GitHub8.

5 Related Work
To the best of our knowledge, there is no other approach
utilizing graph collections similarly to BIIIG.

Recent work on graph OLAP focuses on single graphs.
Existing approaches already use distributed computa-
tion [12], provide support for semantically rich graph
models [13] and adopt the concepts of facts, measures
and dimensions to graphs [14].

8 https://github.com/dbs-leipzig/gradoop/tree/master
/gradoop-examples/src/main/java/org/gradoop/examples
/biiig/CategoryCharacteristicPatterns.java

7



A core technique of our approach, frequent subgraph mi-
ning (FSM), is a well studied problem for single machine
scenarios [15] and recent work focuses on the distributi-
on of FSM algorithms using MapReduce [16, 17].

The evaluation of business process executions is also
subject to the research field of process mining (PM) [18].
PM relies on the existence of well-structured event logs.
The authors of [19] provide a semi-automated approach
to extract event logs from information systems. Howe-
ver, while PM solely focuses on the process execution
itself, e.g., model conformity, we proposed to evaluate
business measures in the context of relationship patterns
including data types and dimensional attributes.

6 Conclusions and Future Work
In this work, we demonstrated the analytical value of
graph collections for business intelligence, a domain that
is until now dominated by the use of relational and mul-
tidimensional models. We compared recent approaches
to graph data management and analytics with regard to
complex analytical workflows and their suitability in Big
Data scenarios. We observed that the Gradoop frame-
work is the most fitting solution as it provides a seman-
tically rich data model including the support of graph
collections and respective operators. Further on, Gra-
doop allows the declaration of operator workflows and
uses distributed processing to provide scalability for ve-
ry large data volumes.

In future publications we will provide details about dis-
tributed graph pattern mining on Gradoop in general
and in the context of the BIIIG approach. We plan to
extend our mining technique to consider not only single
dimensional properties of master data but also include
dimension hierarchies. We also want to investigate ap-
proaches to predictive graph analytics, for example, to
forecast case development and to enable what-if ana-
lyses. To examine such approaches, we aim at compre-
hensive evaluations using real-world data and involving
domain experts.

7 Acknowledgments

This work is partially funded by the German Federal Mi-
nistry of Education and Research under project ScaDS
Dresden/Leipzig (BMBF 01IS14014B).

Literature

[1] A. Petermann, M. Junghanns, R. Müller and E. Rahm.
BIIIG: Enabling Business Intelligence with Integrated In-
stance graphs.. ICDE Workshops, pp. 4-11, 2014.

[2] A. Petermann, M. Junghanns, R. Müller and E. Rahm.
Graph-based Data Integration and Business Intelligence
with BIIIG. PVLDB 7(13), pp. 1577-1580, 2014.

[3] M. Junghanns, A. Petermann, K. Gómez and E. Rahm.
GRADOOP: Scalable Graph Data Management and Ana-
lytics with Hadoop. arXiv:1506.00548, 2015.

[4] M. Junghanns, A. Petermann, N. Teichmann, K. Gomez
and E. Rahm. Analyzing Extended Property Graphs with
Apache Flink. Workshop on Network Data Analytics in
conjunction with ACM SIGMOD/PODS, 2016.

[5] M. A. Rodriguez and P. Neubauer. Constructions from
dots and lines. Bulletin of the American Society for Infor-
mation Science and Technology 36(6), pp. 35-41, 2010.

[6] R. Angles. A comparison of current graph database mo-
dels. ICDE Workshops, pp. 171-177, 2012.

[7] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.
Horn, N. Leiser and G. Czajkowski. Pregel: a system for
large-scale graph processing. SIGMOD, pp. 135-146, 2010.

[8] R. Xin et al. GraphX: A Resilient Distributed Graph Sy-
stem on Spark Int. Workshop on Graph Data Manage-
ment Experiences and Systems, pp. 2-7, 2013.

[9] A. Alexandrov et al. The Stratosphere platform for big
data analytics. VLDB Journal, 23(6), pp. 939-964, 2014.

[10] Z. Kaoudi and I. Manolescu. RDF in the Clouds: A Sur-
vey. VLDB Journal, 24(01), pp. 67-91, 2015.

[11] J. Futrelle. Harvesting RDF triples.. Provenance and
Annotation of Data, 24(01), pp. 64-72, 2006.

[12] Z. Wang et al. Pagrol: PArallel GRaph OLap over large-
scale attributed graphs. ICDE, pp. 496-507, 2014.

[13] A. Ghrab et al. A Framework for Building OLAP Cu-
bes on Graphs. Advances in Databases and Information
Systems, pp. 92-105, 2015.

[14] M. Rudolf, H. Voigt, C. Bornhövd and W. Lehner. Syno-
pSys: Foundations for Multidimensional Graph Analytics.
Enabling Real-Time Business Int., pp. 159-166, 2015.

[15] C. Jiang, F. Coenen and M. Zito. A survey of frequent
subgraph mining algorithms. The Knowledge Engineering
Review, 28(01), pp. 75-105, 2013.

[16] W. Lu, G. Chen, A.K. Tung and F. Zhao. Efficiently
extracting frequent subgraphs using MapReduce. IEEE Int.
Conf. on Big Data, pp. 639-647, 2013.

[17] W. Lin, X. Xiao and G. Ghinita. Large-scale frequent
subgraph mining in MapReduce. ICDE, pp. 844-855, 2014.

[18] W. van der Aalst et al. Change your history: Learning
from event logs to improve processes. IEEE Int. Conf. on
Comp. Supported Coop. Work in Design, pp. 7-12, 2015.

[19] X. Lu, M. Nagelkerke, D. van de Wiel and D. Fahland,
Discovering Interacting Artifacts from ERP Systems. IE-
EE Trans. on Services Comput., 8(06), pp.861-873, 2015.

André Petermann studied Informa-
tion Technology at the University of
the West of Scotland (BSc 2009) and
Multimedia Technology at the Leipzig
University of Applied Sciences (Dipl.-
Ing.(FH) 2011). He gained in-depth
experience in design and development
of business intelligence solutions with
COMPAREX AG (2009-2012). In 2013,
Petermann became a researcher in the
field of graph analytics for business
intelligence at Leipzig University
Database Research Group.

Address: Universität Leipzig, Institut für Informatik, D-
04109 Leipzig, E-Mail: petermann@informatik.uni-leipzig.de

Martin Junghanns studied Compu-
ter Science at the Leipzig University
(MSc 2014). While working for the NoS-
QL database vendor sones GmbH (2009-
2011) and SAP (2013-2014) he gained
in-depth knowledge about database sy-
stems, software development and graph
data management. Since 2014, Jung-
hanns is working as a researcher in the
field of distributed graph analytics and
management at Leipzig University Da-
tabase Research Group. He is an acti-
ve contributor in Big Data related Open
Source projects.

Address: Universität Leipzig, Institut für Informatik, D-
04109 Leipzig, E-Mail: junghanns@informatik.uni-leipzig.de

8


