
TID Hash Joins

Robert Marek

University of Kaiserslautem, GERMANY

marek@informatik. uni-kl.de

Abstract

TID hash joins are a simple and memory-efficient method for pro-
cessing large join queries. They are based on standard hash join al-
gorithms but only store TID/key pairs in the hash table instead of
entire ttrples. This typically reduces memory requirements by more
than art order of magnitude bringing substantial benefits. In particu-

lar, performance for joins on Gigs-Byte relations can substantially be
improved by reducing the amount of disk f/O to a large extent. Fur-

thermore, efficient processing of mixed multi-user workloads con-

sisting of both join queries and OLTP transactions is supported. We
present a detailed simulation study to analyze the performance of

TID hash joins. In particular, we identify the conditions under which
TID hash joins are most beneficial. Furthermore, we compare TID
hash join with adaptive hash join algorithms that have been proposed
to deal with mixed workloads.

1 Introduction

Hash Join is a general method for processing equi-joins in relational
databases [ME92]. It is especially efficient if the smaller (inner) re-
lation tits completely into main memory. In this case, join processing

encompasses two phases. In the building phase, the smaller relation
R is scanned and stored in an in-memory hash table by applying a

hash function to tbe join attribute. During the probing phase, each tu-
ple of the outer relation S is read and probed against the hash table.
This entai[s applying the hash function to each join attribute value of
S and checking in the corresponding hash class whether there are
matching R tuples. This approach has excellent performance since
building and probing the hash table can typically be performed with
few instructions per tuple. Furthermore, the number of disk I/Os is

low since each relation is read only once. Such a hash join provides
the most efficient implementation for equi-joins (unless indices on
the join attributes exist that can be used for a sort-merge join) [Gr93].

However, if the smaller relation does not fit into memory the perfor-
mance of hash join typically degrades substantially due to a high
amount of additional disk I/O for overflow handiing. In this case, the
smaller relation is partitioned into p disjoint partitions by applying a
split function on the join attribute such that each partition fits into

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CIKM ’94- 11/94 Gaitherburg MD USA
Q 1994 ACM 0-89791 -674-3/94/001 1..$3.50

Erhard Rahm

University of Leipzig, GERMANY

rahm@informatik. uni-leipzig.de

memory. The larger relation is partitioned by applying the same split
function, Join processing then consists of p smaller joins on the cor-
responding partitions of the two relations. While there are several al-
ternatives to perform the partitioning (GRACE, hybrid hash join,

etc.) they all incur extra I/O. In partictrku, forming the parmions and
storing them on disk may require reading both relations and writing
back their partitions. Subsequently, these partitions are read into

memory to perform the hash join. Hence, the number of disk access-
es may be increased by a factor 3 compared to the case without par-

titioning. Furthermore, most hash join algorithms require a minimum

of & + 1 memory pages where b is the number of pages for the in-

ner relation [ZG90]. For very large relations this may limit the appli-

cability of hash joins.

The comparatively poor performance of hash joins in the presence of
a limited amount of memory is a main reason why they are not yet
widely used in commercial DBMS [Ze90]. Despite the increase of

memory sizes, memory-effectiveness is critical for mainly two rea-
sons. First, relation sizes also grow significantly so that in many cas-
es the inner relation cannot be held memory-resident. Second, only

a portion of the available memory can generally be used for join pro-
cessing due to the need to support multi-user processing. Since

OLTP transactions typically have higher priority than concurrently

executing (large) join queries, a small memory consumption for join

processing is very beneficial for supporting mixed workloads.

TID hash joins are a simple and memory-efficient method that aim

at avoiding the I/O delays of standard hash joins for overflow han-
dling. Instead of storing entire tuples in the hash table, TID hash joins
only store the TID (tuple identifier) together with the join attribute
value (key). The TID (sometimes called RID or row identifier) is the

physical address of a tuple (page number + offset). The typical TID

size is 4-8 B allowing much more compact hash tables than with

entire tuples. The exact degree of space reduction largely depends on

the key size (join attribute size). Assuming “typical” key sizes of 4-

20 B and tuple sizes of 100-1000 B, reduction factors of 4-100 can

be expected. Hence. for an inner relation of 1 GB (Gigs-Byte), a
memory size of 10-250 MB may be sufficient for a TID hash join
to avoid partitioning.

TID hash joins can be based on any standard hash join algorithm,
While they try to avoid overflow handling, the reduced space re-
quirements are also beneficial when the compacted hash table cannot
be held in memory (see Section 3), On the other hand. TID hash joins
require an additional materialization phase at the end to construct the
join result. To be effective, the number of 1/0s required for this step
must be lower than the number of disk accesses saved for overflow
handling. This can be expected in many casessince only those ntples
need to be materialized that truly contribute to the join result. Fur-

thermore, there are several options to perform these 1/0 operations

42

very efficiently (see Section 3). To understand the performance
trade-offs associated with TID hash joins, we have constructed a

detailed simulation model of a database system. This model enables

us to study the behavior of TfD hash join algorithms over a wide

range of system resource configurations and to conduct a perfor-

mance comparison with other approaches.

The remainder of this paper is organized as follows. [n the next sec-

tion we briefly discuss some related work. In particular, we describe

an adaptive hash join method that has recently been proposed for

supporting multi-user workloads. This approach will be used in our
performance comparison with TID hash joins. [n Section 3, we pro-
vide a more detailed description of the implementation of TID hash
joins, including several optimization to limi{ the materialization
overhead. A detailed simulator of a database system that was i m-
plemented for studying the performance of the various join algo-
rithms is described in Section 4. Section 5 presents the results of a

series of simulation experiments showing that, over a wide range of
system and load conditions, TID hash joins cmtperform standard
hash joins and reduce the need for adaptive hash joins. Finally, the
main findings of this investigation are summarized in Section 6.

2 Related Work

Performing relational operations (scan, join, sort, etc.) on TID/key
pairs is an old idea and in use in several commercial DBMS [Ch91,
Gr93]. For instance, sort/merge joins can be implemented very ef-
ficiently on B-trees containing key~ID entries if there is such an

index on the join attribute for both relations [BE77]. In [Ny93], the

implementation and performance of several high-performance sort
strategies are described and a key/pointer (=TIDl) sort is found to be

most efficient in many cases. The potential value of TfD hash joins
was already observed by DeWitt et al. [De84jl, however without
presenting an exact description of such algorithms and without

studying their performance.

Recently, several adaptive hash join algorithms have been proposed
to support mixed (multi-user) workloads consisting of both join

queries and OLTP transactions [ZG90, PCL93]. These algorithms
dynamically change the memory allocation for running hash join

queries according to the memory requirements of higher-priority
transactions. In [PCL93] it was shown that in multi-user mode
memory-adaptive hash joins clearly outperform tradhional join
methods like GRACE and hybrid hash join. The best performance
was observed for a new approach called Partially Preemptible

Hash ./oin (PPHJ). In the remainder of this section we briefly de-
scribe this scheme since it will be used in our performance compar-

ison with TID hash joins.

The PPHJ algorithm is based on a partitioning of the two relations
R and S. This gives the required flexibility for changing the mem-
ory allocation for join processing by varying the number of memo-
ry-resident partitions. The algorithm chooses a fixed number of
partitions p with p ~ In this formula, b is the number of pag-
es for relation R and F represents the overhead for the hash table
(“fudge factor”). The choice of p constitutes a compromise between
a high number of partitions to obtain a high flexibility for changing

the memory allocation and large partition size:s to achieve high
memory utilization. The PPHJ algorithm is implemented in the fol-
lowing five steps:

(I) [nitializatlon

Choose a hash function h that will split R and S each into

p= F partitions, so that each R partition will encompass
approximately p pages. Allocate as many R partitions in main
memory as the available memory allows. For the remaining R
partitions. a single page is allocated as an output buffer. Any
leftover memory pages are used as a spool area for pages that
are being flushed to disk. The spool area is managed by a LRU
policy,

(2) Scan and Partitioning of R

Scan the inner (smaller) relation R, hashing each tuple using the
hash function h, [f the tuple belongs to an in-memory partition,

insert the ttrple into the corresponding hash table; otherwise the

tuple is copied to the corresponding output buffer. [f an output
buffer becomes full, flush it. After R has been scanned, tlush Al

output buffers. They will be needed in the next step to represent

S partitions.
In the case that memory has to be taken awa from the join, sus-

7penal the join if fewer tharr p pages remain Otherwise, one or
more in-memory partitions have to be flushed. For each affected
partition, flush all hash pages and give away all but one of its al-
located pages. The remaining page is then used as an output buff-
er.

(3)Scan and Partitioning of S

Scan the outer relation S. Each tuple is hashed with h. If the tuple
belongs to an in-memory partition of R, check the corresponding
hash table for a match. In case of a match, output the result tuple:
otherwise toss the tuple away. If the corresponding R partition’s

hash table is not allocated in memory, copy the tuple to the S par-
tition’s output buffer. Any output buffer that becomes full is

flushed. After S has been seamed, flush all output buffers.

If the available memory is reduced during this step, either sus-
pend the join or flush as many in-memory partitions of R as nec-
essary to disk (as in step 2). If additional memory becomes avad-
able, bring as many d]sk-resident R partitions as possible into
memory2, Future S tuples that hash to these partitions can be

joined directly.

In general, the entire inner relation will not fit into main memory,

Some R partitions will have to be stored on disk right from the be-

ginning or during steps (2) or (3). For these partitions the correspond-
ing S partitions will be non-empty. To check their S tuples for

matches, repeat steps (4) and (5) for each non-empty S partition,

(4)If the hash table of the respective R partition is not already in
main memory, read in the R partition and build a hash table for it,

(5) Scan the corresponding S partition, hashing each tuple and prob-
ing the hash table. In case of a match, output the result tuple; oth-
erwise drop the tuple.

During steps (4) and (5), disk I/O is avoided for those pages of R and
S partitions that still reside in the spool area.

3 Implementation of TID Hash Join

In this section we first sketch how a basic TID hash join can be im-

plemented where the (reduced) hash table for the inner relation fits
into memory. Then we discuss several extensions for improving the
1/0 requirements of this scheme. Finally, we outline the implemen-
tation of a memory-adaptive TID hash join algorithm.

3.1 Baaic TID Hash Join

An important advantage of TID hash joins is simplicity. If there is
already an implementation of a standard hash join a1gorithm3 avail-
able, only slight modifications are necessary to obtain a TID version
of this hash join algorithm. The TID version differs from the standard
algorithm in the following ways assuming that no partitioning is nec-

essary:

Modification of the building phase:
In the building phase the inner (smaller) relation R is scanned, Each

1. This is the minimum amount of memory needed for the p output buffers
if no R partition can be held in memory.

2. This approach to utilize additional memory was called %xparmon” In
[PCL93] and was shown to be more effective than alternative strategws

3. As opposed to TID hash joins, tmditlonal join methods storrng enure
tuples in the in-memory hash-table wdl be referred to asstandard jom
methods

43

tuple is hashed and -as opposed to standard hash joins - only TID-
key pairs are inserted into the hash table. To obtain reasonable per-
formance this is the minimum amount of information that has to be

stored in the hash table. The key is needed to determine matches in
the probing phase and the TID is used to access the corresponding
tuple in case of a match. Depending on the tuple size in relation to
the TID-key pair size a sigruficant space saving can be achieved.

Modljication of the probing phase:

In the probing phase the outer relation S is scanned. Each S tupie is

hashed with the same hash function used in the building phase and
the hash table is checked for a match. In the standard algorithm the

matchmg pair of tuples can be output immediately since both tuples
are available in matn memory. In the TfD version the matchmg R

tuple will most likely reside on disk and has first to be retrieved us-
ing the TID. A straight-forward approach would be to directly read

the page containing the matching R tuple and to output the match-
ing pair. Performing these UOS synchronously would introduce
enormous delays during the probing phase. As a result, the hash ta-
ble would have to be kept in main memory for a very long period
of time. so that memory-contention may occur in multi-user mode.

A better approach is to retrieve matching R tuples during a separate
materialization phase (see below). This allows a quicker process-

ing of the probing phase and the memory occupied by the hash table

can be released much earlier. Furthermore this separation provides
us with the possibility to apply some optimization of the retrieval

step (see 3.2).
During the probing phase, matches are recorded in a new result list

consisting of an (TIDR, TIDs) entry for each result tuple~. This list
is typically very compact so that it can be kept in main memory. For
instance, a single 8 KB page can hold the TID pairs for 1000 result
tuples (4 B per TfD).

Additional materialization phase:

During this phase the originai tuples of the result list have to be re-
trieved. In the basic version of TID hash join, the TID pairs are read
sequentially and for each TID the corresponding tuple is retrieved.

While only tuples that occur in the join result are considered. the de-

lays for performing these random I/Os can be substantial,

3.2 Improving l/O performance for TID hash join

There are several possibilities to improve the performance of the

materialization phase:

- Seek optimization (ordered reads)

Disk seek delays can substantially be reduced by sorting the TIDs

by physical disk location and performing the reads in this order.
TIMs also ensures that a page is read only once even if contains
multiple result tuples. The seek optimization can be applied to
both relations if all result tuples fit into memory. Otherwise, only
the tuples of one relation can be read in TID order, while random

1/0s remain necessary for reading the matching tuples of the sec-

ond relation.

- Keeping quali~ing S tuples in the result list
The use of TIDs can be avoided for the outer relation S by directly
storing qualifying S tuples in the result list. Thus, the result list
contains entries of the form (TfDR. matching S-tuple). The result
list can be storect in a sequential temporary file for which an out-

put buffer of several pages is maintained in main memory. If the
output buffer fills up during the probing phase it is asynchronous-
ly written out to disk. In the best case however, e.g.. for very se-
lective joins, the entire result list can be kept in memory. In this
case no l/O for the S relation is necessary during the materializa-
tion phase. For the I/Os on the inner relation R, the seek optimi-

zation can be applied as discussed before.

4 Such a result list is similar to a jom index [Va87] However, the join
Index IS a precomputed index structure while the result Ilst is dynam-
ically computed during join processing.

[f the result list was too large to be held in memory, it is read during

the materialization phase. This [s done by sequential. multi-page

read operations that are much more efficient than random 1/0s.
Furthermore, if the disk device to which the result list was written
is equipped with a disk cache. the read f/Os may be served from
the disk cache5. At any rate, depending on the amount of available

memory as many pages as possible should be read from the result
list at a time. This is beneficial in order to maximally support the

seek optimization for the TID-based disk reads of the matchmg R-

tuples,

- Use of pipeline parallelism

Since probing and materialization operate in a producer-consumer
relationship, pipeline parallelism can be exploited between these

two phases, In the extreme form, each qualifying S tuple triggers

materialization of the matching R tuple by an asynchronous disk
read. ideally, the materialization phase can then largely be per-

formed asynchronously to the probing phase so that materializa-
tion does not significantly increase response times. However, the
random f/Os necessary for the materialization per tuple can largely
reduce the effectiveness of overlapping the two phases, in particu-

lar for large join results. Therefore, it may be better to “bundle’”
multiple entries in the result list before starting their materializa-

tion. In this case, several R tuples have to be materialized so that
the seek optimization can be applied. Another advantage compared

to a sequential processing of the probing and materialization phas-

es lies in the reduced memory requirements for the result list for
which no I/Os are necessary any more.

Of course, overlapping the probing and materialization phases re-
quires that the two relations reside on disjoint sets of disks to avoid
disk contention.

‘f’he dkcussion shows that the materialization overhead introduced
by the use of TIDs can be kept very low. Extra I/Os on the outer re-
lation S can largely be avoided by storing the qualifying S-tuples in
the result list. The J/O delays for materializing qualifying R tuples

can also be kept small by performing these I/Os asynchronously dur-

ing the probing phase. Applying the seek optimization to the R read

operations further helps to improve I/O performance for TID hash

joins.

3.3 Memory-adaptive 71D Hash Join Algorithm

The described modifications for obtaining TfD Hash Joins can also
be applied if the reduced hash table for the inner relation does not fit
into memory and an overflow handling becomes unavoidable. Sim-

ilarly, it is possible to extend the adaptive hash join method presented
in Section 2 to get a memory-adaptive TID hash join (partially pre-
emptible TID hash join).

Since only TID-key pairs are stored in the hash table, the total space
requirement of the imer relation is reduced to F x b ~ed, where bred

is the number of pages required for storing the TID-key pairs. As-
suming a ratio b/bred of 4-100, the number of partitions as well as the

average partition size will be reduced by a factor 2-10 for the TID
version of the PPHJ algorithm. The lower number of partitions also
requires fewer output buffers thus further reducing space require-
ments. These space savings allow more R partitions to be held in

memory, thereby reducing the number of overhead UOS for writing
back R and S partitions during steps (Z) and (3) and for reading them
in during steps (4) and (5). The result list is constructed during steps
(3) and (5) indicating for which R tuples matenalizqtion will be nec-
essary. The mechanisms of PPHJ for dealing with memory fluctua-
tions can directly be applied to the TID version of the algorithms.
However, due to its lower space requirements it should much less
frequently become necessary to reduce the memory allocation for

join processing compared to the standard version.

5 Commercial disk controllers keep temporary files In volatile disk cach-
es since these tiles could be reconstructed after a fadure [Gr89]

44

Fig. 1:Gross structure of the simulation system

4 Simulation model

Our simulation system models the hardware and database process-

ing logic of a centralized DBMS architecture. As shown in Fig. 1,
the simulation model consists of a workload generation component

and a processing subsystem. We first describe the database and
workload models; in 4.2 workload processing is outlined. The sim-

ulator is written in DeNet [Li89].

4.1 Database and Workload Model

Our database model supports four object granularities: database,
partitions, pages and objects (tuples). The database is modeled as a
set of partitions. A partition may be used to represent a relation, a
relation fragment or an index structure. It consists of a number of

database pages which in turn consist of a specific number of objects

(tuples, index entries), The number of objects per page is deter-

mined by a blocking factor which can be specified on a per-parti-
tion basis. Differentiating between objects mdl pages is important

in order to study the effect of clustering which aims at reducing the
number of page accesses (disk I/Os) by storing related objects into
the same page. Each relation can have associated clustered or non-

clustered B+-tree indices.

Our simulator allows studying heterogeneous workloads consisting
of several query and transaction types. Queries correspond to trans-
actions with a single database operation (e. g., SQL statement). Cur-
rently we support the following query types: relation scan,

clustered index scan, non-clustered index scan, two-way join que-

ries, multi-way join queries, and update statements (both with and

without index support). We also support the debit-credit bench-
mark workload (TPC-B) and the use of real-life database traces

[MR91]. The simulation system is an open queuing model and al-
lows definition of an individual arrival rate for each transaction and

query type. The parameter settings of the workload and database
model are summarized with the processing system’s main parame-
ters in Table 1 (see Section 5. 1).

4.2 Workload Processing

Tne processing component models the execution of a workload
consisting of transactions and queries. It comprises a detailed mod-
el of the physical resource level and captures the algorithms and

techniques used in a relational DBMS. Intemlally, a processing
node is represented by a transaction manager, a query processing

system, a buffer manager, a concurrency control component and a

CPU server (Fig. 1). The processing node has access to database
and log files allocated on external storage devices (disks).

The transaction manager controls the execution of transactions and
queries. The maximal number of concurrent transactions is con-
trolled by a multiprogramming level. Newly anriving transactions
must wait in an input queue until they can be served when this max-
imal degree of inter-transaction parallelism is already reached. The
query processing system models the processing of OLTP transac-

tions (stored procedures) and the various relaticmal operators. For
join processing, several implementations exist including sort-
merge and hash join algorithms. For this study, we have imple-

mented the standard PPHJ algorithm described in Section 2 m well
the memory-adaptive TID version of this approach (Section 3.3),
The TID algorithm uses the basic scheme for materialization de-

scribed in 3.1 enhanced with a TID sorting for one of the relations
(seek optimization). The other optimization w.r.t. materialization

described in Section 3,2 can be approximated (see Section 5).

The number of CPUS and their capacity (in MIPS) are provided as

simulation parameters. The average number of instructions per
CPU request can be defined separately for every request type. To
accurateI y model the cost of query processing, CPU service is re-
quested for all major steps, in particular for transaction/query ini-

tialization, object accesses in main memory (value comparisons,

operations on hash tables, etc.), 1/0 overhead and commit process-
ing. For concurrency control, we employ strict two-phase locking

(long read and write locks). Locks may be requested either at the
page or object level. A deadlock detection scheme is used to resolve

deadlocks.

The database buffer in main memory is managed according to a glo-
bal LRU (Least Recently Used) replacement strategy. In addition. a
memory reservation system under the control of the query process-
ing system allows memory to be reserved in the buffer pool for a
particular operator or transaction. In particular, this memory reser-
vation mechanism is used for hash joins to prevent hash table
frames from being stolen by other operators. The reservation mech-
anism is priority-based and allows only higher-priority transactions

(e.g., OLTP transactions) to steal frames reserved by a join opera-

tor.

Database partitions can be kept memory-resident (to simulate main

memory databases) or they can be allocated to a number of disks.

Disks and disk controllers have explicitly been modelled as servers
to capture potential I/O bottlenecks. Furthermore, disk controllers

can have a LRU disk cache. The disk controllers also provide a
prefetching mechanism to support sequential access patterns. If
prefetching is selected, a disk cache miss causes multiple succeed-
ing pages to be read from disk and alIocated into the disk cache. Se-

quentially reading multiple pages is only slightly slower than
reading a single page, but avoids the disk accesses for the
prefetched pages when they are referenced later on. The number of

pages to be read per prefetch I/O is specified by a simulation param-
eter.

5 Performance Analysis

The focus of our experiments is to analyze the performance of TID
hash joins under various system and load conditions and to compare
it with a standard hash join scheme (PPHJ), The most important pa-
rameters to consider include the available memory for joi n process-
ing, the size of the relations, tuples and keys, as well as the join
selectivity.
We first provide an overview of the simulation parameter settings

used in the experiments. In 5.2 we analyze the performance of the
join alternatives in single-user mode. Multi-user experiments for
homogeneous and heterogeneous (mixed query/OLTP) workloads
are described in 5.3.

6. Although the simulation system supports pamtlel query processing
[RM93], we restrict ourselves to the central casein this study.

45

Configuration settings Database/Queries settings

no. of CPUs relation R:
CPU speed

\\~.2~0 MB)
~0 MIPS #huples

avg. no. of instructions: tuple size 400, 800 bytes
initiate a query 25000 key size 8 bytes
terminate a query 25000 TID size 4 bytes
tio 3000 blocking factor 20, 10
read a tuple from memory page 500 index type
hash a tuple 5CMI

clustered B+-tree
storage allocation disk

insert a tuple into hash table 102 relation S: (400. 800 MB)
write a tuple into output buffer 100 #tuples I .000.000
probe hash table 200 tuple size 4(30, 800 bytes
buffer manager: key size 8 bytes
page size 8 KB TID size 4 bytes
buffer size 50-1600 pages (0.4 -12.8 MB) blocking factor 20, 10
disk devices: index type clustered B+-tree
number of disk servers 10 storage allocation disk
controller service time 1 ms (per page) join queries:
transmission time per page 0.4 ms access method viii clustered index
avg. disk access time 15ms scan selectivity varied
prefetching delay per page 1 ms no. of result tuples
disk cache 20 pages

1-50 % of the inner relation R
fudge factor hash table: 1.05

ptefetching size 4 pages arrivat rate single-user, multi-user (varied)
-..”. --- L-- -.
1aD. 1:Sys[em cormguration, database and query pronle

5.1 Simulation Parameter Settings

Table 1 shows the major database, query and configuration param-

eters with their settings. In this study the workload is composed of

join queries and OLTP transactions. The join queries used in our

experiments operate on the input reIations R and S. The S relation

contains 1 million tuples, the R relation 250.000 tuples. Filter oper-

ators performed on R and .Sreduce the size of the input relations ac-
cording to the selection predicate’s selectivity (percentage of input

tuples matching the predicate). In our experiments, we will reduce
the R and S relations to 12.500 (5% selectivity) and 25.000-

125.000 tuples (2.5 - 12.5%) to be joined, respectively’. Both se-
lections employ clustered indices. In order to study the influence of
different join selectivities, the join result size is varied between 1
and 50% of the inner reIation”s size. The result tuples are randomly

selected from the two relations.

For all sequential I/Os, in particular relation scans, clustered index

scans and scans on temporary files (partitions), prefetching is uti-
lized by the disk controllers. The disk access time for prefetching

consists of a base access time per I/O (15 ms) plus an additional de-
lay per page (1 ins). For a prefetching of 4 pages, the average disk

access time is 19 ms. Additional I/O delays are incurred at the disk

controller and for page transfer.

To capture the behavior of OLTP-style transactions, we provide a
workload similar to the debit-credit benchmark. Each OLTP trarts-

action performs four non-clustered index selects on arbitrary input
relations (e.g., to branch, teller, account and history records) and
updates the corresponding tuples.

5.2 Single-user Experiments

In this section, we compare single-user performance of TID hash
join with standard hash join. Memory-adaptiveness is not an issue
for single-user mode so that we can assume a fixed amount of mem-
ory during join execution. We first present a base experiment to an-
alyze the impact of different memory sizes, tuple sizes and join
selectivities. Further experiments consider different relation sizes
and potential improvements by an optimized materialization phase.

7. A main rezson for assuming such cmnP~ati@Y sm~l @@ns (as
well as small memory sizes) was to keep slmuiatlon costs wlthm an ac-
ceptable range. However, this is not a significant limitation as the rel-
ative performance is mainly dependent on the memory size relative to
the relations’ sizes rather than the absolute sizes.

Base experiment

For the base experiment, we assumed that the outer relation is ten
times as large as the inner relation (125.000 vs. 12.500 tuples after

employing the filtering by the index scan). The buffer size is varied

between 50 and 1600 page frames (0.4 and 12.8 MB, respectively).
While we used constant TID and key sizes of 4 B and 8 B, respec-

tively, two tuple sizes are considered to study the impact of differ-
ent reduction factors for the TID algorithm. For a tuple size of 400

B (800 B), the TfD algorithm reduces the space requirements for the
hash table by a factor 33 (66) compared to the standard hash join.

The materialization phase of TID hash join performs the R accesses
in TID order, but requires random reads for matching S tuples. This

turned out to be more effective than ordering the disk accesses w .r.t.
S TIDs because there are (10 times) more R result tuples per page

than S result tuples.

Figures 2 shows the resulting join response times for the TID and

the standard hash join algorithm and the two tuples sizes. For the

TID version, the number of matching tuples is varied between 1 and
50% of the size of the inner relation. Since the standard version’s
performance is not affected by the number of matching tuples. in

this case the join selectivity is kept constant (10?lO).Note that the x-
axes specify a relative buffer size which is related to the hash table
size for the inner relation in the standard algorithm. Thus a relative

buffer size of 100% is sufficient for the standard hash join to keep
the inner relation in a memory-resident hash table. For our parame-
ters (page size 8 KB, fudge factor 1.05), this is possible for a mem-
ory size of 642 pages (1283 pages) in the case of 400 B (800 B)
tuples.

We observe that the standard hash join’s performance is very de-

pendent on the available memov, while the TID hash Join is more
influenced by the join selectivity. For a relative buffer size of at
least 100%, the standard version is optimal since there is no need
for overflow handling. In this range, TID hash join is always inferi-

or due its need for materializing the join result. However, the per-
formance of standard hash join quickly deteriorates when the
amount of available memory is reduced while TTD hash join shows
almost no performance degradations. This is because, for the stan-
dard hash join, reducing the available memory means that fewer R
partitions can be held in memory thus leading to increased 1/0 de-
lays for ovefflow handling. Furthermore, the standard version is not
applicable for less than 51 pages in the case of 400B tuples and Iess
than 75 pages in the case of 800B tuples! The TID version. on the
other hand, merely requires 20 pages to store all 12.500 TIDikey

46

&

OF
. ‘~ rdalivebuffersize

o 20 40 60 80 100 i20 [% ‘)f ‘nner ‘elationl

> 500

A*?c
— ST/l NDARD
* TIL) soya rei. R matches

.g 400 _ TIL~ IO% rel. R matches
L A—+ TtLt 1YOrel. R matches

~ 300
~ 800 B

‘ 200 -+

o o~l ‘e’”tiv’’”ffer’i”
20 40 60 80 100 120 [% (!f inner relatimr]

Fig. 2: Influence of buffer size and the join selectivity
(12.500 vs. 125.000 tuples)

pairs in main memory. Therefore, no overffow I/O occurs when there
are at least 20 pages available. (Note that the TID version still oper-
ates with a minimum of 9 pages!). Thus for smaller buffer sizes, TID
hash join clearly outperforms standard hash join even for large join

selectivities. These observations hold for both tuple sizes, although
1/0 savings of the TID version are more pronounced for large tuples

(800 B).

Since query response times largely depend on the 1/0 overhead, it is

useful to analyze the 1/0 behavior in more detail, For this purpose,
we have summarized the number of overheati I/Os for the different

algorithms and configurations in Table 2. Overhead I/Os are all disk

accesses in addition to those needed for the initial scans of the inner

and outer relations that are needed in any case.8 For standard hash

join, overhead I/Os are needed for temporarily storing partitions of
the inner and outer relations on disk due to insufficient memory. For
TID hash join, the overhead I/Os are necessay for materialization of
the join result. Each entry in Table 2 contains three numbers: the
number of overhead 1/0s on R, on S and the total number of over-
head 1/0s. We have specified the absolute buffer sizes since the rel-
ative buffer size changes with the tuple size.

The table reveals the extreme I/O overhead of standard hash join for
small buffer sizes (for buffer size 50 no join execution was possible).

For a buffer size of 100 the number of overhead I/Os of standard

hash join is almost twice the number for reading the two relations.
This is because almost all partitions had to be written to disk during

the partitioning steps and read in later for join processing. For TID

hash join, the 1/0 frequency is primarily determined by the join se-
lectivity which determines the materialization overhead. It turns out
that almost all pages of the inner relation have to be read again for

materialization except for very selective joins (170) since there are
10-20 R tuples per page. However, the materialization overhead for
TID hash join was more dominated by the V(IS on S. Since we did
not apply any optimization for materializing the S tuples here, the
number of overhead I/Os on this relation directly increased with the
join selectivity, Furthermore, these 1/0s constituted random I/Os.
The table shows that increasing the buffer size permits a slight re-
duction in the number of S 1/0s due to buffer hits during the materi-
alization phase.

Despite of the high number of S I/Os with the unoptimized TID hash
join, for moderate join selectivities the number of overhead 1/0s typ-

8. Not counting index accesses, there are 625 (1:!50) f/Os on R and 6250
(12500) t/Os on S for a tuple size of 400 B (8C0 B).

icaliy does not exceed the number of f/Os required for the initial scans

on R and S. This is always guaranteed for the R relation if we perform

the R reads in TID order so that each page is read at most once. The
number of S 1/0s may only exceed the number of S pages in the case

of poor join selectivities so that the number of join result tuples exceeds

the number of S pages, The standard hash join, on the other hand, may
triple the number of 1/0s for small buffer sizes; for a relative buffer size

of 50% it still doubles the number of 1/0s compared to the best case,

Hence, even the straight-forward implementation of TID hash join out-

performs standard hash join for moderate join selectivities as long w
the relative buffer size is below 5070. This is also confirmed by Fig. 2.

Impact of relation size

The previous experiment already involved two different relation sizes
since we varied the tuple size for a fixed number of tuples. We have

seen that lTD hash join is the more favorable the larger the relations are
due to the increased savings for overflow handling. While doubling the

tuple/relation size caused a significant 1/0 increase for standard hash
joins, TID hash join experienced only a modest increase in overhead

1/0s. The latter was because the larger tuple size only required more
1/0s for materializing the smaller R relation, while the number of S

1/0s did not increase since the join selectivity remained unchanged,

,
200 I

400 B
- STANDARD
* TID SOYorel. R makhes

> 150 _ TID IOqo rel. R mutches
2 * TtD I% rel. R mdches
$
‘C 100
%
g
~ 50 -e

2 relative bg~er ,si:e
,

+
[% ofinner reluti(m j

00 20 40 60 80 100 120

i!.=

800 B
150

2’jg;

[00

50

00 40 60 80 120

relative bufjer .si:e
[% ofinner reluti(mj

Fig. 3: Influence of the buffer size and the join selectivity
(12.500 X 25.000)

We now study the effect when we change the relative size of the two
relations to be joined. For this purpose, we left the size of the inner re-
lation unchanged, but decreased the number of S tuples by a factor 5
(12.500 R tuples vs. 25.000 S tuples). The resulting response times for

the two tuple sizes are shown in Fig. 3. The main difference to the pre-
vious experiment is that standard hash join gains most from the re-

duced join size. Furthermore, it clearly outperforms TID hash join
when 50% of the R tuples qualify, even for small memory sizes. How-

ever, this was also due to the fact that the number of join result tuples
remained unchanged while the number of S tuples was reduced by a
factor of 5. Hence when 50% of the R tuples qualify, 25% of the S tu-
ples had to be materialized as opposed to 59’o in the base experiment.

Since there are 10 to 20 S tuples per page and the 1/0s on S occur 0[
random, each S page had to be read multiple times during materialize-
tion explaining the poor performance of TID hash join in this case.
However, this problem can largely be avoided by an optimized materi-
alization of S tuples.

Optimized materialization phase
The discussion in Section 3.2 showed that the random 1/0s tor the m~-
terialization of S tuples can be avoided by keeping qualifying S tuples
directly in the result list. Furthermore, even f/O delays for the materi-

47

join size: 12.500 x 125.000

tuple size: 400 800

algorithti result size: STD TID 5090 TID 10% TID I % STD TID 50% TID [O~o TID 1%

butfer >0 not 625167 ?
683ii”

625 / 74 175 I 125 not 1250 162?8 125011248 125/ ?5

applicable 18:< ‘ ~so applicable 7478- 2498 25; ‘

size 100 1248/11544 62516155 625 I 1240 125/ 125 2738/2433 1 125016207 1250, I 247
12792

1~5/ 125

6780 1865 250 27069 7457 2497 250

[pages]: 400 619/5768 62515857 625/ 1186 125/ 115 2072/ 18446 125016069 1250/ 1231 125/ 119
6387 6482 1811 240 20518 7319 2481 244

1600 0/0 62514747 6251963 1~5/93 0/0 125015540 1250/ 1133 125 / 103
0 5372 1588 218 0 6790 2383 ~~8

Tab. 2: Average number of overhead disk 10s per join query (on relations R, S and total)

alization of R tuples may be avoided if these disk accesses are over-
lapped with the probing phase by utilizing pipeline parallelism. Thus,
in the best case materialization may not cause any response time in-
crease, especially in single-user mode!

500

450

400

350 TID: worst case
(no optimization)

250

200

150
71D:

ordered R reads
100 TID: best case

.“

neous and homogeneous workloads. In the former case, we assume
a single join query at a time that is concurrently executed with OLTP

transactions. The homogeneous workload consists of several con-
cu~ently executing join queries. We assume that the memory re-

quirements for OLTP and hash joins are served from the same tixed-
size buffer area. Memory requests for OLTP have priority over hash

join queries, so that memory may be taken away from running join
queries. We assume that each OLTP transaction requests the mini-
mum of one Daze frame. Furthermore. we assume a ioin selectivity
of 50%, 800B t~ples and a large outer’relation (125.~0 tupies). ‘

aigorithrst/ transaction anival rate [TPS]: ~_ STANDARD z50 TpS

Fig. 4: Impact of different materialization schemes
(tuple size 800B; join selectivity 50%)

To illustrate the resulting response time improvements, Fig. 4 shows
the performance of TID hash join for three different materialization

alternatives. The curves refer to the base experiment (Fig. 2) with a

tuple size of 800 B and join selectivity of 50% of the R tuples. In ad-
dition to the TID version discussed so far (materialization of R tuples

in TID order), the performance of a worst-case and a best-case TID
scheme is shown. The worst-case approach refers to the basic TID

scheme of section 2.1 with random I/Os on both relations. The best-
case assumes keeping the qualifying S tuples in the result list as well
as a complete overlapping of probing and.srraterialization phases. Fig.
4 shows that the best-case TID scheme achieves response times equal

to those of the standard version without overffow I/Os (1009Zorelative
buffer size). This also means that the impact of the join selectivity is

largely reduced, greatly expanding the applicability of TID hash join.
From the various optimization, the improved materialization of S tu-
pies is most significant. Interestingly, the worst-case TID scheme still
outperforms standard hash join for small memory sizes.

5.3 Multi-user Experiments

To model a base load in multi-user mode, two different workload
types are considered in this study: OLTP transactions as well as join
queries. Typical OLTP transactions perform a few index selects and
Update one .or more records. Therefore, OLTP transactions tend to-
wards a rather even consumption of the DBMS’ physical resources
(i.e. disks, main memory and processors). However, since transac-
tions typically require only few main memory pages, disks and pro-
cessors will more likely become overloaded than main memory. Orr
the other hand, join queries pose relatively high memory requirements
when executed using (standm-d) hash join algorithms. Therefore, run-

ning multiple join queries concurrently easily introduces a main mem-
ory bottleneck, which in turn may introduce a high number of disk
1/0s to cope with memory overflow.
We study the performance of PPHJ and its TID version for heteroge-

48

500 - STANDARD 100 TPS

4.50
w STANDARD 50 TPS
~ STANDARD single-user

400 “>+ TID 150 TPS
350 +---+ TID 100 TPS

300
o--+ TID 50 Tp.$
M TID single-user

250

200

150

100

50

0. ’;0’4;’;0’;0
relative bufer size

100 120 [~ of inner relutmr]

Fig. 5:TID and standard hash join performance in multi-user
mode (concurrent OLTP transactions)

We first examine the multi-user results for the heterogeneous work-

load (Fig. 5). Arrival rates for OLTP are varied between 50 and 150

TPS to obtain different levels of resource contention. Increasing the
OLTP arrivaf rates causes a response time deterioration for both
standard and TID hash join due to increased CPU ~d disk conten-
tion. However, for small relative memory sizes the standard PPI-IJ
scheme suffered more under the OLTP load than the TID scheme
due to the transactions’ memory requirements, While each transac-

tion reserved only a single buffer page, the aggregate memory re-
quirements for OLTP significantly reduced memory availability for
join processing in the case of small buffer pools. While there was no
need to suspend running queries due to these memory reductions for
join processing, the number of overhead I/O increased and thus re-
sponse times. The TID version, on the other hand, was iess sensitive

against the transactions’ memory requirements. Even in the case of
small main memories, concurrent transactions did not increase the
joins’ I/O overhead significandy. This was because the TID scheme
could keep the entire (reduced) hash table of 20 pages in memory.

The small memory requirements of TID joins are even more advan-
tageous in the context of concurrent join queries (homogeneous
workload). Figure 6 shows the join response times for this case and
different query arrival rates (the mean time between query arrival is
varied between 1 and 4 minutes). With growing arrival rates, we ob-

algonthrnl query arrival rate
[mean time between query arrival]:

\

500

~>~

\
400

300

200

100

00 20 40 60 80 /00 120

relative bufer size
[% of inner relution]

Fig, 6:TID and standard hash join performance in multi-user mode
(homogeneous workload consisting of join queries only)

serve a considerable response time increase for standard hash joins.

This is because main memory became bottlenecked very soon.
Since already running queries occupied a large fraction of the main

memory, only few pages remained for newly arriving queries so

that they experienced a high number of overhead I/Os. In cases with
fewer page frames left than the minimum of 75 pages, new queries

had to wait until running queries complete and free memory pages.
With higher arrival rates and smaller memory size, most of the que-

ries had to be queued and processed sequentially. Since only few

queries could be executed in parallel in these cases, disk and CPU
uti Iization were very low. Therefore, the steep response time in-
crease with growing arrival rates is mainly due to the increased

number of overhead 1/0s and waits for main memory pages.
Using the TID version, on the other hand, increasing arrival rates
affected response times only marginally. Again, this is because of
the TID version’s low memory requirements, Multiple queries can
be processed in parallel without causing resource contention. Con-
current queries neither perform significantly more f/Os, nor force

newly arriving queries to wait for memory pages. As a result, re-
sponse times do not deteriorate, even in the case of high arrival
rates.

6 Conclusions

In this paper. we have introduced a simple and memory-efficient

method for processing large join queries, nalmely TID hash joins.

TID hash joins are based on standard hash join algorithms but only

store TID/key pairs in the hash table instead of entire triples. Only
few modifications are necessary to obtain a ‘TID version from art

existing standard algorithm. We presented a detailed simulation
study to compare the performance of TID hash join with a memory-
adaptive standard hash join scheme (PPHJ), The analysis consid-
ered single-user as well as homogeneous and heterogeneous multi-
user workloads and identified the conditions under which TID hash
joins are most beneficial.

Standard hash joins primarily suffer from the following drawback.

if the inner relation does not fit into memory the performance of
hash join typically degrades substantially due to a high amount of
fidditional disk I/O for overflow handling. Typically, the number of

disk accesses may be increased by up to a factor of 3 compared to
the case without overflow. TID hash joins, on the other hand, sig-
nificantly reduce the memory requirement (typically by more than
an order of magnitude). Hence, memory overflow can be avoided
in most cases thereby providing significant 1/0 savings during the
building and probing phases. However, they incur extra f/Os for
materializing the join results which can be expensive for large join
selectivities. To reduce the impact of the join selectivity on the TID
hash join’s performance, we proposed several materialization alter-

natives. Most important is avoiding random 1/0s for materializing

the outer relation’s result tuples. This can be achieved by keeping

qualifying tuples directly in the result list. Synchronous [/0 delays
for materializing tuples from the inner relation can also be avoided
to a large extent by utilizing pipeline parallelism (overlapping of

probing and materialization). Performing tuple accesses in TID or-
der further reduces materialization cost.

Our performance study showed that TID hash join is most beneficial
when the inner reIatimr cannot be held memory-resident, in particu-

lar if the relative memory size is below 50% of the inner relation’s
size. It is particularly advantageous in multi-user mode when mem-

ory is more restricted due to memory consumption of concurrent

transactions and queries. We have seen that TID hash join clemly
outperforms memory-adaptive hash join schemes in most multi-

user configurations. If multiple join queries are to be executed con-
currently, standard hash joins experience very high response times
due to a high number of overhead 1/0s as well as of frequent query

suspension due to insufficient memory. The latter is because stan-

dard hash joins require a minimum of & + 1 memory pages where

b is the number of pages for the inner relation.

To sum up, TID hash joins are intended to complement rather than
substitute standard hash join schemes. In this way, the optimal per-

formance of standard hash join in the presence of sufficiently large

memories can be used as well as the superior performance of the
TfD version for smaller relative memory sizes (e.g., for very large

relations) and multi-user workloads. We believe that TID hash join

substantially increases the applicability of hash joins and strongly
recommend its inclusion in any industrial-strength hash join imple-
mentation.

7 References
BE77

Cb91

De84

Gr89

Gr93

Li89

ME92

MR91

Ny93

Blasgen, M. W., Eswaran, K. P.: Storage and Access in Re-
lational Databases. IBM Syst. Journal 16 (4), 363-377, 1977
Chen, J. et aL: An Efficient Hybrid Join Algorithm: A DB2
Prototype. Proc. 6th IEEE Data Engineering Conf. 171-180.
1991
DeWitt, D.J. et al.: Implementation Techniques for Main
Memory Database Systems. Proc. ACM SIGMOD, I -8,
1984
Grossmann, C. P.: Evolution of the DASD Storage Control.
IBM Systems Journal 28 (2), 196-226, 1989
Graefe, G.: Query Evaluation Techniques for Large Data-
bases. ACM Comput. Surveys 25 (2), 73-170, 1993
Livny, M.: DeNet Users’s Guide, Version 1.5. Computer
Science Department, University of Wisconsin, Madison.
1989
Mishra, P., Eich, M.: Join Processing in Relational Databas-
es. ACM Comput. Surveys 24(1), 63-113, 1992
Marek, R., Rahm, E.: Performance Evaluation of Paral-
lel Transaction Processing in Shared Nothing Data-
base Systems, Proc. 4fh Inc. PARLE ConJ (Parallel
Architectures and Languages Europe). Springer-Verlag,
Lecture Notes in Computer Science 605, 295-310, 1992
Nyberg, C. et al.: AlphaSort: A RISC Machine Sort. DEC
Internal Report, June 1993

PCL93 Pang, H., Carey, M.J., Livny, M,: Partially Preemptible
Hash Joins. Proc. ACM SIGMOD. 59-68.1993

RM93

Va87

ze90

ZG90

Rahm, E., Marek, R.: Analysis of Dynamic Load Bal-
ancing Strategies for Parallel Shared Nothing Data-
base Systems. Proc 19th VLDB Conf., 182-193, 1993
Valduriez, P.: Join Indices. ACM Trans. on Database Sys-
tems 12 (2), 218-246, 1987
Zeller, H.: Parallel Query Execution in NonStop SQL. Proc.
IEEE CompCon, 484-487, 1990
Zeller, H., Gray, J.: An Adaptive Hash Join Algorithm for
Multiuser Environments. Proc. 16th VLDB Conf.. 186-197.
1990

49

