
Entity Search Strategies for Mashup Applications
Stefan Endrullis, Andreas Thor, Erhard Rahm

University of Leipzig
Leipzig, Germany

{endrullis,thor,rahm}@informatik.uni-leipzig.de

Abstract—Programmatic data integration approaches such as
mashups have become a viable approach to dynamically integrate
web data at runtime. Key data sources for mashups include entity
search engines and hidden databases that need to be queried
via source-specific search interfaces or web forms. Current
mashups are typically restricted to simple query approaches
such as using keyword search. Such approaches may need a
high number of queries if many objects have to be found.
Furthermore, the effectiveness of the queries may be limited,
i.e., they may miss relevant results. We therefore propose more
advanced search strategies that aim at finding a set of entities
with high efficiency and high effectiveness. Our strategies use
different kinds of queries that are determined by source-specific
query generators. Furthermore, the queries are selected based
on the characteristics of input entities. We introduce a flexible
model for entity search strategies that includes a ranking of
candidate queries determined by different query generators. We
describe different query generators and outline their use within
four entity search strategies. These strategies apply different
query ranking and selection approaches to optimize efficiency and
effectiveness. We evaluate our search strategies in detail for two
domains: product search and publication search. The comparison
with a standard keyword search shows that the proposed search
strategies provide significant improvements in both domains.

I. INTRODUCTION

Many web applications require the dynamic querying of
domain-specific web sources such as entity search engines or
hidden databases of the deep web. For example, queries to
Google Product Search or Amazon can be used to determine
the price or other features for products of interest. Such
queries are especially relevant for many types of mashups that
combine query results and other kinds of data from different
sources. Mashups typically implement interactively executed
data integration workflows consisting of steps for data acqui-
sition (querying, result extraction), data transformation and
matching, analysis and visualization. The easy development
of mashups is supported by many frameworks and prototypes,
including Yahoo pipes1, Deri Pipes [1], Mashmaker [2], and
Mash-o-matic [3].

Current mashups are still limited to rather simple integration
tasks involving relatively small amounts of data. Query access
to data sources or search engines is typically based on simple
keyword searches that may provide limited result quality or
need many queries to find all results of interest. Such simple
queries do not exploit the advanced (domain-specific) search
facilities provided by current entity search engines.

1http://pipes.yahoo.com/

Fig. 1. Motivating example of a query strategy that employs three queries for
finding all relevant entities (O1-O5) for a given set of input entities (I1-I5).

Motivating example: Assume a user is interested in buying
a new digital photo camera. She has already identified 5
candidates (I1-I5, see Figure 1) and wants to find correspond-
ing entities using an entity search engine such as Amazon
or Google Product Search. A simple approach would be to
use a keyword query on the name of every camera resulting
into five queries. This results in a relatively high number of
queries that may not necessarily return relevant results for all
cameras. Alternatively, we may use a series of different queries
to iteratively improve the query results. Since all cameras in
the example are from Canon we might first submit a query
manufacturer:Canon. Such a query can, in principle, find all
products of interest but is likely to also retrieve many irrelevant
products manufactured by Canon. In our example, the query
retrieves three relevant entities (O1-O3) and five irrelevant
(O6-O10). We may then send additional queries using the
UPC (universal product code) information if available. In the
example, we assume that I4’s UPC is known so that the
corresponding query can precisely return the corresponding
entity O4. For the remaining entity I5 another query can be
issued, e.g. using the product name and the manufacturer name
(Canon 30D). The query result contains the product of interest
(O5) but also other products, e.g., accessory products for the
camera in question. In total, we need only three queries instead
of five keyword queries. Furthermore, the diverse queries may
improve the quality of the search result by finding relevant
information on more cameras.

The example illustrates a common task in web data in-
tegration applications that we address in this paper: finding
a set of given entities at an entity search engine with high
efficiency (few queries) and high effectiveness (e.g. good
recall). The specific entities to be searched for may be in-
teractively determined by a mashup user based on previous
searches. There may also be a predetermined set of entities that
should be evaluated at certain points of time, e.g. to determine

the current prices for a set of products or to determine
the current citation counts for a set of papers. Determining
the most effective and efficient set of queries for a set of
entities is a challenging problem since entity search engines
typically provide many advanced search predicates and other
query options. Furthermore, the complexity increases with the
number and heterogeneity of input entities to be found.

To solve this problem we advocate for the use of so-
called search strategies to automatically determine the most
promising queries. We use a set of search engine-specific query
generators to determine relevant queries and rank these queries
according to different criteria. Queries are either executed in
parallel or iteratively until the entities have been found or
a certain number of queries has been executed. Choosing
different kinds of query generators and ranking approaches
permits a high flexibility to deal with diverse sets of input
entities and to deal with different entity search strategies.

Our specific contributions are as follows:
• We introduce a framework for entity search strategies that

utilize multiple query generators for improved efficiency
and effectiveness. The framework supports different ap-
proaches for ranking and selecting candidate queries
determined by different query generators.

• We propose four specific search strategies that use dif-
ferent kinds of information for query ranking and selec-
tion. The simplest approach is to execute all determined
queries in parallel. A sequential strategy uses a predeter-
mined order among query generators. Another strategy
ranks queries according to their estimated number of
covered input objects. The most sophisticated approach
utilizes knowledge from previous query executions.

• We provide a detailed evaluation of our search strategies
for two domains: product search and publication search.
We propose new measures to determine the effectiveness,
efficiency, and cost-effectiveness of search strategies. We
use these measures to analyze the introduced search
strategies and compare them with a basic keyword search
approach.

The rest of the paper is organized as follows. The next
section provides an overview about the new framework for
entity search. We then explain the concept of query gener-
ators and introduce different kinds of such query generators
(Section III). In Section IV we describe four search strategies,
in particular their approaches for query ranking and selection.
A detailed evaluation of query generators and search strategies
is presented in Section V. We review related work (Section VI)
before we conclude.

II. ENTITY SEARCH FRAMEWORK

We propose an entity search framework for efficient and
effective retrieval of web entities that match a given set of
input entities. The framework is able to execute the most
promising queries adaptively out of a large set of queries
(constructed by so-called query generators) by analyzing query
results in an iterative way.

Fig. 2. Amazon’s advanced search interface for Books

Our framework assumes that web entities can be acquired by
corresponding queries to an entity search engine (ESE). An
ESE is restricted to a specific entity type (e.g., products) and
supports a set of search predicates which allow for a struc-
tured search over the underlying (“hidden”) entity database.
Most commonly, the interface of an ESE is an HTML form
consisting of one or more input fields where each input field
is assigned to a predicate. For example, Figure 2 shows a
screenshot of Amazon’s advanced search form for books. The
interface provides a free search predicate Keywords as well
as specific search predicates for authors, title, publisher, and
product-specific identifiers such as ISBN.

Figure 3 illustrates the schematic workflow of our entity
search framework. The input is a set of entities I of the same
type (e.g., product, publication, or person) for which matching
web entities should be found. The output is therefore a match
result, i.e., pairs (i, w) representing correspondences between
input entities i ∈ I and retrieved web entities w ∈W .

The workflow has three consecutive phases: query gener-
ation, query ranking, and query selection followed by query
execution and entity matching.

During the query generation phase the input entities I are
input to a set of query generators. Each query generator
generates one or more search queries for the input entities.
The goal is that the corresponding query results match the
input entities as good as possible, i.e., it aims to find the
maximal number of input entities (high recall, i.e., all relevant
entities appear in the result) at a good precision (few irrelevant
results). To reduce the number of queries and thus improve
performance, query generators may try to find multiple entities
simultaneously with one or few queries. For example, it is
more efficient to pose one query returning all relevant results
for 10 input entities than to use 10 queries each returning only
one relevant result entity. The output of each query generator
is a set of pairs (q, I ′) where q denotes a generated query
and I ′ ⊆ I represents the set of covered input entities, i.e.,
entities that are supposed to have matching counterparts in q’s
query result.

Fig. 3. Schematic workflow of an adaptive search strategy to search for given input entities

For our framework we assume the existence of query
generators that are constructed beforehand, e.g., by a domain
expert that is familiar with the ESE. Query generators usually
utilize the capabilities of ESEs to generate a certain kind
of queries for a given set of entities. They can implement
similar strategies to the ones used by humans to quickly find
certain entities. For example, since the ISBN unambiguously
identifies a book, searching for a set of ISBN’s (if available)
is an efficient and precise approach to retrieve a set of books
using Amazon’s search interface (Figure 2). Alternatively, a
specific book can be searched using the authors’ names and
some significant keywords from the title. Further examples
will be discussed in the next section as well as in the evaluation
section.

Query generators are orchestrated by a search strategy that
determines not only what queries will eventually be executed
but also their execution order. We will outline search strategies
in Section IV. However, the quality of the underlying query
generators has a significant impact on the effectiveness and
efficiency of the search strategy and a search strategy may
only employ some of the available query generators (e.g., due
to manual specification or automatic selection; see Section IV).
A search strategy basically controls the second and the third
phase of the workflow.

The resulting queries of the query generators are ranked dur-
ing the second phase. To this end a scoring function is applied
to estimate the efficiency and effectiveness for every query
individually. Scoring functions may take diverse information
into account as will be discussed in Section IV. For example,
queries may be ranked according to the number of entities
they cover to give preference to queries that are likely to
return many relevant results. Advanced approaches can employ
background knowledge from previous query execution results
to derive an average cost-effectiveness per query generator. For
example, a query generator that utilizes entity-specific codes
(e.g., UPC for products) is probably more effective than a
simple keyword-based generator because the latter is likely to
return many irrelevant results.

The last phase is the query selection (and execution), i.e.,
an selection strategy targets an efficient approach to find
all relevant web entities with a minimal number of queries.

To this end a selection strategy specifies the order in which
available queries are selected and executed, respectively. The
selection is not only based on the ranked list of queries
but also adapts to the actual query results. For example, if
an input entity is not found by an initial query or if we
want to find additional entity representations (near-duplicates,
e.g. product offers from different merchants) further queries
(from different query generators) can be issued to improve
the result. To support reasonable execution times, we can also
limit the number of queries by enforcing a maximal number
(maxTrials) of queries per input entity.

For their execution, queries are transformed into HTTP
requests of the corresponding ESEs. Since ESEs may limit
the number of results that can be retrieved with one request,
we also consider to retrieve further results by following next
links if provided. Thus, depending on the number of next
links to be followed, a query can lead to multiple search engine
requests.

Finally our framework assumes the existence of a reliable,
domain-specific entity matching approach to decide whether
two entities actually refer to the same real-world object. The
high importance and difficulty of the entity matching problem
has triggered a huge amount of research on different variations
of the problem (see [4], [5] for recent surveys). However, our
search framework considers entity matching as a “black box”.

III. QUERY GENERATORS

The first step towards finding input entities at an ESE com-
prises an appropriate search query generation. This task can
be performed by query generators which have been introduced
in [6].

A query generator takes as input a set I of entities of the
same type and generates queries for a specific search engine
so that the queries are likely to retrieve matching web entities
for I . The output of a query generator is a set of pairs (q, I ′)
where q denotes a generated query and I ′ ⊆ I represents the
set of covered input entities, i.e., entities that have been used
to derive q and are supposed to have matching counterparts
in q’s query result. Note that the generated queries of a query
generator do not necessarily need to cover all input entities
I . For example, entities with missing attributes may not be
considered if the query generator relies on these attribute

values. As we will see, the covered input entities I ′ can be
used for query scoring and selection, so it is important that
they are determined by the query generators for further use in
the search framework.

All generated queries correspond to the following general
entity search engine model. An entity search engine (ESE)
supports a set of m predicates p1, . . . , pm. Every predicate
typically corresponds to a condition in a search form. For
example, Amazon’s advanced book search (see Figure 2)
supports a general free text predicate (Keywords) as well as
specific search predicates, e.g., for authors and title.

A basic query q is a conjunction p1(v1) ∧ . . . ∧ pm(vm)
specifying a matching condition between each value vi and
predicate pi. Typically only a subset of the available predicates
is used in a query (i.e., a search value vi =⊥ is possible).
The conjunction of predicates is not necessarily interpreted
as a strict logical AND but the search result may actually
contain entities matching only some of the specified predicates.
Depending on the search engine capabilities, the search values
vi may represent a single value, a set of keywords, an exact
phrase, or a pattern utilizing wildcard symbols.

A query generator may apply an arbitrary algorithm to
generate basic queries. However, most query generators follow
a general pattern for constructing queries. First, the query
generator splits the input entities I into possibly overlapping
subsets I ′1, . . . , I ′k. One query is then generated for each subset
so that k queries are generated for the entire set I .

We distinguish between naı̈ve and frequent-value genera-
tors. A naı̈ve approach generates one query per entity by using
the entity’s attribute values as search values. This approach is
quite expensive but simple and applicable to all search en-
gines. In contrast, a frequent-value strategy aims at reducing
the number of queries by identifying search values covering
several entities. We use a variation of the well-known Apriori
algorithm [7] to determine common values in attributes, e.g.,
manufacturer, that occur in at least minSupport entities. The
entities covered by a frequent value set form a subset I ′j
for which one query is generated. Depending on the sets of
frequent values the input entities may thus be divided into
several subsets of variable size. More details on the realization
of frequent-value query generators can be found in [6].

For query construction the relevant attribute values of the
input entities are mapped to their corresponding search engine
predicates. The attribute-predicate mapping is usually deter-
mined beforehand, e.g., based on a manually or automatically
determined schema matching [8]. Different attributes may map
to the same predicate (e.g., the free search predicate) and,
in principle, an attribute may map to different predicates.
Different functions can be applied on the actual attribute values
to determine the predicate values. Common functions include
phrase generation (putting a string in quotation marks) or
keywords determination, e.g., by removing stop words from
a string. Further transformation functions may be specific to
a search engine.

Figure 4 shows the output of different query generators for
the same set of five input entities I1 through I5. The genera-

Fig. 4. Example queries generated by five different query generators for the
same set of input entities I1-I5

tors QG:Keyword and QG:UPC are naı̈ve generators whereas
QG:Manufacturer and QG:FrequentValue are frequent-value
generators. The number of generated queries varies from 1
(QG:Manufacturer) to 5 (QG:Keyword). Furthermore not all
query generators are capable to cover all input entities, e.g.,
QG:UPC can only be applied for 3 of the 5 entities due to the
missing UPC values for I2 and I5. The example queries also
illustrate the wide variety in the precision of query results. For
example, a QG:UPC query is likely to find a matching entity
(if it is in the web source) whereas a “Manufacturer” query
can return many irrelevant entities.

Furthermore the search engine may allow the disjunction
(OR combination) of basic queries. Combining several basic
queries is an important feature to reduce the overall number
of posed queries and thus to improve the efficiency of search
engine access. For example, consider QG:UPC-Combined
in Figure 4. This generator combines the basic queries as
generated by QG:UPC with OR. The (ESE-specific) query
generator takes into account that the overall number of basic
queries in a combined query is limited by the ESE, e.g., due
to size constraints for each predicate value. Assuming that at
least three UPC queries can be combined, QG:UPC-Combined
returns one query only.

IV. SEARCH STRATEGIES

After all query candidates have been generated, a search
strategy selects a subset of queries and determines their order
of execution. For example, a search strategy might avoid
executing queries for entities that have already been found
by a previous query if duplicates are not of interest. Search
strategies usually aim to find all relevant web entities with
a minimal number of queries, i.e., they usually analyze the

achieved query results for the selection of further queries.
Search strategies thereby strive for a good balance between
high efficiency (i.e., few queries) and high effectiveness (i.e.,
finding all entities).

To this end we propose four specific search strategies:
• Parallel: This naı̈ve search strategy executes all queries

of all available query generators.
• Sequential: This strategy executes queries according a

fixed order of query generators (as realized in our moti-
vating example shown in Figure 1).

• Optimistic: This search strategy executes queries accord-
ing to the number of covered entities and thereby prefers
queries with a large coverage over other queries.

• Pre-Evaluated: This sophisticated strategy executes the
most-promising queries based on the performance (i.e.,
effectiveness and efficiency) of previously executed
queries of the same query generator. The approach is
based on a preceding evaluation of the search results for
all query generators on a common training set of input
entities.

All search strategies employ a query scoring function and
a query selection method. The scoring function assigns a
query score to every query candidate. All queries are ranked
according their scores (in ascending order) and a selection
method then processes the ranking and filters the queries of
interest.

A. Query Scoring and Ranking

For query ranking a scoring function is applied to estimate
the effectiveness and efficiency for every query individually.
The queries’ scores will be used to provide a ranked list of
query candidates for the subsequent query selection. Recall
that query generators return pairs (q, I ′) of a query q and a
set of covered input entities I ′. The score value for a query
q can therefore be based on q’s query generator (QG) and/or
the covered entities (E). We therefore distinguish between four
classes of scoring functions:
• QG: The query score solely depends on the query’s

generator, i.e., all queries of the same query generator
receive the same score value. This approach basically is
employed by the sequential strategy and defines the order
in which the query generators should be applied. Our
motivating example (see Figure 1) is of this type where
the user first employs the manufacturer information, then
the UPC, and finally title keywords. The scoring function
would assign all queries of QG:Manufacturer a score of 1.
All queries of QG:UPC are assigned a score of 2 and all
queries of QG:Keyword receive a score of 3. In general,
the query generator scoring can be provided manually by
a domain expert or automatically, e.g. based on the query
generator performance in previous evaluations.

• E: This strategy does not take into account the query
generator but only looks at the set of covered entities.
For example, the optimistic search strategy ranks queries
based on their number of covered entities. The underlying

assumption is that the query will eventually retrieve
corresponding web entities for all covered input entities.

• QG+E: This method combines both information, i.e., the
score of a query depends on the query generator and
the covered entities. Approaches of this type – like the
pre-evaluated strategy – may take into account how well
queries of the same generator have performed previously
for a similar number of entities.

• Uniform: This approach takes into account neither the
query generator nor the covered entities but assigns the
same score to all queries. This function is used by the
parallel strategy.

The ranking of the query candidates has a major impact on
the workflow of the search strategy. The ranking defines which
of the queries may be executed in parallel (queries with the
same score) or sequentially (queries with different scores).

B. Query Selection

After the query candidates have been ranked they are itera-
tively processed by the query selection function according
to their ranking. The selection groups together all query
candidates sharing the same score and processes these groups
iteratively (in ascending order of their score). In each iteration
all query candidates of the respective group are handed over
to the selection function which determines a subset of these
queries to be eventually sent to the ESE.

The iterative query execution has several advantages. First,
queries that have already been executed are eliminated (in
the case that different query generators produced the same
queries). Second, it allows for an iterative result improvement
since the ranking score reflects the effectiveness and efficiency
of queries. Mashup applications that employ search strategies
may therefore already present intermediate (or approximated)
results to the user while performing additional iterations in
the background. Third, the iterative model enables a search
strategy to be executed efficiently by considering previous
query results. In general, the query selection function may
take into account statistics about previously executed queries
and their results.

For a query candidate q and any entity i ∈ I ′ covered by q
the selection functions has to decide if q should be executed.
This selection process is controlled by three parameters:
• maxResults is the number of corresponding web entities

for i that is considered to be sufficient. For example, if
it is sufficient to find one web entity per input entity
(maxResults = 1, i.e., we are not interested in dupli-
cates) then the query selection avoids executing queries
that search for already found entities.

• maxTrials is the maximal number of queries that should
be executed to find i. A selection strategy can thereby
avoid to execute too many queries if the entity of interest
seems not to be in the web data source.

• The option favorDistinct forces the query selection to
give preference to diverse queries when searching for the
same entity i (if the maxTrials threshold has not yet
been exceeded). This can be achieved by rejecting queries

Algorithm 1: Search Strategy Execution
input : search strategy consisting of
• set of query generators G
• scoring function score
• selection properties: maxTrials, maxResults, favorDistinct

input : set of input entities I
output: aggregated match result M

1 allQueries←
⋃

g∈G g(I);
2 rankedQueries← rank(allQueries, score);
3 M ← ∅;
4 while rankedQueries 6= ∅ do
5 queries← pullTopWithSameScore(rankedQueries);
6 selected← ∅;
7 for (q, I′) ∈ queries do
8 g ← generator(q);
9 if ∀i ∈ I′ : i 6∈ processed(g),

10 trials(i) < maxTrials,
11 results(i) < maxResults then
12 if favorDistinct then
13 if ∀g′ ∈ G, g′ ∼ g : i 6∈ processed(g′) then
14 selected← selected ∪ {(q, I′)};

15 else
16 selected← selected ∪ {(q, I′)};

17 results← sendToESE(selected);
18 M ′ ← match(I′, results);
19 M ←M ∪M ′;

of the same or very similar query generators. As we
will see in the evaluation (Section V-E), this option can
avoid ineffective queries and thus improve performance.
Furthermore, it reduces the need to preselect suitable
query generators from a larger pool for use in search
strategies.

Algorithm 1 shows the pseudo-code of the query selection.
Based on a given ranking, all queries are processed iteratively
(while loop). In each iteration the top queries with the same
(lowest) score are taken from the stack of ranked queries and
further processed by the query select. A query passes the selec-
tion process only if all of its processed input entities satisfy the
conditions for maxTrials, maxResults and favorDistinct,
i.e., they did not yet exceed the maximal number of trials and
results and have not yet been processed (i /∈ processed(g′))
by another similar (g ∼ g′) query generator in case of the
favorDistinct option. The remaining queries are sent to the
ESE (e.g. in parallel), the query result is matched to the input
entities, and the overall match result is updated accordingly.

Figure 5 illustrates an example mode of action for all
proposed search strategies using the query generators shown
in Figure 4. The parallel strategy assigns the same score to all
queries and executes all 13 queries.

The sequential strategy implements the procedure of the
motivating example (see Figure 1). It employs only 3 out of
the 5 query generators and orders (scores) them as follows:
QG:Manufacturer (score=1), QG:UPC (2), and QG:Keyword
(3). In this example we are not interested in duplicates
(maxResult=1) which is why after the first query we elimi-
nate queries “upc1” and “upc3” (denoted by a score value in
parentheses) because the corresponding entities have already
been found (see Figure 1). Hence during the second iteration

Fig. 5. Illustration of the four different search strategies for input entities
I1-I5 using the query generators of Figure 4. The numbers in columns 4-7
denote the scores of corresponding queries. Scores in parentheses indicate that
the query does not pass query selection.

we only execute “upc4”. Similarly, the third iteration ignores
all but the last query for I5.

For the optimistic strategy we allow duplicates, i.e., we set
maxResult=2 to allow for up to two matching web entities
per input entity. The optimistic strategy basically orders the
query based on the number of covered entities. After the
execution of the first two queries, I1 and I3 have already been
found twice (I4 could not be retrieved by the manufacturer
query, see Figure 1). Hence only the query “Canon EOS” is
executed during the third iteration. Finally, all queries for I4
and I5 are executed during the last iteration (covered entity
size equals 1).

The pre-evaluated strategy ranks the queries as indicated in
Figure 5 based on previous query execution results. For this
strategy we set maxTrials=1, i.e., we send at most one query
per input entity. Therefore, after the first query (QG:UPC-
Combined) we are only searching for I2 and I5 which is why
query “Canon EOS” is the only other query to be executed
though it was initially ranked fourth.

V. EVALUATION

We evaluate the introduced query generators and search
strategies for two domains: product search and publication
search. We first describe how we measure the effectiveness
(quality) and efficiency of query generators and search strate-
gies. We then provide details about the experiment settings,
in particular the considered search engines (Amazon, Google
Scholar), the query generators as well as the chosen sets
of input entities. The evaluation starts with the comparative
analysis of selected query generators. We then evaluate the
new search strategies for different parameter settings and
compare them with a baseline approach using keyword queries
only.

A. Evaluation Measures

To evaluate query generators and search strategies we use
three measures: a quality (effectiveness) measure, an effi-

TABLE I
EVALUATION MEASURES FOR QUERY GENERATORS AND QUERY

STRATEGIES

Measure Global Local

Quality |domain(M)|
|I|

|domain(M)|
|I′|

Efficiency |domain(M)|
requests

|domain(M)|·|I|
requests·|I′|

ciency measure, and a combination of both to measure cost-
effectiveness. The measures can be used for search strategies
combining several query generators as well as for individual
query generators. However, certain query generators may only
be applicable for a subset of input entities, e.g. due to missing
values such as UPC or manufacturer. We therefore distinguish
between global and local versions of the measures. The global
measures relate to the set of all input entities, I , and are of
primary interest for entire search strategies but can also be
used for query generators. The local measures, on the other
hand, are only useful for evaluating query generators and relate
only to the subset of input entities I ′ that can be processed by
a query generator.

Table I gives the definitions of the global and local quality
and efficiency measures. In the formulae, M denotes the
aggregated match result containing all found entities that
match with input entities. Thus, domain(M) refers to the set
of input entities for which a matching entity could be found.
Moreover, requests represents the number of query requests
sent to the ESE. These requests include the original queries as
determined by the query generators as well as possible requests
to follow next links to obtain additional entities of larger
result sets.

The quality measures are recall-oriented and determine the
fraction of input entities that could be found at the ESE. Note
that the optimal value 1 cannot be achieved if the ESE does not
keep some of the input entities. We use rather comprehensive
ESEs for our evaluation to limit this effect. Also, the focus
here is more on a comparative evaluation of different search
strategies rather than maximizing the absolute quality values.
The efficiency measures determine the number of found input
entities per request. Hence, finding several input entities per
query allows efficiency values larger than 1.

Since we want to achieve both high quality and high
efficiency, we also determine a joint evaluation measure to
determine the cost-effectiveness of a query generator or search
strategy. We calculate this measure using a weighted harmonic
mean of the (global or local) quality and efficiency measures:

cost− effectivenessq,e =
q + e

q
quality + e

efficiency

In this study we set the weights q and e to 1, i.e. we use
the standard harmonic mean between quality and efficiency.
We can give preference to quality or efficiency by choosing
larger values for q than for e or vice versa.

TABLE II
SEARCH CAPABILITIES OF SELECTED ESES

Capability Amazon Google Scholar
Search predicates free, title, manufacturer,

min price, max price,
...

free, author, title,
published in, min year,
max year

Search values keywords, phrases keywords, phrases, pat-
terns

OR aggregation yes yes
Max. number of
results per request

10 100

B. Experiment settings

We evaluate our approaches for two entity search engines
from the e-commerce and bibliographic domains: Amazon’s
Product Advertising API for searching products and Google
Scholar2 for searching publications. Selected features of these
search engines are summarized in Table II. Both ESEs allow
searching using a free search predicate or by choosing among
several domain-specific search predicates such as (product)
manufacturer or (publication) author. Both search engines also
allow the OR aggregation (disjunction) of several simpler
queries (search predicates) within a combined query that can
help to improve efficiency. The maximal number of result
entities per query is restricted to only 10 for Amazon, and
to 100 for Google Scholar. For our evaluation, we found these
result sizes sufficient to pose only one request per query, i.e.,
we do not consider requests to follow next links. We have
evaluated the consideration of next links in [6].

Based on the available search capabilities we defined ten
query generators per search engine for use within search
strategies. The considered query generators are listed in Table
III and Table IV. For each query generator we show its
short name, type of query generator and a short descriptions
how search values are derived from the input entities. For
both ESEs we include all three types of query generators
introduced in Section III: naı̈ve, frequent-value, and use of
OR aggregation. For Amazon, all search values are mapped to
the free search predicate. For instance, the baseline approach,
kw, performs a free text search with keywords from the
product title, whereas pc tries to extract product codes (such
as PowerShot SX220) or at least parts of them from the
title. Note that some of specific query generators can likely
cover only a subset of the input entities, e.g. if they rely on
data such as UPCs or product codes. For Google Scholar, we
also utilize specific search predicates such as author or title.

For evaluating the query generators and search strategies
we use many different sets of input entities. As usual for data
integration applications, we obtain the input entities from data
sources different than the search engines. For the e-commerce
domain, we choose the entities from a collection of more than
114 thousand electronic product offers provided by a price
comparison portal. For the bibliographic domain, we obtain
the entities to be searched from the DBLP Computer Science

2http://scholar.google.com

TABLE III
QUERY GENERATORS FOR AMAZON

Name Type Search Values
kw naı̈ve title keywords
pw naı̈ve pure words from title (terms without digits and

punctuations)
pc naı̈ve product code from title

pcm naı̈ve product code from title + manufacturer name
f1 f. value 4 common title keywords

f1m f. value f1 + manufacturer name
f2 f. value 5 common title keywords
fv f. value f2 + manufacturer name
f3 f. value 1 common title keywords

upc OR aggr. up to 8 UPCs combined with OR

Bibliography3.
For the e-commerce domain we automatically generate ten

data sets of 30 products for each of the following three
categories:
• type: only products of the same product type
• manufacturer: products of the same manufacturer
• random: random collection of products
The products are selected so that 50% of them contain a

UPC; which is about the same share than in the full set of
product offers.

For the bibliographic domain, we also choose 30 data sets
evenly distributed among three categories:
• author: only publications of the same author
• venue: publications of the same journal or conference
• random: random collection of publications.
The specific categories are chosen to reflect common search

scenarios where input entities share some common property.
Some query generators, e.g. frequent value query generators,
might also be able to utilize the existence of dominating values
for attributes like manufacturer or author.

For each of the considered categories we use 5 data sets
for a pre-evaluation of query generators that is used by some
search strategies; the 5 remaining datasets are used for the
final evaluation of query generators and search strategies.

The matching between the input entities and search results is
performed by utilizing fine-tuned and manually verified match
approaches. For product matching we utilize the UPC, product
code and the title values. Publication matching is based on a
comparison of the authors, publication titles, and publication
years.

C. Evaluation of Query Generators

We first evaluate different query generators for the two do-
mains since they are the building blocks for search strategies.
In favor of readability, we focus on five of the ten query
generators per domain; their names are bold-faced in Table
III and Table IV.

Figure 6 and Figure 7 show the quality, efficiency, and
cost-effectiveness results of the Amazon query generators for

3http://www.informatik.uni-trier.de/∼ley/db/

TABLE IV
QUERY GENERATORS FOR GOOGLE SCHOLAR

Name Type Search Values → Predicate
kw naı̈ve title keywords → free
at naı̈ve first author → author; title keywords → title
aty naı̈ve all authors → author; title keywords → title; year

→ min year; year → max year
pa1 naı̈ve title pattern → title
ph1 naı̈ve title phrase → title
fa f. value 1 common author → author
ft f. value 1 common title keyword → author

faty f. value 2 common terms in authors, title, or year, mapped
to corresponding predicates

pa OR aggr. up to 10 title patterns combined with OR → title
ph OR aggr. up to 10 title phrases combined with OR → title

product search and the Google Scholar query generators for
publication search, respectively. For each query generator and
measure four bars are shown: the average results for the three
considered categories and the average over all categories and
input datasets. The half transparent bars in the figures illustrate
the local measures and the nontransparent bars the global ones.
For example, the local quality of the upc query generator in
Figure 6a is more than 0.8 meaning that more than 80% of the
input entities with an UPC could be found. However, the global
quality of this query generator is only half as high since only
half of the input products have an UPC. Other query generators
with significant differences between local and global measures
include pc, pcm and some frequent value query generators. For
query generators applicable to all input entities, the global and
local measures are the same.

We first discuss the result for the product query generators
(Figure 6). In terms of global quality, we observe that the
baseline query generator kw achieves the best result. Hence,
this makes it an excellent choice for maximizing the num-
ber of relevant search results and a strong competitor for
our search strategies. On the other hand, we see that some
specialized query generators like upc and pcm have higher
local quality indicating that they may be good choices for a
search strategy combining several query generators. There are
relatively small differences between the different categories
of input entities. The pcm query generator that is based on
product code and manufacturer values can achieve the best
local quality for category manufacturer (where all input entities
have a defined manufacturer value). For efficiency, the best
results by far (values of about 6) are achieved by the upc
query generator due to its OR aggregation of UPC values for
several products. By contrast, the efficiency of the naı̈ve query
generators is generally below 1. As a consequence, the upc
query generator achieves the best global efficiency and global
cost-effectiveness and can outperform kw in this respect. As
we will see, its performance can still be topped by some of
the search strategies exploiting multiple query generators.

The results for the bibliographic domain in Figure 7 show
that the baseline query generator, kw, achieves again the best
quality. It is a naı̈ve query generator which maps keywords
from the publication title to the free search predicate. The

 0
 0.2
 0.4
 0.6
 0.8

 1

kw pc pcm fv upc

query generator

(a) Quality

 0
 1.4
 2.8
 4.2
 5.6

 7

kw pc pcm fv upc

query generator

(b) Efficiency

 0

 0.4

 0.8

 1.2

 1.6

kw pc pcm fv upc

query generator

Manf.
Type

Random
overall

(c) Cost-effectiveness (q=e=1)

Fig. 6. Dataset-specific evaluation results for Amazon query generators

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

kw at fa faty pa

query generator

(a) Quality

 0
 1
 2
 3
 4
 5
 6
 7

kw at fa faty pa

query generator

(b) Efficiency

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

kw at fa faty pa

query generator

Author
Venue

Random
overall

(c) Cost-effectiveness (q=e=1)

Fig. 7. Dataset-specific evaluation results for Google Scholar query generators

frequent value query generators show unstable quality and effi-
ciency results for different input categories. The best efficiency
of more than 6 is achieved for the author category and the fa
query generator that can find many relevant publications by
a single author query. The best cost-effectiveness is achieved
by the pa query generator that utilizes OR aggregation of title
patterns. Such patterns are supported by Google Scholar and
allow using only substrings of titles with wildcard characters
(*) for insignificant parts. For instance, "Evaluation *
* Generators * * Engines" would be a valid title
pattern to query for [6]. Up to 10 such title patterns are
aggregated in a disjunctive query; the query size limit of 256
characters is also observed. The efficiency results indicate that
on average about 3 publications are found per pa query.

In summary, the results show that there are big quality
and efficiency differences between query generators. While
naı̈ve approaches can achieve good quality they suffer from
poor efficiency. OR aggregation is highly efficient but typ-
ically limited to rather short queries. Frequent value query
generators may achieve good efficiency but are restricted to
specific categories of input data. We therefore see the need
for search strategies combining several query generators and
automatically choosing the most suitable queries.

D. Evaluation of search strategies and maxTrials

We now comparatively evaluate the search strategies intro-
duced in Section IV for both domains. For both search engines
we use all ten query generators for query generation and use
the input datasets of all categories. For the sequential search
strategy, we apply the query generators according to their
previously determined local efficiency, i.e., queries of more
efficient query generators are executed first. We only look for
one matching result per input entity (maxResults = 1) and
apply the favorDistinct option.

Figure 8 and Figure 9 show the quality, efficiency and cost-
effectiveness of the search strategies for Amazon and Google
Scholar, respectively. As baseline approaches we include the
results for the previously introduced keyword query generators
kw. We compare the strategies for different values of the
maxTrials parameter that determines the maximal number of
search trials per input entity. Increasing the number of queries
by using higher maxTrials values is likely to decrease
efficiency but can help finding more entities thereby improving
quality.

We first discuss the results for the Amazon product search
engine (Figure 8). In terms of quality, we observe that the
baseline query generator kw is clearly outperformed by all
new search strategies. The best possible quality is achieved
by the parallel search strategy par which is, like kw, inde-
pendent of maxTrials since it submits all generated queries
(subject to the elimination of redundant queries due to the
favorDistinct option). The sequential (seq), optimistic (opt)
and pre-evaluated (pe) strategies can achieve about the same
good quality for maxTrials = 2 indicating an effective
ranking and query selection. Even for maxTrials = 1, seq
and pe achieve already surprisingly good results. By contrast,
the optimistic approach depends on more than one query per
input entity (maxTrials > 1), apparently since not all queries
return the entities they are meant to cover.

With respect to efficiency, the new search strategies (except
parallel) outperform the baseline approach even to a larger
degree. As expected their efficiency drops with increasing
values of maxTrials but remains ahead of kw. The paral-
lel search strategy is not competitive and serves only as a
reference point for the best quality in our evaluation. The
best cost-effectiveness is achieved for the two strategies seq
and pe for maxTrials = 1. They both use knowledge about
the query generator performance from previous executions.
The simpler optimistic strategy achieves a comparable cost-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

maxTrials

kw
par
seq
opt
pe

(a) Quality

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5

maxTrials

(b) Efficiency

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5

maxTrials

(c) Cost-effectiveness

Fig. 8. Evaluation results for search strategies for Amazon subject to maxTrials

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5

maxTrials

kw
par
seq
opt
pe

(a) Quality

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 2 3 4 5

maxTrials

(b) Efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5

maxTrials

(c) Cost-effectiveness

Fig. 9. Evaluation results for search strategies for Google Scholar subject to maxTrials

effectiveness for maxTrials > 1. Hence, all three advanced
search strategies can successfully combine different queries to
achieve significantly improved quality and efficiency over the
baseline approach.

The results for Google Scholar (Figure 9) largely confirm
the observations for Amazon. Here, the baseline approach
is very effective and achieves already near-perfect results,
i.e., almost every query returns the respective publication.
The advanced search strategies can achieve the same high
quality for maxTrials values of 2 and 3. On the other
hand, the efficiency advantage of the search strategies over
the baseline approach is much more pronounced due to the
combined use of efficient query generators. The best cost-
effectiveness is again achieved by the seq and pe strategies,
here for maxTrials = 2.

E. Effect of query generator selection
The results presented so far used all query generators and

the seq and pe strategies utilized knowledge about the relative
performance of different query generators. We performed two
experiments to analyze the dependency on such previous
knowledge and to see whether our approaches suffer from
having to consider all query generators instead of only a subset
with the most cost-effective ones.

In the first experiment we compare the cost-effectiveness
of two sequential search strategies for the Amazon search
engine called seq1 and seq2 (see Figure 10). seq1 is the
previously studied strategy that utilizes a pre-optimized order
of query generators. It turned out that a successful ordering
can be found by ranking query generators (and their queries)
according to their local efficiency determined for training data
sets beforehand (the first query generator is upc, followed by

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

maxTrials

seq1 seq2

Fig. 10. Cost-effectiveness of two sequential search strategies, one optimally
ranked query generators and one with the reversed ranking

some frequent value query generators and later naı̈ve query
generators). For strategy seq2 we simply reversed the order,
i.e., we start with the least efficient query generator. The results
in Figure 10 show that, as expected, seq2 performs much
worse than seq1 since it requires many more queries to find
the input entities. seq2 needs higher values for maxTrials to
eventually find the entities but the increased query overhead
prevents that a sufficient cost-effectiveness can be reached.
The experiment underlines the value but also the dependency
on pre-evaluations of query generators.

Given the quality and efficiency differences between query
generators it seems promising to restrict search strategies to
a preselected subset of the most promising query generators.
In our framework we did not want to introduce this additional
tuning complexity and therefore aim at an automatic removal
of ineffective queries. This is controlled by the favorDistinct
option that leads to ignoring queries that are highly similar

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5 6 7 8 9 10

#query generators

with favorDistinct
without favorDistinct

Fig. 11. Cost-effectiveness of optimistic search strategies for an increasing
number of query generators (Amazon product search)

to already executed queries and therefore unlikely to iden-
tify additional results. For example, the pc query generator
searches for the product code of a product while the pcm query
generator searches for both the product code and manufacturer.
If a product has already been searched by one of these query
generators, we avoid a query by the other query generator that
also uses product code information. In our implementation we
group the query generators into disjoint sets of similar query
generators based on their used attributes. We then drop queries
for entities that have already been queried by a similar query
generator.

We evaluate the usefulness of the favorDistinct option
for optimistic search strategies and the Amazon search en-
gine. Figure 11 shows how the cost-effectiveness for both
strategies (with and without this option set) evolves when we
successively increase the number of query generators from
1 to 10. The first four query generators we add are not
similar to each other so that the same results are achieved.
Hence, favorDistinct affects only the last part of the curves
(from 5 to 10 query generators). Here we can see that the
cost-effectiveness of the search strategy not skipping similar
queries declines with more query generators, whereas the
other strategy can even improve or maintain the best cost-
effectiveness. Hence, we see that the favorDistinct option
works as desired and allows us to keep all query generators (or
add more). This highly desirable behavior was also observed
for the other search strategies and therefore applied per default.

F. Final comparison

We finally summarize the best results for the considered
search strategies. All results are based on the use of all query
generators, the favorDistinct option and maxResults = 1.
maxTrials was set to 2 for Google Scholar and when using
the optimistic search strategy; and to 1 otherwise.

The evaluation results of the introduced search strategies
are shown in Figure 12. The result show similar trends for
both domains despite that the absolute values are higher
for the bibliographic domain (Google Scholar). The parallel
search strategy was not meant to be a true competitor as its
many queries lead to poor efficiency and cost-effectiveness.

 0
 0.2
 0.4
 0.6
 0.8

 1

kw par seq opt pe

query strategy

(a) Quality

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

kw par seq opt pe

query strategy

(b) Efficiency

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

kw par seq opt pe

query strategy

Amazon Google Scholar

0.56 0.48

0.92 0.86 0.94
0.80

0.37

1.25
1.15

1.26

(c) Cost-effectiveness

Fig. 12. Evaluation results of selected search strategies

However, it illustrates the best possible quality and we can see
that for both domains the top quality can (almost) be achieved
by the alternate, more efficient search strategies seq, opt
and pe. These advanced strategies outperform the efficiency
and cost-effectiveness of the baseline search strategy kw in
both domains by about 50-70%. For the e-commerce domain
(Amazon) they could also clearly improve the result quality
of kw.

The cost-effectiveness is best for the sequential and pre-
evaluated search strategies. These approaches are close to-
gether and benefit from knowledge about the query generator
performance. The simpler optimistic approach does not depend
on a pre-evaluation of query generators but uses the simple
coverage information for ranking. Its cost-effectiveness is
less than 10% lower than for the other strategy making the
optimistic search strategy a good default approach.

VI. RELATED WORK

This work extends our preliminary work on query generators
[6] that deals with query generators for Google Scholar. The
present paper introduces the new concept of search strategies
that combine multiple query generators in order to find relevant
entities efficiently. New aspects include the proposed iterative
workflow model, several scoring functions for ranking query
candidates, and query selection techniques. The evaluation is
by far more extensive and considers two domains.

In [9] we presented a framework for the development of
data integration mashups. The framework consists of compo-
nents for query generation, online matching, and other data
transformations. A developer can then define data integration
data flows using a script language and can thereby realize
simple search strategies. As an example for such mashups we
introduced our Online Citation Service (OCS) that employs
three different query generators within a sequential search
strategy.

The capabilities to search for sets of entities at entity search
engines are still very limited in current mashup systems such
as Yahoo pipes or IBM Damia [10]. Those systems typically
perform entity search via simple keyword searches which may
result in a high number of queries and many irrelevant results.
Here our search strategies could be incorporated to increase
both the quality and the performance of search results.

In general, the automatic query generation for deep web
sources can be considered from two perspectives: crawling
the hidden web and virtual data integration. Different systems
for crawling the hidden web have been described in [11],
[12], and [13]. These systems automatically generate search
queries for deep web sources with the intent to download large
portions of hidden databases. The crawling process is usually
an iterative process, where new search queries are generated
based on previously retrieved search results. This has quite
some similarities to our work, since the task of generating
queries based on sets of values (or structured entities) is focus
of our work. However, while Deep Web crawling aims at
finding new/unknown information, our intention with search
strategies is to find a set of known entities more efficiently.

Virtual data integration approaches translate queries posed
against a global schema into sub-queries of the underlying web
sources at runtime. Meta search engines, such as MetaQuerier
[14], generate sub-queries based on the user input indepen-
dently from one another. In contrast to that, our approach is
instance-based, i.e., search engine queries are generated from
a set of entities instead of a user query. However, in both cases
the query generation or transformation has to take into account
the query capabilities of web sources.

Querying data sources with limited access capabilities has
been widely investigated in the literature. The automatic
extraction of ESE interfaces from web pages is part of the
discussions in [15], [16], and [17]. Together with schema
matching techniques [8] those methods could be used to
(partially) automate the process of building query generators
for ESEs which will be part of our future work.

Query capabilities of deep web sources are typically de-
scribed using binding patterns [18], [19]. Binding patterns can
be used to define what combinations of form elements may
be used to generate valid search queries and what limitations
regarding the domains of form elements have to be taken into
account. At the moment, defining query generators for search
strategies is a manual process and users have to take care of
the search capabilities themselves. In future, binding patterns
could support the process of building query generators by
ensuring the validity of their queries. Anyway, our objective
in this paper is to increase the efficiency of entity search.

VII. CONCLUSIONS

We presented and evaluated a new framework for adaptive
entity search that aims at finding entities that are given as
input with high quality and efficiency. The framework utilizes

multiple query generators per search engine and supports
several approaches to rank queries. Queries are iteratively
selected and executed to incrementally improve result quality
while limiting the total number of queries. We proposed four
specific search strategies and showed for two domains that
they can substantially outperform simple search approaches
based on keyword queries. The best cost-effectiveness can be
obtained if previous knowledge on the cost-effectiveness of
query generators is exploited for query ranking. But even the
relatively simple optimistic search strategy achieves already
very good results.

In future work we plan to further automate the search
framework by an automatic generation of query generators
rather than their manual creation by domain experts. We also
want to integrate the search framework in existing mashup
environments and mashup applications.

REFERENCES

[1] D. L. Phuoc, A. Polleres, M. Hauswirth, G. Tummarello, and C. Mor-
bidoni, “Rapid prototyping of semantic mash-ups through semantic web
pipes,” in WWW, 2009.

[2] R. J. Ennals and M. N. Garofalakis, “Mashmaker: mashups for the
masses,” in SIGMOD, 2007.

[3] S. Murthy, D. Maier, and L. Delcambre, “Mash-o-matic,” in DocEng ’06:
Proceedings of the 2006 ACM symposium on Document engineering,
2006.

[4] H. Köpcke and E. Rahm, “Frameworks for entity matching: A compar-
ison,” Data Knowl. Eng., vol. 69, no. 2, 2010.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record
detection: A survey,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 1,
2007.

[6] S. Endrullis, A. Thor, and E. Rahm, “Evaluation of query generators for
entity search engines,” in Workshop on Using Search Engine Technology
for Information Management (USETIM), 2009.

[7] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in VLDB, 1994.

[8] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” VLDB Journal, vol. 10, no. 4, 2001.

[9] A. Thor, D. Aumueller, and E. Rahm, “Data integration support for
mashups,” in Int. Workshop on Information Integration on the Web, 2007.

[10] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh,
“Damia: data mashups for intranet applications,” in SIGMOD Confer-
ence, 2008.

[11] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in
VLDB, 2001.

[12] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y.
Halevy, “Google’s deep web crawl,” PVLDB, vol. 1, no. 2, 2008.

[13] L. Barbosa and J. Freire, “Siphoning hidden-web data through keyword-
based interfaces,” JIDM, vol. 1, no. 1, 2010.

[14] B. He, Z. Zhang, and K. C.-C. Chang, “Metaquerier: querying structured
web sources on-the-fly,” in SIGMOD, 2005.

[15] Z. Zhang, B. He, and K. C.-C. Chang, “Understanding web query
interfaces: best-effort parsing with hidden syntax,” in SIGMOD, 2004.

[16] T. Kabisch, E. C. Dragut, C. T. Yu, and U. Leser, “A hierarchical
approach to model web query interfaces for web source integration,”
PVLDB, vol. 2, no. 1, 2009.

[17] H. He, W. Meng, C. T. Yu, and Z. Wu, “Wise-integrator: A system for
extracting and integrating complex web search interfaces of the deep
web,” in VLDB, 2005.

[18] A. Rajaraman, Y. Sagiv, and J. D. Ullman, “Answering queries using
templates with binding patterns,” in PODS, 1995.

[19] R. Yerneni, C. Li, H. Garcia-Molina, and J. D. Ullman, “Computing
capabilities of mediators,” in SIGMOD, 1999.

