
R. Müller, Th. Stöhr, E. Rahm 12-1

Abstract

Due to the increasing complexity of data ware-
houses, a centralized and declarative manage-
ment of metadata is essential for data
warehouse administration, maintenance and
usage. Metadata are usually divided into tech-
nical and semantic metadata. Typically, cur-
rent approaches only support subsets of these
metadata types, such as data movement meta-
data or multidimensional metadata for OLAP.
In particular, the interdependencies between
technical and semantic metadata have not yet
been investigated sufficiently. The representa-
tion of these interdependencies form an impor-
tant prerequisite for the translation of queries
formulated at the business concept level to
executable queries on physical data. Therefore,
we suggest a uniform and integrative model
for data warehouse metadata. This model uses
a uniform representation approach based on
the Uniform Modeling Language (UML) to
integrate technical and semantic metadata and
their interdependencies.

1 Introduction
Modern data warehouse environments integrate a large
number of databases, file systems, tools and applications
which are typically based on different data models and
structural description formats. For example, on the opera-
tional side, relational models can be found together with
hierarchical models and COBOL-oriented description for-

mats for flat files. W.r.t. OLAP, reporting and navigation
applications, multidimensional models co-exist with
object-relational or object-oriented models. Furthermore,
the interdependencies between the different subsystems
can become arbitrarily complex and therefore difficult to
manage, if only represented at the source code level.

This implies the necessity of a repository to manage
metadata, i.e. information about the structure, content and
interdependencies of data warehouse components. Meta-
data supports developers and administrators responsible
for the data warehouse. Furthermore, it can significantly
support business users w.r.t. warehouse navigation and
querying. Although the explicit and comprehensive repre-
sentation of data warehouse metadata has been identified
as essential, most commercial and research approaches
only provide limited solutions ignoring important types of
metadata (see below). This is one of the experiences we
made in a recent evaluation of metadata tools for data
warehousing. The evaluation was based on a comprehen-
sive criteria catalogue on metadata management. In addi-
tion we carried out test installations and practical
functionality tests with several leading tools.

To overcome the limitations of current approaches we
propose a comprehensive repository model for managing
data warehouse metadata. The intended usage of the model
is the following:

Basically, it shall be accessible both for administrators
or programmers and end users for navigation purposes.
Furthermore, it shall allow an improved usage of metadata
for tools, which have to access multiple components of a
warehouse, and therefore need information about the struc-
ture and contents of the involved components. In particu-
lar, our goal is to support ad-hoc query tools which are
formulated on semantically rich layers, and which then
have to be translated into executable database queries such
as SQL.

A unique feature of our scheme is its support of an uni-
form integration of both technical and semantic metadata.
The next section discusses these two types of metadata in
more detail. In Section 3, we briefly discuss related work
including a classification of metadata tools, standardiza-
tion efforts and research approaches. Section 4 is the main

The copyright of this paper belongs to the paper’s authors. Permission to copy
without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW’99)
Heidelberg, Germany, 14. - 15. 6. 1999
(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

An Integrative and Uniform Model for Metadata
Management in Data Warehousing Environments

Thomas Stöhr

stoehr@informatik.uni-leipzig.de

Robert Müller

Institut für Informatik
Universität Leipzig

Germany

mueller@informatik.uni-leipzig.de

Erhard Rahm

rahm@informatik.uni-leipzig.de

R. Müller, Th. Stöhr, E. Rahm 12-2

part of the paper covering our uniform and integrative
model for data warehouse metadata. We close with a dis-
cussion of our approach.

2 Technical and Semantic Metadata in Data
Warehouses

Our work is based on a general three-layer data warehouse
architecture shown in Figure 1. The first layer contains all
systems involved in the management of operational data
(Operational Layer). The second layer consists of the data
warehouse as a centralized copy of relevant operational
data (Data Warehouse Layer). The third layer we assume
includes all tools and applications used by end-users for
the purposes of, for example, navigation, data analysis, and
data mining. In particular, this layer contains OLAP tools
operating on multidimensional datamarts.

In the following, we discuss technical and semantic
metadata and sketch the benefits of an explicit representa-
tion of metadata. The distinction between technical and
semantic metadata is mainly motivated by the two differ-
ent types of staff members accessing a warehouse. Techni-
cal staff members such as warehouse administrators and
programmers are mainly interested in metadata on a tech-
nical implementation level, and are not interested in the
business semantics of warehouse data in detail (technical
metadata). Business end users, who are not familiar with
warehouse description formats such as database SQL-
DDL-files, are interested in understanding the business
semantics of warehouse data, and therefore need semanti-
cally rich representations of the structure and contents of a
warehouse (Semantic metadata). From this point of view,
semantic metadata on one side form a business-oriented
view on technical metadata. On the other side, they add
business-oriented semantic information to the data which
is not explicitly represented by technical metadata.

2.1 Technical Metadata

Technical (or administrative/structural) metadata cover
information about:

• the architecture and schemata w.r.t. the operational sys-
tems, the data warehouse and the OLAP databases.
This includes, for example, information about table and
record structures, attribute constraints, triggers, or
views defined in the different databases or file systems.

• the dependencies and mappings between the opera-
tional sources, the data warehouse and the OLAP data-
bases1 on the physical and implementation level. This
includes all data movements filters, transformations
and aggregations w.r.t. flat files and physical database
tables. Mappings between the physical warehouse layer
and a logical, business-oriented view of warehouse
data belong, in our terminology, to semantic metadata

(see Section 2.2).

• temporal data and data about user actions (“What has
happened when in the data warehouse?“)

Technical metadata is usually extracted from DBMS
catalogues, COBOL copy books2, data movement tools, or
CASE3 tool schema exports. In this context, a metadata
repository should support the following basic require-
ments: First, it should support the collection of technical
metadata (e.g. by providing scanners for database sche-
mata). Second, it should provide a uniform representation
approach to store the different types of technical metadata.
Third, it should be able to export them in one of the stan-
dard metadata formats such as the MDIS4 format. Fourth,
it should provide a comfortable interface for administrators
and developers.

Furthermore, technical metadata repositories in the data
warehouse context should also be bi-directional. This
means that the repository should not only be able to read
metadata such as a definition specifying a mapping
between an operational source and the data warehouse. It
should also allow to redefine the mapping within the
repository, and then to propagate the changes to the exe-
cuting data movement tool. However, such an interopera-
bility must be supported by both the repository and the
respective tools, e.g., for data movement.

2.2 Semantic Metadata

In contrary to technical metadata, the term semantic meta-
data (or business metadata) is not used in a standardized
manner by researchers and companies. Basically, semantic
metadata intend to provide a business-oriented description
of the data warehouse content. This description should be
understandable for users who are not familiar with techni-
cal data descriptions or query languages such as SQL. In
the following we will refer to users who are only interested
in the business content as business users. A repository
addressing semantic metadata and therefore supporting
these business users should cover the following types of
business-oriented metadata (also see Figure 1):

• Conceptual enterprise model: This important function-
ality of a semantic-oriented repository includes the
high-level representation of an enterprise data model,
its business concepts and their relationships. On the
base of this enterprise model, the business user not
familiar with database query languages such as SQL
can inform himself, which data is provided by the data
warehouse.

• Multidimensional data model: This important part of a

1. In the following, we use the terms OLAP database
and datamart as a synonym.

2. A COBOL copy book is a file structure descriptor
used by COBOL programs to interprete flat files.

3. CASE = Computer Aided Software Engineering
4. MDIS = Metadata Interface Specification of the

Metadata Coalition

R. Müller, Th. Stöhr, E. Rahm 12-3

conceptual enterprise model informs the business user
about which dimensions, dimension categories, data
cubes, and aggregation principles exist w.r.t. the data-
marts. With the term data cube we denote a multidi-
mensional organization of facts w.r.t. business
concepts of the domain. In the insurance domain, for
example, we may have a data cube Claims with the
dimensions time, region, insurance product types and
insured-persons and a categorization of each of these
dimensions. A fact of the data cube may represent the
sum of all payments w.r.t. to a time period, a particular
region, a particular insurance product and an age group
of insured persons.

• Dependencies between conceptual business models
and physical data: As the metadata types listed above
only provide business-oriented views of the data ware-
house, the dependencies between this business layer on
one side and the operational and data warehouse data-
bases on the other side also have to be represented
within the repository. Let, for example, the repository
contain business concepts such as Life-Insurance,
Insurance-Contract and Insurance-Claim. Then the

repository should also represent which physical base
tables contain data about these business concepts. In
particular, it should be represented which attributes of
the base tables correspond to which attributes of the
business concepts.

An explicit representation of the types of metadata
listed above supports business users w.r.t. the following
tasks:

• Navigation along a business-oriented view of the data
collected in the data warehouse or the datamarts. For
example, Figure 2 shows a navigation browser for busi-
ness concepts from an insurance domain. Here the
business user can inspect which contract types are
offered by his enterprise.

• Ad-hoc Querying at the level of business concepts
without having to know the technical details of query
languages such as SQL. If the metadata repository rep-
resents the connections between the conceptual enter-
prise model and the physical data, the business term
query can then automatically be translated to execut-

Technical
Metadata

Metadata
Repository

Data Mining

Operational
Layer

Relational
DBMS

Data
Warehouse

Adhoc-Query Navigation OLAP

Semantic
Metadata

Data
Warehouse
Layer

Business Layer

Flat Files

Data
Mart Data

Mart

Conceptual
Enterprise Model

Multi-
dimensional
Model

Data Model

Knowledge
Model

Hierarchical
DBMS

Figure 1: Metadata management in a data warehouse. The metadata repository stores and maintains information
about the structure and the content of the data warehouse components. Furthermore, all dependencies between the
different layers are represented in the repository.

R. Müller, Th. Stöhr, E. Rahm 12-4

able query programs accessing the data warehouse or
the datamarts.
In Figure 2, for example, the user has specified an ad-
hoc query asking for the number of all profession inca-
pacity insurance contracts, where no insurance contract
clause exists but an extra medical charge has to be paid.

• Data Mining: As semantic metadata usually represent
semantic associations and specialization hierarchies of
business concepts in an explicit manner, a metadata-
based hypothesis generation and result filtering can
support data mining (in contrary to data mining which
has to build hypotheses and filters on raw data).

3 Related Work
We briefly discuss various commercial metadata tools as
well as standardization efforts for metadata exchange. In
addition, we consider related research work.

3.1 Metadata-Related Tools

Tools related to the data warehouse market usually support
only particular types of metadata as illustrated in Figure 3.

• One group of tools focuses on data extraction, transfor-
mation and movement (e.g. PLATINUM DECISION BASE,
ARDENT DATASTAGE, ETI EXTRACT) of operational
data to the data warehouse, thus offering almost no
semantic capabilities. Usually, these tools provide a
technical, relational view on the data warehouse. Some
vendors additionally offer a warehouse creation facil-
ity. For example, INFORMATICA POWERMART supports
the Data Mart Design process through the so-called
multidimensional schema wizard.

• Tools for OLAP, reporting and business intelligence
(e.g. MICROSTRATEGY DSS AGENT, COGNOS
IMPROMPTU, BUSINESS OBJECTS) provide a multidi-
mensional view through mapping relational tables to
business-relevant dimensions and facts, to support mul-
tidimensional analysis (drill-down, roll-up etc.) on
warehouse data.

• To offer a more business-oriented point of view to non-
technical users, many CASE or modeling tools exist to
describe the business world at a higher semantic level
than relational tables do. Usually, their modeling com-

Figure 2: User interface for a business-oriented view of a data warehouse. The business concepts shown in the two
windows are retrieved from a metadata repository storing semantic metadata.

R. Müller, Th. Stöhr, E. Rahm 12-5

plexity covers the E/R model or object-oriented
approaches like UML introducing modeling capabili-
ties like different association types or methods. Repre-
sentatives of such tools include ERWIN (PLATINUM),
E/R STUDIO (EMBARCADERO), GDPRO (ADVANCED
SOFTWARE) and ROSE (RATIONAL SOFTWARE).

• The tools mentioned above usually store metadata in a
relational or object-oriented database, which is often
handled as a black box. Separate repositories are pro-
vided by MICROSOFT (REPOSITORY), PLATINUM
(REPOSITORY), VIASOFT (ROCHADE) or ARDENT
(METASTAGE).

However, all these different types of tools only support
an isolated subset of metadata. In particular, no commer-
cial solution exists that integrates metadata for technical
data movement, multidimensional analysis and semantic
modeling in a data warehouse within one tool. For exam-
ple, the Repository Information Model (RIM) of ROCHADE
covers a broad range of business and multidimensional as
well as technical metadata. However, the representation of
transformation rules on the technical layer and between
technical and semantic metadata does not become clear
[Wie98].

3.2 Standardization Efforts

There are several efforts to standardize metadata exchange.
The objective of the Metadata Coalition is to create a stan-
dard API for metadata, the Metadata Interchange Standard

(MDIS) [MC98]. This approach models schema informa-
tion of different types of data stores, like relational, multi-
dimensional, object-oriented, net or hierarchical database
systems as well as file structures. MDIS is not data ware-
house-specific and it is limited to schema relationships. It
does not cover semantic metadata and offers only low sup-
port for data movement purposes.

MICROSOFT’S REPOSITORY [BB+99] offers an UML-
oriented metadata interface and export capabilities to
exchange metadata between repositories (by XIF5). Sev-
eral vendors addressing the data warehouse sector support
XIF (e.g. NCR, PLATINUM, SOFTLAB, SYBASE, UNISYS
and VIASOFT).

A further approach to exchange a wide range of meta-
data is the XML Metadata Interchange format (XMI) of
the Object Management Group (OMG). Its objective is to
exchange programming data of developers working with
object technology over the internet. However, it is not data
warehouse-oriented.

3.3 Related Research Work

Similar to the commercial market, most research
approaches are limited to metadata subsets. Bernstein et al.
[BB99] describe a metadata-driven data transformation
approach in the data warehouse context, which is based on
the MICROSOFT REPOSITORY [BB+99]. Katic et al.

5. XIF is the proprietary XML interchange format of
MICROSOFT.

Figure 3: An overview of tools on the market, which provide metadata in data warehouse environments. POWER-
MART is located between the CASE and the Data Movement section, as it also provides a warehouse specification
and creation facility.

OLAP/
Reporting/
Business Intelligence

CASE
Data Movement

ERWin (Platinum)
E/R Studio (Embarcadero)
GDPro (Advanced Software)
Rose (Rational Software)

Business Objects (Inc.)
Impromptu (Cognos)

DSS Agent (MicroStrategy)

Repository (Platinum)
MetaStage (Ardent)
Warehouse Directory (Prism)
Repository (Microsoft)
Rochade (Viasoft)

Decision Base (Platinum)
Extract (ETI)
DataStage (Ardent)

PowerMart (Informatica)

Repository

R. Müller, Th. Stöhr, E. Rahm 12-6

[KQS+98] describe a metadata approach for data ware-
house security, but do not go beyond technical metadata
plus business-oriented string labels and descriptions of
attribute and table names.

Golfarelli et al. [GMR98] and Wietek [Wie99] describe
detailed models of multidimensional data which could
serve as a base for business-oriented views of OLAP data.
However, they do not explicitly address metadata for the
interdependencies between multidimensional structures
and business concepts spaces which are not organized in a
multidimensional manner.

Within the METAFIS approach, Becker and Holten
describe a elaborate semantic metadata model for concep-
tual data models [BH98][Hol99]. Technical metadata and
especially the interdependencies between technical and
semantic metadata are not addressed in this approach.

In the context of the DATA WAREHOUSE QUALITY
(DWQ) project, Calvanese et al. [CGL+98] and Jeusfeld et
al. [JQJ98] provide a comprehensive metadata model in
the context of measuring the quality of data warehouse
components. The approach covers a broad range of techni-
cal and semantic metadata. It is based on the CONCEPT-
BASE database [JGJ+95] and uses description logics as the
underlying representation approach. Although formally
very strong, the usage of logics makes it more difficult to
practically apply it in specific data warehouse environ-
ments.

4 A Uniform and Integrative Model for Data
Warehouse Metadata

In the following, we introduce our model of technical and
semantic metadata. We call the model uniform, as it uses
the same representation approach both for technical and
semantic metadata. The representation language we use is
the Unified Modeling Language (UML) [FS98]. We call it
integrative, as the UML schema provides several generic
classes shared both by the technical and semantic metadata
model. Aspects specific for technical or semantic metadata
are realized mainly by subclassing these shared classes.

We use UML class diagrams to represent our meta
model. Classes are noted as grey rectangles, with the name
of the class in the upper part of the rectangle (see, for
example, Figure 4). Attributes are denoted in the bottom
part of the class rectangle. Inheritance relationships
between classes are specified via arcs without labels. For
example, in Figure 4, Aggregation and Non-Aggregation
are subclasses of Transformation. Associations between
classes are noted as arcs labeled with the name of the asso-
ciation and the multiplicity information specifying how
many instances of a class can participate within the associ-
ation. Composition associations are described by a black
rhombus symbol. In the example of Figure 4 it is specified,
that a Mapping instance may use an arbitrary number of
Transformation instances (association uses-transforma-
tions). Because of the composition semantics, all transfor-
mations of the mapping are deleted, if the mapping is
deleted.

4.1 Shared Classes

In this subsection, we briefly describe the classes used
both by the technical and semantic model (see Figure 4).

• Entity, Attribute and Association: The central root
class is Entity. Instances of this class may represent a
relational table definition, a record type of a hierarchi-
cal database system, an object-oriented class, or a
semantic business concept. The structure of an entity is
described by a number of Attribute instances. Further-
more, an entity may participate within an association to
itself or to one or more other entities. This is repre-
sented by an Association instance which connects
Entity instances via the UML association connects.
This UML association is attributed with the role of the
connected Entity within the represented association
(source or target in the case that it is directed). Further-
more, information about the multiplicity w.r.t. the enti-
ties connected by the association is represented by
lower-boundary and upper-boundary. The classes
Entity, Attribute and Association basically cover the
meta model of the Entity/Relationship model minus the
construct of weak entities. The association types com-
position and inheritance we need for instances of
Entity are introduced in the semantic meta model in
section 4.3, as they are not needed in the technical
model.

• Mapping, Transformation and Aggregation: Further-
more, our UML schema provides the generic classes
Mapping, Transformation, and Aggregation to express
structural dependencies and data dependencies. A
Mapping instance describes structural dependencies at
the level of Entity instances, while Transformation
instances operate at the level of Attribute instances. For
example, a Mapping instance may express that a hierar-
chical record is mapped to a relational table during the
data movement process from an operational source to
the data warehouse. A Mapping instance may also
express that a particular business concept such as
Insurance-Claim corresponds to two data warehouse
tables which store claim event data. Such a mapping
between semantic concepts and physical data can be
used, for example, to translate ad-hoc queries at the
semantic level to SQL queries performed on the appro-
priate database tables. A Mapping instance may use an
arbitrary number of Transformation instances to
express mapping dependencies at the attribute level.
i.e. which source attributes are transformed to which
target attributes, and which transformation function is
used (see section 4.2 for details w.r.t. data movement
metadata). Instances of the class Aggregation, which is
a subclass of Transformation, represent transforma-
tions where a set of values is aggregated to a single
value. Again, this class can be used both in the context
of technical metadata and semantic metadata: On the
one side, a set of Aggregation instances may express,
for example, the mappings and transformations when

R. Müller, Th. Stöhr, E. Rahm 12-7

data warehouse data are aggregated to the star schema
tables of a multidimensional database. On the other
side, they can also be used at the business level to
express, for example, how instances of the business
concept Insurance-Claim are aggregated to the sum of
all claim payments within a particular time period,
region and insurance product type. Non-Aggregation
instances cover transformations where, for example, a
„tuple-by-tuple“ transformation has to be processed.
This is, for example, needed when the VAT has to be
added to all tuples storing a charge value.

In the following we now describe the technical and
semantic metadata model in detail. In particular, we intro-
duce subclasses of the above generic classes specific for
technical or semantic metadata.

4.2 UML-Schema for Technical Metadata

In the data warehouse context, our model covers the fol-
lowing two types of technical metadata:

• First, the description of the data structures in opera-
tional data stores, the data warehouse and datamarts

and their intra-system dependencies. We cover func-
tional dependencies like relational foreign key relation-
ships, or the dependencies within a hierarchical
database. Usually, all described kinds of metadata are
imported from data dictionaries or COBOL copy books.

• Second, our model provides a description of inter-sys-
tem dependencies. This mainly covers the complex
structures of mappings between operational data
sources to a data warehouse. This kind of metadata
supports administrators during the design and the pro-
cessing of data movement, when a high amount of data
from heterogeneous operational systems has to be
cleansed, transformed and stored into the data ware-
house. It should be pointed out that data warehouse
management tasks such as the periodical warehouse
update shall still remain in the responsibility of special-
ized tools such as data movement tools. Therefore, the
repository primarily serves as a centralized viewer of
system inter-dependencies.

4.2.1 Schema Representation

Figure 5 shows how physical data is organized in the data

Mapping

0..1

0..1

name: String
description: String

Filter
name: String
predicate: Predicate

Mapping-Group

name: String
ordering-of-mappings: {no-
ordering, sequence, concurrency}

has-sources

has-targets

Function

name: String
function:Function

1..*

1..*

involves-
attributes

has-filter

0..1

uses-
transformations

Aggregation
has-
targets

0..*

0..*

has-
arguments

1

0..1

has-function

0..1

1

0..*
contains-mappings

1

Attribute
name: String
type: Stringname: String

description: String

Transformation

has-targets

has-sources0..*

0..1

1..*

0..*

1

1..*

1..*

1..*

Non-Aggregation

has-
attributes

1

1..*
1..*

Association

name: String
arity: integer

1..*

0..*

role: (source, target, none)
lower-boundary: Integer
upper-boundary: Integer

participates

1..*

0..*

role: (source, target, none)
lower-boundary: Integer
upper-boundary: Integer

connects

Entity
name: String

contains-subgroups

0..*

0..1

Figure 4: UML schema for classes shared by the technical and semantic metadata model. This schema covers, for
example, the representation of entities, associations between entities, and mappings or transformations between enti-
ties (see text for details).

R. Müller, Th. Stöhr, E. Rahm 12-8

warehouse. Dashed lines and rectangles denote associa-
tions and classes which already have been defined in the
shared model (see Figure 4) and are now re-used in a tech-
nical manner. In terms of technical metadata, instances of
the shared class Entity represent structure units of different
data system types. For example, an Entity instance may
represent a table structure in a relational database, a record
structure in a hierarchical database or a flat file descrip-
tion. We introduce Physical-Entity to represent structures
which are used to materialize data.

An Entity instance is described by Attribute instances.
For example, we may have an instance of Physical-Entity
with Physical-Entity→name = „Person“ and Physical-
Entity→type = relational-table which describes a person
table representing all persons related to an insurance com-
pany (e.g. insured, agents, policy-holders). The attributes
of the table are described by associated Attribute instances
with Attribute→name = „first-name“ and
Attribute→name = „birth-date“ etc.

Generally, entities are organized in a logical Schema. In

our technical context, a schema describes a set of logically
associated table structures, or a set of files associated with
a file structure description such as a COBOL copy book
(subclass FSD).

A Data-Store is a collection of physical data which is
stored by exactly one data system type, e.g. by one physi-
cal DB2 database or a set of files described by a COBOL
copy book. An instance of Data-Store references one or
more Schema instances, which describe the data store.
However, a Schema instance is not necessarily associated
to a Data-Store instance. It can also represent a collection
of structures describing non-physical data.

We introduce DBMS-Store and File-Store as different
subclasses of Data-Store to emphasize that the access to
hierarchical or relational databases is different from the
access to a set of files. Instances of DBMS-Store are main-
tained by a database system, represented by an instance of
the DBMS superclass. Thus, the necessary information to
access a DBMS-controlled entity is managed by a DBMS
and therefore modeled at the DBMS-level (DBMS

Figure 5: UML schema for physical data organization in a data warehouse (see text for details). Instances of FSD
(for file structure description) describe the structure of flat files. A typical FSD instance, for example, would be a
COBOL copy book describing the structure of a number of files storing operational data.

 Data Store

name: String

Schema

name: String

 DBMS
type: String
servername: String
port: unsigned Integer
connection: (odbc, native)
host: String

 File Store

name: String

is-described-by

0

 FSD

name: String

DBMS Store

name: String

manages

0..*

1

Entity

name: String

1..*

1

 File
name: String
host: String
file path: String

1..* 0..1

contains

1

name: String
type: String

1..*

has-attributes

1

primary-key

1..*

1

foreign-key

Physical
Entity

name: String
type: (relational-table,
 record,
 file-structure)

1..*

stores

Attribute

name: String

1..*

Foreign-Key-
Association

R. Müller, Th. Stöhr, E. Rahm 12-9

attributes servername, portnumber, hostname, connection
etc.). In contrast, the meta information about file storage
(host, file-path etc.) is a file property and has to be mod-
eled in a special File class.

Foreign key relationships between physical (relational)
entities can be represented by instances of the class For-
eign-Key-Association.

4.2.2 Data Dependencies and Data Movement

In this section, we present our model to describe data
dependencies as they appear in the technical data move-
ment processes. We incorporate operational systems, data
warehouse base tables, multidimensionally organized data-
marts and their dependencies. All needed UML classes and
associations are already denoted in our shared class figure
(Figure 4).

At the technical layer, we describe all data movement-
related dependencies as a set of Mapping instances. One
instance represents a “single-stage” link between a set of
source Entity instances and a set of target Entity instances
where every entity plays only a single role, either source or
target. The aggregating class Mapping-Group comprises
two types of mapping collections: 1) multi-stage map-
pings, where several Entity instances serve as both a
source and a target within a complex mapping, and 2) a set
of otherwise logically related disjunct (single- or multi-
stage) mappings.

Each Mapping instance consists of zero, one or more
Transformation instances, which describe the transforma-
tion for a Mapping instance at the Attribute instance level.
We understand a transformation as a combination of a fil-
ter and a function, represented by the corresponding UML
classes. A Filter instance mainly embodies a filter predi-
cate. We allow complex predicates, described by a set of
simple predicates (each containing a single comparison)
which are composed by Boolean operators. A predicate
additionally can incorporate function calls, e.g.

attr1 = f(attr2) OR NOT attr3

where f represents an arbitrary function, which can be
imported from any function library.

A Function instance stores a function to describe the
transformation from one ore more source attributes to one
ore more target attributes:

(t1, ..., tn) ← f1(s1, ..., sm); ...; fn(s1, ..., sm)

The si, ti denote the source and target attributes, respec-
tively. The function fi describes how to calculate ti. and can
also be imported from any function library. Therefore, our
functions cover the transformation complexity of C or
other 3GL programming languages.

Due to the different semantics of aggregation transfor-
mations, we have already introduced two specialized trans-
formation classes, Aggregation and Non-Aggregation, in
section 4.1. Aggregation is characterized by aggregation
functions on instances of a single Entity instance, e.g. a

sum of an attribute value over the tuples of a relational
table. A Non-Aggregation instance is a transformation
incorporating function types not aggregating tuples or
records.

An Aggregation, e.g. described by a function agg-
sum(attribute), performs a sum on every (predicate-depen-
dent) group of tuples or record values of an Entity instance,
resulting in a single aggregate value for each group. In the
context of a Non-Aggregation instance, nonagg-
sum(attribute1, attribute2) transforms two single values of
different attributes of one source row (for each source row)
to one single value. So, summation is used with two differ-
ent meanings, depending on the particular Transformation
subclasses.

Figure 6 provides an example for a Mapping-Group
instance named Damage-Group in an insurance environ-
ment. Starting from operational relational tables Person
and Contracts and a flat file Claims we materialize the sum
of money paid to accident-insured persons in case of an
insurance claim, according to their certain age group (e.g.
group “children”, whose age is less than 16) in a fact table
of a datamart. To solve this typical data movement prob-
lem, we have to execute the following three steps, each
described by different Mapping instances:

• Filter-Mapping (1): First, we apply a filter to the Per-
son table to extract the insured (in contrast to insurance
holders) and store them in a temporary table insured.
Therefore, the Mapping instance Filter-Mapping is
represented by a simple Filter-Transformation, just
storing a corresponding predicate in the Filter instance.

• Join-Mapping (2): As a second step, we join Person,
Contract and Claim into the table Damage to get all
information related to a claim concerning a contract
which has been made by a certain person. To provide a
join, the associated predicate attribute of the Filter
instance contains the join condition. The function
instance contains a list of function descriptions, one for
every target attribute. In our example, the age value of
Damage is generated by differentiating current-year()
and the year of birth-date of a certain insured instance.

• Aggregate-Mapping (3): Finally, we aggregate the
individual amounts of loss, grouped by applying range
predicates to build certain age groups into an Entity
instance Damage-Aggregation. This part is described
by Transformation instances A-Transformation1, A-
Trans-formation2, which are instances of the special-
ized Transformation class Aggregation mentioned
above. We compute a single value for every group of
the Damage instance by applying a set of range predi-
cates on its age attribute.

By introducing Filter, Function and Aggregation
classes we achieve a mapping and data movement com-
plexity as provided by the functionality of up-to-date
object-relational query languages (e.g. INFORMIX SQL,
SQL3) plus user-defined functions or methods, imple-

R. Müller, Th. Stöhr, E. Rahm 12-10

Damage-
Aggregation

Damage-
Aggregation

predicate = (d.age > 6
AND d.age <= 16)

predicate = (d.age > 6
AND d.age <= 16)

A-Transformation2A-Transformation2

InsuredInsured

ContractsContracts

DamageDamage

A-Transformation1A-Transformation1

ClaimsClaims

J-TransformationJ-Transformation

has-
attribute

PersonPerson

name = ‚J-Function‘

function =
(age, amount) ←
(current_year()-year(i.birth_date),
cl.sum-paid)

name = ‚J-Function‘

function =
(age, amount) ←
(current_year()-year(i.birth_date),
cl.sum-paid)

name = ‚J-Filter‘

predicate =
(i.pno=co.pno AND
co.cono=cl.cono AND
co.cotype=„accident“)

name = ‚J-Filter‘

predicate =
(i.pno=co.pno AND
co.cono=cl.cono AND
co.cotype=„accident“)

Join-MappingJoin-MappingFilter-MappingFilter-Mapping

Aggregate-MappingAggregate-Mapping

F-TransformationF-Transformation

name = ‚F-Filter‘
predicate = (p.status = insured)

name = ‚F-Filter‘
predicate = (p.status = insured)

name = amount-agg
type = Integer

name = amount-agg
type = Integer

Damage-GroupDamage-Group

has-function

has-filter

has-source

has-target

has-source has-target

contains-
mappings

has-source
has-target

has-attribute

predicate = (d.age <= 6)predicate = (d.age <= 6)function =
amount-agg ← sum(d.amount)

function =
amount-agg ← sum(d.amount)

has-
attribute

has-
attribute

name = sum-paid
type = Integer

name = sum-paid
type = Integer

has-filter

has-function

has-filter

has-
attribute

name = cono
type = Integer

name = cono
type = Integer

name = pno
type = Integer

name = pno
type = Integer

name = birth-date
type = Date

name = birth-date
type = Date

(1)
(2)

(3)

Legend:

Entity-
Name

Entity-
Name

uses-
transformations

uses-
transformatins

uses-transformatins

Instance-NameInstance-Name

= instance of the class Entity with Entity.name = „ Entity-Name“

= instance of classes with <Classname> from Mapping or Transformation,
 and <Classname>.name = „Instance-Name“

= association instance

= composition instance

attr = valueattr = value = instance of classes with <Classname> from Filter, Function
 and <Classname>.<attr> = <value>

name = age
type = Integer

name = age
type = Integer

name = amount
type = Integer

name = amount
type = Integer

name = cono
type = Integer

name = cono
type = Integer

name = pno
type = Integer

name = pno
type = Integer

name = cotype
type = String

name = cotype
type = String

name = status
type = String

name = status
type = String

function=
amount-agg← sum(d.amount)

function=
amount-agg← sum(d.amount)

Figure 6: Instantiation of technical metadata, illustrating the representation of mappings and transformation in a
data movement example (see text for details).

mented in a common 3GL language. Therefore, we gain
the transformation complexity of C. To generate queries
for data movement, filter predicates (incorporating func-
tions) can be implemented as conditions in object-rela-
tional WHERE or HAVING clauses. User defined
functions can either be implemented as class methods or, if
externally implemented, integrated via an external library
definition and then used in the SELECT or WHERE
clauses.

4.3 UML-Schema for Semantic Metadata

We now describe our UML schema for business concepts

and multidimensional data. This schema provides classes
to represent warehouse-related metadata from the business
point of view. The schema is shown in Figure 7. Further-
more, we illustrate this semantic meta data model by an
example from the insurance domain (see Figure 8).

4.3.1 Business Concept Representation

The first important class of the semantic meta model in
Figure is Business-Concept. It is a subclass of Entity, and
therefore described by a number of Attribute instances.
Typical Business-Concept instances are, for example,
product types, relevant business events, or customer types.

R. Müller, Th. Stöhr, E. Rahm 12-11

For a more compact notation, we introduce the following
convention: If we, for example, have a Business-Concept
instance with Business-Concept→name = “Insurance-
Claim”, we simply say that Insurance-Claim is a Business-
Concept instance, or simply a business concept. This is
also reflected in the graphical notation of Figure 8, where a
Business-Concept instance with Business-Concept.name =
“Insurance-Claim” is noted as a shadowed rectangle with
the label Insurance-Claim.

In the insurance domain, typical business concepts
include Property-Insurance, Insurance-Claim, or Com-
mercial-Client. Business concepts may be organized
within multiple inheritance hierarchies, represented by the
has-subconcepts UML association of Figure . Instantiati-
ons of this has-subconcepts association are noted as
dashed arrows (see Figure 8). Furthermore, a business con-
cept may form a complex concept via the has-subparts
UML association of Figure . This association may have the
semantics of an aggregation or a composition, which is
described by the Subpart-Role class. As an example for a
business concept aggregation, the insurance type
Extended-Household-Contents-Insurance (as a sample
subconcept of Property-Insurance) may have a Glass-
Insurance and a Bike-Insurance as components. However,
when the customer cancels a household insurance, we can
still keep the bike insurance.

Domain-specific associations between business con-
cepts have to be expressed as instances of the classes
Entity and Association of Figure 4. For example, the asso-
ciation that a damage (concept Damage) may result in a
claim (concept Insurance-Claim) is represented via an
Association instance with Association.name = „may-
result-in“. As a graphical shortcut, we use a labeled black
arrow to denote such an association (see Figure 8).

4.3.2 Multidimensional Data

The right part of Figure 7 contains the UML metadata
schema for multidimensional data and their associations to
business concepts. Multidimensional data are represented
in a Data-Cube, which may have an arbitrary number of
Dimension instances such as time, region, or product type.
A Dimension instance is split up into an arbitrary number
of categories (instances of class Dimension-Category)
which group business concept instances along the dimen-
sion. Dimension-Category instances may recursively be
divided into subcategories grouping Business-Concept
instances at a finer level of granularity. The three classes
Data-Cube, Dimension and Dimension-Category are sub-
classes of Entity. Therefore, the structure of their instances
can be described by an arbitrary number of Attribute
instances.

Furthermore, a Data-Cube instance has a number of
instances of Fact-Attribute (subclass of Attribute), which
represent business concept aggregations.

In the following, we now describe the interdependen-
cies between business concepts on one side and the com-
ponents of a data cube on the other side:

• Business-Concept ↔ Dimension-Category: The map-
ping between Business-Concept instances and Dimen-
sion-Category instances is described by instances of
the shared generic classes Mapping and Filter which
have been described in Figure 4 of section 4.1.

• In the specific context of business concepts and multi-
dimensional data, a Mapping instance connects exactly
one Dimension-Category instance with an arbitrary
number of Business-Concept instances. The Filter
instance associated with the Mapping instance speci-
fies which instances of a Business-Concept instance
qualify themselves for the mapping, i.e. which
instances logically „belong“ to the particular Dimen-
sion-Category instance6. In the example of Figure 8,
Insurance-Claim is a Business-Concept instance, and
3Q98 a Dimension-Category instance representing the
3rd quarter of the year 1998. With a Mapping instance
between Insurance-Claim and 3Q98 and a Filter
instance with predicate in-interval(occurred-at, 7/1/
1998, 9/30/1998), we would represent that exactly
those insurance claims belong to 3Q98, for which the
value of the occurred-at attribute (declared in the super
concept Insurance-Event) lays between 7/1/1998 and
9/30/1998.

• If there is no filter associated with the mapping, this
means that all instances of the source business con-
cepts belong to the dimension category.

• Business-Concept ↔ Fact-Attribute: In a similar man-
ner, aggregation interdependencies between data cubes
and business concepts are represented. Therefore, we
use the classes Aggregation and Function of Figure 4,
which represent an aggregation as follows:

• An Aggregation instance connects exactly one Fact-
Attribute instance with an arbitrary number of Attribute
instances (of Business-Concept instances). The Func-
tion instance associated with the Aggregation instance
specifies how the attribute values are aggregated (e.g.
by calculating the sum or average of the values of an
attribute). A Filter instance is not necessary, as the
Mapping and Filter instances between the Business-
Concept instances and the Dimension-Category
instances already specify which Business-Concept
instances and therefore which attribute values consti-
tute the source for the aggregation.

4.3.3 Semantics of Business Concept ↔ Data Cube
Interdependencies

The semantics of mapping and aggregating business con-

6. The instances of a Business-Concept instance
correspond to the tuples of a relational table. A
particular relational table Contracts is an instance i
of Physical-Entity with i.name = „Contracts“. The
„instances“ of this Physical-Entity are the tuples.

R. Müller, Th. Stöhr, E. Rahm 12-12

cepts to a data cube can be best illustrated with an example
obtained from Figure 8. Let us assume a business user
wants to know the sum of payments for all insurance
claims w.r.t. accident insurances (Product dimension) for
the 3rd quarter of 1998 (Time dimension), where small
children were damaged (Insured-Person dimension). The
Mapping and Aggregation instances represent the aggrega-
tion interdependencies in the following way:

• W.r.t. the Dimension-Category instance 3Q98, those
instances of the Business-Concept instance named
Insurance-Claim, which took place between 7/1/1998
and 9/30/1998, are affected.

• W.r.t. the Dimension-Category instance for small chil-
dren (of the Insured-Person dimension), all insurance
claims where the damaged person is not older than 6
years, are affected. This is formally specified by the
path expression Insurance-Claim→because-of-dam-
age→damaged-object→age within the associated Fil-

ter instance. In case that the insurance claim does not
affect a person (with the consequence that the damaged
object does not provide an age attribute), the predicate
evaluates to FALSE, so that the particular insurance
instance claim is not considered.

• W.r.t. the Dimension-Category instance called Acci-
dent-Insurances, a filter specifying that only insurance
claims related to accident insurance contracts has to be
considered. This Filter instance with the necessary path
expressions is not shown in Figure 8. It has a structure
analogous to the Dimension-Category instance for
small children above.

• Then, the set of the affected Insurance-Claim instances
is the intersection of the three sets above. With this
intersection, the sum of all payed-sum values can be
performed according to the Aggregation instance.

Figure 7: UML schema for concepts and multidimensional data from the business point of view (see text for details).
Data-Cube, Dimension and Dimension-Category are subclasses of Entity. Fact-Attribute is a subclass of Attribute,
and therefore inherits the name and type attribute (these UML inheritance relationships are omitted in this Figure).
The dashed rectangles and arrows denote classes and associations already defined in the shared model of section 4.1.

Data-Cube

name: String
description: String

Dimension

name: String

1..*

1

Dimension-Category

name: String

1..*

2..n

1

Fact-Attribute

1..*

1

1..*

Mapping

 Name: String
 description: String

Aggregation

1

has-subconcepts

has-subparts

Entity

name: String

Attribute

name: String
type: String

1

1

0..*

0..*

0..*

1 0..*

Business-Concept

stores-facts

has-dimensions

1

has-category

divided-into

has-targets

1 Subpart-Role

Type: {Aggregation,
 Composition}
Card: {Set, No-Set}

0..*

has-attributes

description: String

has-sources

1

0..1

Function

function: Function

1

1
has-function

Filter
Name: String
predicate: Predicate

has-targets

has-sources

0..1

0..1

has-filter0..1

1

Filter
Name: String
predicate: Predicate

0..1

1

has-filter
involves-attributes

0..1

1..*

has-arguments

1..*

0..1

has-targets

0..1

1..*

involves-attributes

0..1

1..*

R. Müller, Th. Stöhr, E. Rahm 12-13

4.4 Interdependencies between Semantic and Techni-
cal Metadata and Ad-hoc query support

Semantic metadata only describe the contents of a ware-

house from the business point of view, but do not support
access to the physical data. Therefore, we also have to rep-
resent the dependencies between this business layer on one

Insurance-Product

Insurance-Concept

Property-InsuranceLiability-Insurance

...

...

...

Insurable-Object
Insurance-Event

Person Property

Person-Insurance

Life-Insurance Accident-Insurance Personal-Liability-Insurance Transport-Liability-Insurance

Motor-Vehicle-Liability-Insurance

...

Insurance-Contract

Insurance-ClaimDamage

Personal-Damage

Death Accident

...

Legend:

Concept-Name = instance of class Business-Concept with Business-Concept.name = "Concept-Name"

= instantiation of has-subconcepts association between Business-Concept instances

may-result-in

= graphical shortcut for representation of associations between business concepts (by using the
 the Entity/Association construct ; recall that Business-Concept is a subclass of Entity)

Time

Insured-Persons

Product

name="payed-sum"
type=Float

has-Attribute

Life-Insurances Accident-Insurances Liability-Insurances

divided-into
divided-into

...

...

covers

claims

has-dimension

has-dimension

Cube-Name

= instance of class Data-Cube with
 Data-Cube.name = "Cube-Name"

Fact-Attribute

name="sum-of-payments"
type=Float

stores-fact

Multidimensional Model

Conceptual Enterprise Model

3Q98 ...
divided-into

...

name="occurred-at"
type=Date

has-attribute

Filter

predicate=
in-interval(occurred-at, 7/1/1998,9/30/1998)

Name = instance of class Dimension or
 Dimension-Category

Mapping

has-filter

has-targets

has-sources

Small-Childs
divided-into

Filter

predicate=(Insurance-Claim->because-of-damage
->damaged-object->age < 6 years)

Mapping

has-filter

has-targets

has-sources

because-of-damage

damaged-object

...

Function

function=Σ

Aggregation

has-function

has-sources

has-targets

name="age"
type=unsigned

has-attribute

Figure 8: Instantiation of semantic metadata for an insurance domain. In the multidimensional model, a data cube for
claim payment is represented. The Mapping, Aggregation and Filter instances represent the connections of the data
cube components with the enterprise-related business concepts in the conceptual enterprise model (see text for
details).

R. Müller, Th. Stöhr, E. Rahm 12-14

side and the operational and data warehouse databases on
the other side. This type of mapping information can then
be used to translate ad-hoc queries on the semantic level
into SQL-queries accessing the physical data of the ware-
house. We sketch the usage of mappings and transforma-
tions between the technical and semantic layer in the
context of ad-hoc query translation by the following exam-
ple (see Figure 9):

Let as assume a business user wants to retrieve (the
contract numbers of) all profession incapacity insurance
contracts where an acute endocarditis7 has been a medical
problem in the biography of the insurance holder. The gen-
eration of the SQL-query accessing the relational base
tables MEDICAL-INSURANCES and MEDICAL-PROB-
LEMS storing the related data is done in the following
steps:

• First, the ad-hoc query specified at the user-interface is
translated into an intermediate OQL-oriented format.
OQL8 has been chosen, as it fits well into the object-
oriented data model of our business concept represen-
tation. The OQL notation of our ad-hoc example is:

select p.contract-number
from p in extension-of(Profession-Incapacity-Insur-
ance-Contract)
where exists e in p.has-subparts(Relevant-Medical-
Event): e.event = „ACUTE ENDOCARDITIS“

Herewith, extension-of represents the set of all
instances of the business concept Profession-Incapac-
ity-Insurance-Contract. The construct p.has-sub-
parts(Relevant-Medical-Event) refers to all instances of
the concept Relevant-Medical-Event which are related
to the instance p via the has-subparts association.

• Second, the query generator inspects the mappings
which have the two business concepts Profession-Inca-
pacity-Insurance-Contract and Relevant-Medical-
Event as targets. By doing this, it detects that the rela-
tional table MEDICAL-INSURANCES is the source
for the concept Profession-Incapacity-Insurance-Con-
tract (mapping „PII-Filter-Mapping“), and that the
table MEDICAL-PROBLEMS corresponds to Rele-
vant-Medical-Event (mapping „Event-Mapping“). Fur-
thermore, it is detected that a foreign key relationship
exists between the two tables, i.e. cono (for contract
number) as part of the compound key {cono, medical-
problem, date-of-occurrence} references the contract in
the MEDICAL-INSURANCES table.

• Third, by using the mapping „PII-Filter-Mapping“

specifying that the Profession-Incapacity-Insurance-
Contract represents exactly those MEDICAL-INSUR-
ANCES tuples where the insurance type is PII (for pro-
fession incapacity insurance), the query generator
generates an initial query fragment:

SELECT mi.cono
FROM MEDICAL-INSURANCES mi
WHERE mi.type=PII

• Fourth, by using the mapping „Event-Mapping“ and
the foreign key relationship association, the query gen-
erator joins the two tables MEDICAL-INSURANCES
and MEDICAL-PROBLEMS to achieve the part-of
semantics between the two concepts Profession-Inca-
pacity-Insurance-Contract and Relevant-Medical-
Event (new fragments underlined):

SELECT mi.cono
FROM MEDICAL-INSURANCES mi, MEDICAL-
PROBLEMS mp
WHERE mi.type=PII AND
mi.cono = mp.cono

• Fifth, the filter condition w.r.t. the medical event (acute
endocarditis) completes the query:

SELECT mi.cono
FROM MEDICAL-INSURANCES mi, MEDICAL-
PROBLEMS mp
WHERE mi.type=PII AND
mi.cono = mp.cono AND
mp.medical-problem=„ACUTE ENDOCARDITIS“

This query is then processed on the relational tables.

5 Summary and Outlook
We have introduced an UML-based model for data ware-
house metadata as a base for a data warehouse repository.
The overall goal is to cover technical and semantic meta-
data relevant for warehouse environments. The model con-
tains a number of generic classes such as Entity,
Association, Mapping and Transformation for the repre-
sentation of structures required both w.r.t. technical and
semantic metadata. In the technical context, adaptations of
these classes can be used to structurally describe table
structures or record types of operational data bases, the
data warehouse and OLAP databases. Furthermore, using
the classes Mapping and Transformation we can describe
the data movement processes from the operational sources
to the warehouse and the OLAP databases. In the semantic
context, we use specializations of these classes to represent
business concepts and business-oriented views of data
cubes. In this context, Mapping and Transformation
instances describe the dependencies between business con-
cepts and elements of a data cube such as dimensions,
dimensions categories, and fact attributes. The Mapping
and Transformation classes are also used to represent the

7. Inflammation of the heart muscle. Insurance holders
who suffered from this disease in the past usually
have to pay a significant extra charge for their
medical insurances.

8. OQL = Object Query Language of the ODMG

R. Müller, Th. Stöhr, E. Rahm 12-15

dependencies between business concepts on one side and
the tables and records containing the physical data for
these business concepts on the other side.

By using an object-oriented modeling approach, the
UML schemata can easily be extended to cover metadata
types currently not addressed. For example, additional spe-
cializations of Entity (such as Rule) and Association could
be introduced to address metadata related to an enterprise
knowledge model.

We are currently implementing a repository prototype
based on this model with the object-relational database
management system INFORMIX. As a future goal w.r.t.
technical metadata, the repository should not only store a
„read“ extract of technical tool metadata, but should also

support the re-definition of metadata and the propagation
of re-defined metadata to the affected tools. This is useful,
as the model we described in this paper provides a uniform
view on different types of metadata, and abstracts from
tool specific proprietary details. Redefined metadata shall
then automatically be transformed to tool specific execut-
able formats.

 Furthermore, we will investigate how to comprehen-
sively support queries at the semantic level by providing
an automatic translation to query programs at the data
warehouse level.

Figure 9: Mappings between the technical layer of relational tables and business concepts. These mappings can be
used for translating ad-hoc queries on business terms into executable SQL queries operating on the data warehouse
tables (see text for a query generation example).

MEDICAL-PROBLEMS

cono medical-problem date-of-
occurrence

status monthly-
extra-

charge ($)

109996 ACUTE
ENDOCARDITIS

JULY 1994 CURED 20

109996 FRACTURE-OF-
FEMURE

DEC 1990 CURED 0

...

Profession-Incapacity-
Insurance-Contract

MEDICAL-INSURANCES

cono pno type {PII, HI, NCI}

109996 67344 PII ...

196856 67344 NCI ...

...

Instance of class
Physical-Entity

with Entity.Name =
„MEDICAL

INSURANCES“

Instance of class
Business-Concept

with
Business-Concept.Name =

„Profession-Incapacity-
Insurance-Contract“

PII-Filter-MappingPII-Filter-Mapping

F-TransformationF-Transformation

name = ‚F-Filter‘
predicate = (type = PII)

name = ‚F-Filter‘
predicate = (type = PII)

has-source

has-target

uses-
transformations

Relevant-
Medical-Event

Subpart-Role
Type: Aggregation
Card: Set

name = occurred-at
type = Date

name = occurred-at
type = Date

name = event
type = String

name = event
type = String

has-
attributes

has-subparts

Event-MappingEvent-Mapping

has-source

has-target

Legend:

Instance-NameInstance-Name = instance of classes with <Classname> from Mapping
 or Transformation <Classname>.name = „Instance-Name“

= association instance = composition instance = attribute mapping

Foreign-Key-
Association

PII = profession-incapacity-insurance
HI = health insurance
NCI = nursing care insurance

R. Müller, Th. Stöhr, E. Rahm 12-16

References

[BB+99] Bernstein, P.A.; Bergstraesser, T.; Carlson,
J.; Pal, S.; Sanders, P.; Shutt, D.: Microsoft
Repository Version 2 and the Open Informa-
tion Model. Information Systems 24(2),
1999.

[BB99] Bernstein, P.A.; Bergstraesser, T.: Meta-
Data Support for Data Transformations
Using Microsoft Repository. IEEE Data
Engineering Bulletin, March 1999, vol.
22(1): 9-16.

[BH98] Becker, J.; Holten, R.: Fachkonzeptuelle
Spezifikation von Führungsinformationssys-
temen (Conceptual Specification of Man-
agement Information Systems.
Wirtschaftsinformatik, vol. 40(6), 1998:
483-492.

[CGL+98] Calvanese, D.; De Giacomo, G.; Lenzerini,
M.; Nardi, D.; Rosati, R.: Source Integration
in Data Warehouses. DWQ Technical
Report 1998.

[FS98] Fowler, M.; Scott, K.: UML distilled: apply-
ing the standard object modeling language.
Addison Wesley, Reading, Mass., 1998.

[GMR98] Golfarelli, M.; Maio, D.; Rizzi, S.: The
Dimensional Fact Model: a Conceptual
Model for Data Warehouses. International
Journal of Cooperative Information Sys-
tems, vol. 7(2&3), 1998:215-247.

[Hol99] Holten, R.: A Framework for Information
Warehouse Development Processes. In:
Becker, J.; Grob, H. L.; Müller-Funk, U.;
Klein, S.; Kuchen, H.; Vossen, G.: Working
Reports of Institut für Wirtschaftsinformatik
Nr. 67, Münster 1999.

[JGJ+95] Jarke, M.; Gallersdörfer, R.; Jeusfeld, M.A.;
Staudt, M.; Eherer, S.: ConceptBase - a
deductive object base for meta data manage-
ment. Journal of Intelligent Information Sys-
tems (Special Issue on Advances in
Deductive Object-Oriented Databases), vol.
4(2), 1995: 167-192.

[JQJ98] Jeusfeld, M.A.; Quix, C.; Jarke, M.: Design
and Analysis of Quality Information for
Data Warehouses. In Proc. 17th Interna-
tional Conference on Conceptual Modeling
(ER'98), Singapore, Nov 16-19, 1998.

[KQS+98] Katic, N.; Quirchmayr, G.; Schiefer, J.;
Stolba, M.; Tjoa, A M.: A Prototype Model
for Data Warehouse Security Based on
Metadata. Proceedings DEXA 98.

[MC98] Metadata Coalition: Metadata Interchange
Specification, Vers. 1.1, Aug. 1998 http://
www.mdcinfo.com/standards/toc.html.

[Wie98] Wieken, J.-H.: Meta-Daten für Data Marts
und Data Warehouses. In: Mucksch, H.;
Behme, W. (Hrsg.): Das Data Warehouse-
Konzept, Gabler, Wiesbaden, 1998: 275-
315.

[Wie99] Wietek, F.: Modelling Multidimensional
Data in a Dataflow-Based Visual Data
Analysis Environment. Proceedings 11th
Conference on Advanced Information Sys-
tems Engineering (CAiSE*99), Springer,
1999.

