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Abstract. The purely manual specification of semantic correspondences between 
schemas is almost infeasible for very large schemas or when many different sche-
mas have to be matched. Hence, solving such large-scale match tasks asks for au-
tomatic or semi-automatic schema matching approaches. Large-scale matching 
needs especially be supported for XML schemas and different kinds of ontologies 
due to their increasing use and size, e.g. in e-business, web and life science appli-
cations. Unfortunately, correctly and efficiently matching large schemas and on-
tologies is very challenging and most previous match systems have only addressed 
small match tasks. We provide an overview about recently proposed approaches to 
achieve high match quality or/and high efficiency for large-scale matching. In ad-
dition to describing some recent matchers utilizing instance and usage data, we 
cover approaches on early pruning of the search space, divide and conquer strate-
gies, parallel matching, tuning matcher combinations, the reuse of previous match 
results and holistic schema matching. We also provide a brief comparison of se-
lected match tools.  

1.   Introduction 

Schema matching aims at identifying semantic correspondences between metadata 
structures or models, such as database schemas, XML message formats, and on-
tologies. Solving such match problems is a key task in numerous application 
fields, in particular to support data exchange, schema evolution and virtually all 
kinds of data integration. Unfortunately, the typically high degree of semantic het-
erogeneity reflected in different schemas makes schema matching an inherently 
complex task. Hence, most current systems still require the manual specification 
of semantic correspondences, e.g. with the help of a GUI. While such an approach 
is appropriate for matching a few small schemas, it is enormously time-consuming 
and error-prone for dealing with large schemas encompassing thousands of ele-
ments or to match many schemas. Therefore, automatic or semi-automatic ap-
proaches to find semantic correspondences with minimal manual effort are espe-
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cially needed for large-scale matching. Typical use cases of large-scale matching 
include  

- Matching large XML schemas, e.g. e-business standards and message 
formats (Rahm et al. 2004, Smith et al. 2009)  

- Matching large life science ontologies describing and categorizing bio-
medical objects or facts such as genes, the anatomy of different species, 
diseases, etc. (Kirsten et al. 2007, Zhang et al. 2007) 

- Matching large web directories or product catalogs (Avesani et al. 2005, 
Nandi and Bernstein 2009) 

- Matching many web forms of deep web data sources to create a mediated 
search interface, e.g. for travel reservation or shopping of certain prod-
ucts (He and Chang 2006, Su et al. 2006). 

Schema matching (including its ontology matching variant) has been a very active 
research area, especially in the last decade, and numerous techniques and proto-
types for automatic matching have been developed (Rahm and Bernstein 2001, 
Euzenat and Shvaiko 2007). Schema matching has also been used as a first step to 
solve data exchange, schema evolution or data integration problems, e.g. to trans-
form correspondences into an executable mapping for migrating data from a 
source to a target schema (Fagin et al. 2009). Most match approaches focus on 2-
way or pairwise schema matching where two related input schemas are matched 
with each other. Some algorithms have also been proposed for n-way or holistic 
schema matching (He and Chang 2006), to determine the semantic overlap in 
many schemas, e.g. to build a mediated schema. The result of pairwise schema 
matching is usually an equivalence mapping containing the identified semantic 
correspondences, i.e. pairs of semantically equivalent schema elements. Some on-
tology matching approaches also try to determine different kinds of correspond-
ences, such as is-a relationships between ontologies (Spiliopoulos et al. 2010). 
Due to the typically high semantic heterogeneity of schemas, algorithms can only 
determine approximate mappings. The automatically determined mappings may 
thus require the inspection and adaptation by a human domain expert (deletion of 
wrong correspondences, addition of missed correspondences) to obtain the correct 
mapping.  

Despite the advances made, current match systems still struggle to deal with large-
scale match tasks as those mentioned above. In particular, achieving both good ef-
fectiveness and good efficiency are two major challenges for large-scale schema 
matching. Effectiveness (high match quality) requires the correct and complete 
identification of semantic correspondences and is the more difficult to achieve the 
larger the search space is. For pairwise schema matching the search space increas-
es at least quadratically with the number of elements. Furthermore, the semantic 
heterogeneity is typically high for large-scale match tasks, e.g. the schemas may 
largely differ in their size and scope making it difficult to find all correspondenc-
es. Furthermore, elements often have several equivalent elements in the other 
schema that are more difficult to identify than 1:1 correspondences that are more 
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likely for small match tasks. Some large-scale problems in the OAEI contest (On-
tology Alignment Evaluation Initiative) on ontology matching are still not satis-
factorily solved after several years. For example the best F-measure2 result for the 
catalog test to match web directories (71%) was achieved in 2007; in 2009 the best 
participating system achieved merely 63%; the average F-measure was around 
50% (Euzenat et al. 2009).  

Efficiency is another challenge for large-scale matching. Current match systems 
often require the schemas and intermediate match results to fit in main memory 
thereby limiting their applicability for large-scale match tasks. Furthermore, eval-
uating large search spaces is time consuming especially if multiple matchers need 
to be evaluated and combined. For some OAEI match tasks and systems, execu-
tion times in the order of several hours or even days are observed (Euzenat et al. 
2009). For interactive use of schema matching systems such execution times are 
clearly unacceptable.  

In this book chapter we provide an overview of recent approaches to improve ef-
fectiveness and efficiency for large-scale schema and ontology matching. We only 
briefly discuss further challenges such as support for sophisticated user interaction 
or the evaluation of match quality but these are treated in more detail in other 
chapters of this book (Falconer and Noy 2011, Bellahsene et al. 2011). For exam-
ple, advanced GUIs should be supported to visualize large schemas and mappings, 
to specify automatic match strategies (selection of matchers, parameter tuning), to 
incrementally start automatic schema matching and adapt match results, etc.  

In the next section we introduce the kinds of matchers used in current match sys-
tems as well as a general workflow to combine the results of multiple matchers for 
improved match quality. We also discuss performance optimizations for single 
matchers and present recently proposed approaches for instance-based and usage-
based matching. In Section 3 we present several match strategies that we consider 
as especially promising for large-scale matching: early pruning of the search 
space, partition-based matching, parallel matching, self-tuning match workflows 
and reuse-based matching. We also discuss briefly approaches for n-way (holistic) 
schema matching. Section 4 contains a short discussion of match support in com-
mercial systems and a comparison of selected research prototypes that have been 
applied to large match problems.  

2. Matchers and match workflows  

The developed systems for schema and ontology matching typically support sev-
eral match algorithms (or matchers) and combine their results for improved match 
quality. There exists a large spectrum of possible matchers and different imple-
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mentations as surveyed in (Rahm and Bernstein 2001, Euzenat and Shvaiko 2007), 
in particular metadata-based and instance-based matchers. Metadata-based match-
ers are most common and exploit characteristics of schema or ontology elements 
such as their names, comments, data types as well as structural properties. In-
stance-based matchers determine the similarity between schema elements from the 
similarity of their instances; this class of matchers has recently been studied pri-
marily for matching large ontologies and will be discussed in more detail below.  

Further matching techniques exploit different kinds of auxiliary (background) in-
formation to improve or complement metadata- and instance-based matchers. For 
example, name matching for both schema elements and instance values can be en-
hanced by general thesauri such as Wordnet or, for improved precision, domain-
specific synonym lists and thesauri (e.g., UMLS as a biomedical reference). Fur-
thermore, search engines can be used to determine the similarity between names, 
e.g. by using the relative search result cardinality for different pairs of names as a 
similarity indicator (Gligorov et al. 2007). At the end of this section we will brief-
ly discuss a further kind of match technique, the recently proposed consideration 
of usage information for matching.  

Efficiently matching large schemas and ontologies implies that every matcher 
should impose minimal CPU and memory requirements. For improving linguistic 
matching many techniques for efficiently computing string similarities can be ex-
ploited, e.g. for tokenization and indexing (Koudas et al. 2004). Structural match-
ing can be optimized by precollecting the predecessors and children of every ele-
ment, e.g. in database tables, instead of repeatedly traversing large graph 
structures (Algergawy et al. 2009). Such an approach can also avoid the need of 
keeping a graph representation of the schemas in memory that can become a bot-
tleneck with large schemas. The results of matchers are often stored within simi-
larity matrices containing a similarity value for every combination of schema ele-
ments. With large schemas these matrices may require millions of entries and thus 
several hundreds of MB memory. To avoid a memory bottleneck a more space-
efficient storage of matcher results becomes necessary, e.g. by using hash tables 
(Bernstein et al. 2004). In Section 3, we will discuss further performance tech-
niques such as parallel matcher execution.  

In the following, we first describe a general workflow-like approach to apply mul-
tiple matchers and to combine their results. We then discuss approaches for in-
stance-based ontology matching and usage-based matching.  

2.1 Match workflows 

Fig. 1a shows a general workflow for automatic, pairwise schema matching as be-
ing used in many current match systems. The schemas are first imported into an 
internal processing format. Further pre-processing may be applied such as analysis 
of schema features or indexing name tokens to prepare for a faster computation of 
name similarities. The main part is a sub-workflow to execute several matchers 
each of which determines a preliminary set of correspondences. After the execu-
tion of the matcher sub-workflow there are typically several post-processing steps, 
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in particular the combination of the individual matcher results and finally the se-
lection of the correspondences from the combined result.  

 

Fig. 1: General match workflows  

As indicated in Fig. 1b, the individual matchers may either be executed sequential-
ly, independently (in parallel) or in some mixed fashion. In the sequential ap-
proach the matchers are not executed independently but the results of initial 
matchers are used as input by subsequent matchers. A common strategy, e.g. used 
in Cupid (Madhavan et al. 2001), is to first execute a linguistic matcher to com-
pare the names of schema elements and then use the obtained similarities as input 
for structure-based matching. In the parallel matcher strategy, individual matchers 
are autonomous and can be independently executed from other matchers. This 
supports a high flexibility to select matchers for execution and combination. Fur-
thermore, these matchers may also physically be executed in parallel, e.g. on mul-
ti-core or multi-server hardware. On the other hand, the autonomy of individual 
matchers may introduce redundant computations, e.g. of name similarities to be 
used for structural matching. The mixed strategy combines sequential and parallel 
matcher execution and is thus most complex.  

There are different methods to combine match results of individual matchers, e.g., 
by performing a union or intersection of the correspondences or by aggregating 
individual similarity values, e.g. by calculating a weighted average of the individ-
ual similarities. Similarly there are different methods to finally select the corre-
spondences. Typically correspondences need to exceed some predetermined 
threshold but may also have to meet additional constraints for improved precision. 
So it is reasonable for 1:1 mappings to enforce so-called stable marriages, i.e. a 
correspondence c1-c1’ is only accepted if c1’ is the most similar element for c1 
and vice versa. Some ontology matching systems such as ASMOV enforce addi-
tional constraints regarding is-a relationships (see Section 4.2). 

For interactive schema matching the user may interact with the system and the 
match workflow in different ways (not shown in Fig. 1), preferably via a user-
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friendly GUI. She typically has to specify the workflow configuration, e.g. which 
matchers should be executed and which strategy/parameters should be applied for 
the final combination and selection steps. The final results are typically only sug-
gested correspondences that the user can confirm or correct. The match workflow 
itself could be executed on the whole input schemas or incrementally for selected 
schema parts or even individual elements (Bernstein et al. 2006). The latter ap-
proach is a simple but reasonable way to better deal with large schemas as it re-
duces the performance requirements compared to matching the whole schemas. 
Furthermore, the determined correspondences can better be visualized avoiding 
that the user is overwhelmed with huge mappings. (Shi et al. 2009) propose an in-
teresting variation for interactive matching where the system asks the user for 
feedback on specific correspondences that are hard to determine automatically and 
that are valuable as input for further matcher executions.  

2.2 Instance-based and usage-based matching  

Instance-based ontology matching 

Instance-based ontology matching determines the similarity between ontology 
concepts from the similarity of instances associated to the concepts. For example, 
two categories of a product catalog can be considered as equivalent if their prod-
ucts are largely the same or at least highly similar. One can argue that instances 
can characterize the semantics of schema elements or ontology concepts very well 
and potentially better than a concept name or comment. Therefore, instance-based 
matching holds the promise of identifying high-quality correspondences. On the 
other hand, obtaining sufficient and suitable instance data for all ontologies and all 
ontology concepts to be matched is a major problem, especially for large ontolo-
gies. Hence, we consider instance-based approaches primarily as a complemen-
tary, albeit significant match approach to be used in addition to metadata-based 
matchers.  

As indicated in Fig. 2, two main cases for instance-based ontology matching can 
be distinguished depending on whether or not the existence of common instances 
is assumed. The existence of the same instances for different ontologies (e.g., the 
same web pages categorized in different web directories, the same products of-
fered in different product catalogs, or the same set of proteins described in differ-
ent life science ontologies) simplifies the determination of similar concept. In this 
case, two concepts may be considered as equivalent when their instances overlap 
significantly. Different set similarity measures can be used to measure such an in-
stance overlap, e.g. based on Dice, Jaccard, or cosine similarity. The instance 
overlap approach has been used to match large life science ontologies (Kirsten et 
al. 2007) and product catalogs (Thor et al. 2007). 
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Fig. 2: Two cases for instance-based ontology matching 

The more broadly applicable case is when only similar but potentially different in-
stances are used to determine correspondences (Fig. 2b). In this case, determining 
concept similarity requires determining the similarity between sets of instances 
which is a variation of the well-studied problem of object matching or entity reso-
lution (Elmagarmid et al. 2007, Koepcke and Rahm 2010). One approach for ad-
dressing this task is to combine all instances of a concept into a virtual document. 
Matching is then implemented by comparing such virtual documents with each 
other based on some document similarity measure, e.g. TF/IDF. This approach is 
supported in several match prototypes including Rimom and Coma++ (see Section 
4.2). (Massmann and Rahm 2008) evaluate instance-based matching for web di-
rectories utilizing a virtual document approach for website names and descriptions 
as well as an instance overlap approach for website URLs. The approaches 
achieve an average F-measure of about 60% (79% in combination with metadata-
based matching) for different match tasks; the largest directory had more than 
3000 categories. The OAEI contest also includes a web directory match task how-
ever without providing instance data thereby limiting the achievable match quality 
(as mentioned in the introduction the participating systems could not improve on 
this task in recent years; the best F-measure in 2009 was 63%).  

An alternate approach for instance-based matching using machine learning has 
been implemented in the GLUE and SAMBO systems (Doan et al. 2003), (Lam-
brix et al 2008). The SAMBO approach focuses on matching life science ontolo-
gies based on the similarity of publications (Pubmed abstracts) referring to the on-
tology concepts. Both GLUE and SAMBO perform a training phase per ontology 
to learn concept classifiers for the available instances. These classifiers are then 
mutually applied to the instances from the other ontology to determine the con-
cepts an instance is predicted to belong to. The instance-concept associations are 
aggregated, e.g. by a Jaccard-based set similarity measure, to derive concept simi-
larities and concept correspondences. The approaches do not require shared in-
stances but only similar ones for classification. Furthermore, they can utilize many 
existing instances in applications such as matching product catalogs or web direc-
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tories. On the other hand, the classification problem becomes inherently more dif-
ficult to solve for increasing numbers of concepts. The GLUE evaluation in (Doan 
et al. 2003) was restricted to comparatively small match tasks with ontology sizes 
between 31 and 331 concepts. The SAMBO approach was evaluated for even 
smaller (sub-) ontologies (10-112 concepts). Effectiveness and efficiency of the 
machine learning approaches to large-scale match tasks with thousands of con-
cepts is thus an open issue.  

Usage-based matching 

Two recent works propose the use of query logs to aid in schema matching. In 
(Emelgee et al. 2008), SQL query logs are analyzed to find attributes with similar 
usage characteristics (e.g. within join conditions or aggregations) and occurrence 
frequencies as possible match candidates for relational database schemas. The 
Hamster approach (Nandi and Bernstein 2009) uses the click log for keyword que-
ries of an entity search engine to determine the search terms leading to instances 
of specific categories of a taxonomy (e.g. product catalog or web directory). Cate-
gories of different taxonomies sharing similar search queries are then considered 
as match candidates. Different search terms referring to the same categories are al-
so potential synonyms that can be utilized for matching but also for other purposes 
such as the improvement of user queries.  

A main problem of usage-based matching is the difficulty to obtain suitable usage 
data, which is likely more severe than the availability of instance data. For exam-
ple, the click logs for the Hamster approach are only available to the providers of 
search engines. Furthermore, matching support can primarily be obtained for cate-
gories or schema elements receiving many queries.  

3. Techniques for large-scale matching  

In this section, we provide an overview about recent approaches for large-scale 
pairwise matching that go beyond specific matchers but address entire match 
strategies. In particular, we discuss approaches in four areas that we consider as 
especially promising and important:  

- Reduction of search space for matching (early pruning of dissimilar ele-
ment pairs, partition-based matching) 

- Parallel matching 

- Self-tuning match workflows  

- Reuse of previous match results  

We also discuss proposed approaches for holistically matching n schemas.  
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3.1 Reduction of search space  

The standard approach for pairwise schema matching is to compare every element 
of the first schema with every element with the second schema to determine 
matching schema elements, i.e. evaluation of the cross join. Such an approach has 
at least a quadratic complexity w.r.t. schema size and does not scale well. There 
are not only efficiency problems for large schemas but the large search space 
makes it also very difficult to correctly identify matching element pairs. Hence, it 
is important for large match tasks to reduce the search space in order to improve at 
least efficiency and potentially match quality.  

To reduce the search space for matching we can adopt similar approaches as in the 
area of entity resolution (or object matching) where the number of objects and 
thus the search space is typically much larger than for schema matching. The ini-
tial step to reduce the search space for entity matching has been called blocking 
and there exist numerous approaches for this task, e.g. based on clustering on se-
lected object attributes (Elmagarmid et al. 2007).  

For schema and ontology matching, two main types of approaches have been con-
sidered to reduce the search space that we discuss in the following:  

 Early pruning of dissimilar element pairs  
 Partition-based matching  

Early pruning of dissimilar element pairs 

The idea is to limit the evaluation of the cartesian product to at most a few initial 
steps in the match workflow, e.g. one matcher, and to eliminate all element pairs 
with very low similarity from further processing since they are very unlikely to 
match. This idea is especially suitable for workflows with sequential matchers 
where the first matcher can evaluate the cartesian product but all highly dissimilar 
element pairs are excluded in the evaluation of subsequent matchers and the com-
bination of match results.  

Quick Ontology Matching (QOM) was one of the first approaches to implement 
this idea (Ehrig and Staab 2004). It iteratively applies a sequence of matchers and 
can restrict the search space for every matcher. The considered approaches to re-
strict the search space include focusing on elements with similar names (labels) or 
similar structural properties. The authors showed that the runtime complexity of 
QOM can be reduced to (O(n・log(n)) instead of O(n2) for ontologies of size n.  

(Peukert et al 2010a) propose the use of filter operators within match workflows to 
prune dissimilar element pairs (whose similarity is below some minimal threshold) 
from intermediate match results. The threshold is either statically predetermined 
or dynamically derived from the similarity threshold used in the match workflow 
to finally select match correspondences. (Peukert et al 2010a) also propose a rule-
based approach to rewrite match workflows for improved efficiency, in particular 
to place filter operators within sequences of matchers.  
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Partition-based matching  

Partition-based matching is a divide-and-conquer strategy to first partition the in-
put schemas / ontologies and then perform a partition-wise matching. The idea is 
to perform partitioning in such a way that every partition of the first schema has to 
be matched with only a subset of the partitions (ideally, only with one partition) of 
the second schema. This results in a significant reduction of the search space and 
thus improved efficiency. Furthermore, matching the smaller partitions reduces 
the memory requirements compared to matching the full schemas. To further im-
prove performance, the partition-based match tasks may be performed in parallel.  

There are many possible ways to perform partitioning and finding the most effec-
tive approaches is still an open research problem. COMA++ was one of the first 
systems to support partition-based schema matching by a so-called fragment 
matching (Aumueller et al. 2005), (Do and Rahm 2007). Fragment matching 
works in two phases. In the first phase the fragments of a specified type (e.g. user-
specified fragments or subschemas such as relational tables or message formats in 
large XML schemas) are determined and compared with each other to identify the 
most similar fragments from the other schema worth to be fully matched later. The 
search for similar fragments is some kind of light-weight matching, e.g. based on 
the similarity of the fragment roots. In the second phase, each pair of similar 
fragments is independently matched to identify correspondences between their el-
ements. The fragment-based match results are finally merged to obtain the com-
plete output mapping. In the evaluation for large XML schemas in (Do and Rahm 
2007) fragment matching not only improved execution times significantly but also 
lead to a slight improvement of match quality.  

The ontology matching system Falcon-AO also supports partition-based matching 
to reduce the search space (Hu et al. 2008). The approach is similar to fragment 
matching but uses a structural clustering to initially partition the ontologies into 
relatively small, disjoint blocks. Matching is then restricted to the most similar 
blocks from the two ontologies. To determine the block similarity, Falcon-AO uti-
lizes so-called anchors. Anchors are highly similar element pairs that are deter-
mined before partitioning by a combined name/comment matcher. Fig. 3 illus-
trates the idea to limit matching to pairs of similar partitions sharing at least one 
anchor. In the shown example only partitions of the same color are matched with 
each other (e.g., BS2 with BT2), while partitions without shared anchor (BT3) are 
excluded from matching. An extension of the Falcon approach has been proposed 
for the Taxomap system (Hamdi et al. 2009). They first partition only one of the 
ontologies like in Falcon and then try to partition the second ontology accordingly. 
In particular it is tried to achieve that the anchors per partition can be localized in 
few partitions of the other ontology to reduce the number of pairs to be matched.  

The taxonomy matching system AnchorFlood implements a dynamic partition-
based matching that avoids the a-priori partitioning of the ontologies (Hanif and 
Aono 2009). It also utilizes anchors (similar concept pairs) but takes them as a 
starting point to incrementally match elements in their structural neighborhood un-
til no further matches are found or all elements are processed. Thus the partitions 
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(called segments) are located around the anchors and their size depends on the 
continued success of finding match partners for the considered elements.  

 

Fig. 3: Partition-based matching in Falcon-AO and Taxomap  
           (from (Hamdi et al. 2009)) 

(Zhong et al. 2009) focus on the case when a small ontology is matched with a 
much larger one, e.g. one that is obtained from merging several others. They de-
termine the subontology (partition) from the larger ontology that is most similar to 
the smaller ontology and consider only this subontology for matching to improve 
efficiency. Finding the subontology is performed in two steps. First, a name 
matcher is applied on the Cartesian product of elements to determine the most 
similar ontology elements from the large ontology. Then, the subontology is de-
termined by evaluating the subgraphs around the similar elements found in the 
first step. 

3.2 Parallel matching  

A relatively straight-forward approach to reduce the execution time of large-scale 
matching is to run match processes in parallel on several processors. As discussed 
in (Gross et al. 2010), two main kinds of parallel matching are applicable: inter- 
and intra-matcher parallelization. Inter-matcher parallelization enables the 
parallel execution of independently executable (parallel) matchers in match 
workflows. This kind of parallelism is easy to support and can utilize multiple 
cores of a single computing node or multiple nodes. However, inter-matcher paral-
lelization is limited by the number of independent matchers and not applicable for 
sequential matchers. Furthermore, matchers of different complexity may have 
largely different execution times limiting the achievable speedup (the slowest 
matcher determines overall execution time). Moreover, the memory requirements 
for matching are not reduced since matchers evaluate the complete ontologies.  

Intra-matcher parallelization is more versatile and deals with internal paralleliza-
tion of matchers, typically based on a partitioning of the schemas or ontologies to 
be matched. Partitioning leads to many smaller match tasks that can be executed in 
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parallel with reduced memory requirements per task. By choosing appropriate par-
tition sizes the approach becomes very flexible and scalable. Furthermore, intra-
matcher parallelism can be applied for sequential as well as independently execut-
able matchers, i.e., it can also be combined with inter-matcher parallelism. 

The partition-based matching discussed in Section 3.1 inherently supports intra-
matcher parallelization as well as a reduction of the search space by limiting 
matching to pairs of similar partitions. However, intra-matcher parallelization 
could also be applied without reduced search space by matching all partition pairs, 
i.e. to evaluate the Cartesian product in parallel. As discussed in (Gross et al. 
2010) such a simple, generic parallelization is applicable for virtually all element-
level matchers (e.g. name matching) but can also be adapted for structural match-
ing. In this case, one can also choose a very simple, size-based partitioning (same 
number of elements per partition) supporting good load balancing.  

3.3 Self-tuning match workflows 

The match workflows in most current systems need to be manually defined and 
configured. This affects the choice of matchers to be applied and specification of 
the methods to combine matcher results and to finally select match correspond-
ences. Obviously, these decisions have a significant impact on both effectiveness 
and efficiency and are thus especially critical for large-scale match tasks. Unfortu-
nately, the huge number of possible configurations makes it very difficult even for 
expert users to define suitable match workflows. Hence, the adoption of semi-
automatic tuning approaches becomes increasingly necessary and should especial-
ly consider the challenges of matching large schemas. 

The companion book chapter (Bellahsene and Duchateau 2011) provides an over-
view of recent approaches including tuning frameworks such as Apfel and eTuner 
(Ehrig et al. 2005), (Lee et al. 2007). Most previous approaches for automatic tun-
ing apply supervised machine learning methods. They use previously solved 
match tasks as training to find effective choices for matcher selection and parame-
ter settings such as similarity thresholds and weights to aggregate similarity val-
ues, e.g. (Duchateau et al. 2009). A key problem of such approaches is the diffi-
culty of collecting sufficient training data that may itself incur a substantial effort. 
A further problem is that even within a domain the successful configurations for 
one match problem do not guarantee sufficient match quality for different prob-
lems, especially for matching large schemas. Therefore, one would need methods 
to preselect suitable and sufficient training correspondences for a given match 
task, which is an open challenge.  

(Tan and Lambrix 2007) propose an alternative approach that recommends a 
promising match strategy for a given match problem. They first select a limited 
number of pairs of small segments from the schemas to be matched (e.g. sub-
graphs with identically named root concepts) and determine the perfect match re-
sult for these segments. These results are used to comparatively evaluate the effec-
tiveness and efficiency of a predetermined number of match strategies from which 
the best performing one is recommended for the complete match task. The ap-
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proach thus requires manual “training” for matching the preselected segment 
pairs; this effort pays off if it helps to avoid a larger amount of manual post-
processing. On the other hand, the number of reasonable match strategies can be 
very high (many combinations of available matchers, many possible similarity 
thresholds, etc.) so that likely only a small subset of them can be evaluated (in the 
evaluation merely 30 strategies are considered).  

Several match systems first analyze the schemas to be matched and determine 
their linguistic and structural similarity. These similarity characteristics are then 
used to select matchers or to weight the influence of different matchers in the 
combination of matcher results (Pirro and Talia 2010). The Rimom system (Li et 
al. 2009) uses such similarity factors for dynamically selecting matchers for a spe-
cific match task. For example, they use string measures for name matching only if 
the input schemas have highly similar names; otherwise, they rely on thesauri such 
as Wordnet. Similarly, they apply structural matching only if the input schemas 
are deeply structured and structurally similar. Falcon-AO uses the linguistic and 
structural similarities to combine matcher results, in particular to optimize indi-
vidual similarity (cutoff) thresholds (Hu et al. 2008). For example, if the linguistic 
similarity is high, Falcon-AO uses lower thresholds for linguistic matchers so that 
more of their correspondences are considered.  

A versatile approach to combine the results of individual matchers is to determine 
a weighted average of the individual matcher similarities per correspondence and 
to accept a correspondence if the combined similarity exceeds some threshold. 
Several approaches try to tune matcher combination by applying task-specific 
weights and combination methods, e.g. by favoring higher similarity values (Ehrig 
and Staab 2004), (Mao et al. 2008), (Mork et al. 2008). For example, the approach 
of (Mao et al. 2008), used in the PRIOR+ match prototype, combines similarity 
values according to the matchers’ so-called harmony value that is defined as the 
ratio of element pairs for which a matcher achieved the top similarity values. The 
comparative analysis in (Peukert et al. 2010b) showed that such combination ap-
proaches can be effective in some cases but that they are mostly less effective and 
less robust than generic approaches such as taking the average matcher similarity.  

Optimizing complete match workflows is so far an open challenge, especially 
since most match systems prescribe workflows of a fixed structure, e.g. regarding 
which matchers can be executed sequentially or in parallel. As discussed in sec-
tion 3.1, (Peukert et al 2010a) propose a first approach for tuning match work-
flows focusing on reducing the search space for improved efficiency. 

3.4 Reuse of previous match results  

A promising approach to improve both the effectiveness and efficiency of schema 
matching is the reuse of previous match results to solve a new but similar match 
task (Rahm and Bernstein 2001). An ideal situation for such a reuse is the need to 
adapt a mapping between two schemas after one of them evolves to a new schema 
version. By reusing the previous match mapping for the unchanged schema parts a 
significant amount of match effort can likely be saved. The reuse of previously de-
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termined correspondences and match results may also be applicable in other cases, 
especially when different schemas share certain elements or substructures, such as 
standardized address information. Exploiting the reuse potential requires a com-
prehensive infrastructure, in particular a repository to maintain previously deter-
mined correspondences and match results. Furthermore, methods are necessary to 
determine the schema elements and fragments for which match reuse is applicable. 
Reuse can be exploited at three mapping granularities: for individual element cor-
respondences, for mappings between common schema fragments and for complete 
mappings and schemas.  

Coma and its successor Coma++ support the reuse of complete match mappings 
(Do and Rahm 2002). They apply a so-called MatchCompose operator for a join-
like combination of two or more match mappings to indirectly match schemas. For 
example, a mapping between schemas S1 and S3 can be obtained by combining 
preexisting S1-S2 and S2-S3 mappings involving another schema S2. For two 
schemas to be matched, the reuse matcher of Coma searches the repository for all 
applicable mapping paths connecting the two schemas and combines the composi-
tion results just like other matcher results. The reuse matcher can also be com-
bined with regular matchers. Furthermore, the compose approach allows the adap-
tation of an old mapping after one of the schema evolves. Fig. 4 shows a Coma++ 
screenshot for such a reuse scenario where the target schema (shown on the right) 
has been slightly changed. The mapping between the source schema and the old 
target schema (shown in the middle) can be reused by composing it with the map-
ping between the old and the new target schema. The latter mapping has to be 
newly determined but this is easy when the two schema versions are highly similar 
as in the example. The evaluations in (Do and Rahm 2002) and (Do 2006) showed 
the high effectiveness and efficiency of the reuse approach even when only com-
pletely automatically determined match results are composed.  

The corpus-based match approach of (Madhavan et al. 2005) uses a domain-
specific corpus of schemas and match mappings and focuses on the reuse of ele-
ment correspondences. They augment schema elements with matching elements 
from the corpus and assume that two schema elements match if they match with 
the same corpus element(s). They use a machine learning approach to find match-
es between schema and corpus elements. In particular, for each corpus element c a 
model based on several matchers is learned to decide whether schema elements s 
match c. The approach thus requires a substantial effort for learning the models 
and applying the models to determine the matches, especially for a large corpus 
and large schemas. 



15 

 

Fig.4: Coma++ reuse scenario after the evolution of the target schema  

There are several other attempts to provide repositories of schemas and mappings 
for matching or information integration, in general. For example, the OpenII pro-
ject is developing an infrastructure for information integration that includes a re-
pository of schemas and mappings to permit their reuse (Seligman et al. 2010). 
While the OpenII schema matcher, Harmony, does not yet exploit this reuse po-
tential there are several other tools to explore and visualize the schemas and map-
pings. In particular, the Schemr search tool determines a ranked list of schemas in 
the repository that are similar to a given schema fragment or list or keywords 
(Chen et al 2009). For this purpose, Schemr uses an index on schema element 
names to first find repository schemas that are linguistically similar to the search 
input. In a second step, the candidate schemas are matched with the input schema 
to obtain refined schema similarities used for ranking. The search tool could thus 
be useful to determine relevant schemas for reuse.  

A new project at the IBM Almaden research center investigates the repository-
based reuse of schema fragments and mappings, in particular for enhancing sche-
ma matching (Alexe et al. 2009). The repository stores conceptual schema frag-
ments called UFOs (Unified Famous Objects) such as address or employee struc-
tures that are in use or relevant for different applications and schemas. By 
maintaining mappings between similar UFOs in the repository, these mappings 
may be reused when matching schemas that contain the respective UFOs. Success-
fully implementing such an idea is promising but also highly complex and appar-
ently not yet finished. First the repository has to be built and populated; a first de-
sign is sketched in (Gubanov et al. 2009). For schema matching, the schemas to be 
matched have to be analyzed whether they include schema fragments from the re-
pository for which mappings exist. Finally the fragment mappings need to be 
properly assembled (and combined with the results of other matchers) in order to 
obtain a complete schema mapping. (Saha et al. 2010) focuses on the second step 
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and describes an approach called schema covering to partition the input schemas 
such that the partitions can be matched to schema fragments in the repository. 
They first apply a filter step to determine relevant repository fragments with some 
similarity with the schemas to be matched. Then for each of the remaining reposi-
tory fragments the maximal subgraphs in the schemas are determined that can be 
covered by the fragment. To speed-up the similarity computations, filtering and 
subgraph identification utilize a predetermined index of the schema element 
names and their positions in the repository schemas and the schemas to be 
matched.  

SAP also works on an ambitious project called Warp10 to exploit the reuse of 
XML schemas and mappings for business integration including improved schema 
matching (SAP 2010). As indicated in Fig. 5, the key idea is to maintain a central 
repository maintaining a global schema (called consolidated data model) that in-
cludes semantically consolidated versions of individual schemas or schema frag-
ments. Consolidation is based on the CCTS (UN/CEFACT Core Component 
Technical Specification) rules for uniformly naming and structuring concepts. The 
global schema is initially populated by standard business schemas and data types 
(e.g., from SAP) and can be semi-automatically and collaboratively extended by 
integrating specific schemas. The correct integration of such schemas is likely a 
complex merge operation needing the control by domain experts. Once mappings 
between schemas and the global schema are established, they can be reused for 
quickly solving new integration tasks, in particular for matching between schemas 
(to match schemas S1 with S2 one has to compose their mappings with the global 
schema G, S1-G and G-S2). Unfortunately, the details about how the global sche-
ma is maintained are not yet published.  

 

Fig 5: Mappings between schemas and the consolidated data model in Warp10 
           (from (SAP 2010)) 
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3.5 Holistic schema matching  

While most of the previous match work focuses on pairwise matching, there has 
also been some work on the generalized problem of matching n schemas. Typical-
ly, the goal is to integrate or merge the n schemas such that all matching elements 
of the n schemas are represented only once in the integrated (mediated) schema. 
N-way matching can be implemented by a series of 2-way match steps and some 
systems such as Porsche follow such an approach and incrementally merge sche-
mas (Saleem et al. 2008). The alternative is a holistic matching that clusters all 
matching schema elements at once.  

The holistic approach has primarily been considered for the use case of matching 
and integrating web forms for querying deep web sources (He et al. 2004), (He 
and Chang 2006), (Su et al. 2006). While there are typically many web forms to 
integrate in a domain, the respective schemas are mostly small and simple, e.g. a 
list of attributes. Hence, the main task is to group together all similar attributes. 
Matching is primarily performed on the attribute names (labels) but may also use 
additional information such as comments or sample values. A main observation 
utilized in holistic schema matching is the correlation of attribute names, in par-
ticular that similar names between different schemas are likely matches but similar 
names within the same schema are usually mismatches. For example, attributes 
first name and last name do not match if they co-occur in the same source.  

The DCM (Dual Correlation Mining) approach of (He and Chang 2006) utilizes 
these positive and negative attribute correlations for matching. It also utilizes neg-
ative correlations to derive complex relationships, e.g. that attribute name matches 
the combination of both first name and last name. The HSM approach of (Su et al. 
2006) extends the DCM scheme for improved accuracy and efficiency. HSM also 
utilizes that the vocabulary of web forms in a domain tends to be relatively small 
and that terms are usually unambiguous in a domain (e.g. title in a book domain). 
A main idea is to first identify such shared attributes (and their synonyms) in the 
input schemas and exclude such attributes from matching the remaining attributes 
for improved efficiency and accuracy.  

(Das Sarma et al. 2008) propose to determine a so-called probabilistic mediated 
schema from n input schemas, which is in effect a ranked list of several mediated 
schemas. The approach observes the inherent uncertainty of match decisions but 
avoids any manual intervention by considering not only one but several reasonable 
mappings. The resulting set of mediated schemas was shown to provide queries 
with potentially more complete results than with a single mediated schema. The 
proposed approach only considers the more frequently occurring attributes for de-
termining the different mediated schemas, i.e. sets of disjoint attribute clusters. 
Clustering is based on the pairwise similarity between any of the remaining attrib-
utes exceeding a certain threshold as well as the co-occurrence of attributes in the 
same source. The similarity between attributes can also be considered as uncertain 
by some error margin which leads to different possibilities to cluster such attrib-
utes within different mediated schemas. The probabilistic mapping approach is 
further described in the companion book chapter (Das Sarma et al. 2010).  
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We finally note that some of the partition-based and reuse-based match approach-
es discussed above dealt with multiple subschemas so they also implement some 
form of n-way schema matching. An important building block in such advanced 
match strategies is to search a collection of n (sub) schemas for the schema that is 
most similar to a given schema. There are many other applications for the schema 
search problem, e.g. finding similar peer schemas in P2P data integration or the 
discovery of suitable web services (Dong et al. 2004, Algergawy et al. 2010). 

4 Selected match systems  

To further illustrate the state of the art, we discuss in this section the schema 
matching capabilities in commercial tools as well as in selected research proto-
types. For better comparability, we restrict ourselves on systems for pairwise 
schema matching.  

4.1 Commercial match tools  

In commercial tools, schema matching is typically a first step for generating exe-
cutable mappings (e.g., for data transformation) between schemas, in particular 
XML schemas or relational database schemas. Systems such as IBM Infosphere 
Data Architect, Microsoft Biztalk server, SAP Netweaver Process Integration or 
Altova MapForce provide a GUI-based mapping editor but still require a largely 
manual specification of the match correspondences. In recent years, support for 
automatic matching has improved and all mentioned systems can present users 
equally named schema elements (typically within preselected schema fragments) 
as match candidates. The Infosphere mapping editor also supports approximate 
name matching and the use of external thesauri for linguistic matching. The map-
ping tool of Microsoft Biztalk server 2010 has significantly improved for better 
matching large schemas (www.microsoft.com/biztalk). It supports an enhanced 
user interface to better visualize complex mappings similar as described in (Bern-
stein et al 2006). Furthermore, it supports approximate name matching by a new 
search functionality called “indicative matching”.  

The increasing support in commercial tools underlines the high practical im-
portance of automatic schema matching. However, the tools need much further 
improvement to reduce the manual mapping effort especially for large match 
tasks. For example, commercial tools do neither support structural matching nor 
any of the advanced techniques discussed in Section 3.  

4.2 Research prototypes  

As already discussed in the previous sections, in research more advanced ap-
proaches for semi-automatic schema and ontology matching have been developed. 
In fact, hundreds of prototypes and algorithms for schema and ontology matching 
have been developed in the last decade, many of which are surveyed in (Euzenat 
and Shvaiko 2007). To illustrate the state of the art in current tools, we briefly 
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compare a few recent prototypes that have successfully been applied to large-scale 
match problems, in particular within the OAEI (Ontology Alignment Evaluation 
Initiative) benchmark competition (http://oaei.ontologymatching.org). Table 1 
provides a rough comparison between six match prototypes. All of them are capa-
ble of matching (OWL) ontologies, two systems (Coma++, Harmony) can also 
match relational and XML schemas. The shown years of introduction are esti-
mates based on the oldest publication found per system.  

The table indicates that all systems include linguistic and structural matchers. Lin-
guistic matching can always be performed either on element names and com-
ments; furthermore, external dictionaries such as synonym lists or thesauri can be 
utoilized. Most systems (except Falcon and Harmony) also support instance-based 
matching. A comprehensive GUI for interactive matching is provided by Coma++, 
AgreementMaker and Harmony; for the other systems no specific details on this 
issue could be found. The individual matchers may either be executed inde-
pendently or sequentially within a predetermined, fixed match workflow (not 
mentioned in Table 1). Partitioning of large schemas is currently supported by two 
of the considered systems (Coma++, Falcon), a self-tuning by dynamically select-
ing the matchers to execute only by Rimom. Coma++ is the only system support-
ing the reuse of previous mappings for matching. All systems except Harmony 
have successfully participated in OAEI ontology matching contests; some systems 
even implemented specific extensions to better solve certain contest tasks. Not 
shown in the table is that most systems focus on 1:1 correspondences, although the 
elements of a schema may participate in several such correspondences (the fact 
that element Name in one schema matches to the combination of Firstname and 
Lastname in the second schema can thus not directly be determined). Parallel 
matching (section 3.2) is also not yet supported in the tools. 

In the following, we provide some specific details for the considered prototypes.  

Coma++ 

Coma++ (Aumueller et al. 2005), (Do and Rahm 2007) and its predecessor Coma 
(Do and Rahm 2002) are generic prototypes for schema and ontology matching 
developed at the University of Leipzig, Germany. They were among the first sys-
tems to successfully support the multi-matcher architecture and match workflows 
as introduced in Section 2. Initially the focus was on a metadata-based matching; 
instance-based matching was added in 2006. Coma++ supports the partitioning 
and reuse approaches discussed in the previous section. 

Coma++ is available for free for research purposes and hundreds of institutes 
worldwide have used and evaluated the prototype. Surprisingly, the default match 
workflow of Coma++ (combining four metadata-based matchers) proved to be 
competitive in many diverse areas, in particular for matching XML schemas (Al-
gergawy et al. 2009), web directories (Avesani et al. 2005) or even meta-models 
derived from UML (Kappel et al. 2007). Coma++ successfully participated in the 
ontology matching contest OAEI 2006. 
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Table 1: Comparison of match prototypes (AM=AgreementMaker) 

 

 

Falcon  

Falcon-AO is an ontology matching prototype developed at the Southeast Univer-
sity in Nanjing, China (Hu and Qu 2008). As discussed in Section 3.1, it supports 
a partitioning approach to reduce the search space and uses coefficients of the lin-
guistic and structural schema similarity to control the combination of matcher re-
sults. Instance-based matching is not yet provided. In the OAEI contests 2005-
2007 it was among the best performing systems.  

Rimom  

Rimom is an ontology matching prototype developed at Tsinghua University in 
Beijing, China (Li et al. 2009). It was one of the first systems implementing a dy-
namic selection of matchers, as discussed in Section 3.3. The schema elements 
and their instances are first linguistically matched; structural matching is only ap-
plied if the schemas exhibit sufficient structural similarity. There are several 
methods for linguistic matching including one that uses a virtual document per el-
ement consisting of the name, comments and instance values of the element. 
Rimom is among the best performing prototypes in the OAEI contests until 2009.   

 

COMA++ Falcon Rimom Asmov AM Harmony

year of introduction 2002/2005 2006 2006 2007 2007 2008

Input  relational √ ‐ ‐ ‐ ‐ √

schemas XML √ ‐ ‐ ‐ (√) √

ontologies √ √ √ √ √ √

compreh. GUI √ (√) ? ? √ √

Matchers linguistic √ √ √ √ √ √

structure √ √ √ √ √ √

Instance  √ ‐ √ √ √ ‐

use of ext.dictionaries √ ? √ √ √ √

schema partitioning √ √ ‐ ‐ ‐ ‐

parallel matching ‐ ‐ ‐ ‐ ‐ ‐

dyn. matcher selection  ‐ ‐ √ ‐ ‐ ‐

mapping reuse √ ‐ ‐ ‐ ‐ ‐

OAEI participation √ √ √ √ √ ‐
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Asmov  

ASMOV (Automated Semantic Matching of Ontologies with Verification) proto-
type (Jean-Mary et al. 2009) is among the best performing systems at the recent 
OAEI match contests. Its most distinctive feature is an extensive post-processing 
of the combined matcher results to eliminate potential inconsistencies among the 
set of candidate correspondences. Five different kinds of inconsistencies are 
checked including the avoidance of so-called crisscross correspondences, e.g. to 
prevent that for a correspondence between classes c1 and c1’ there is another cor-
respondence mapping a child of c1 to a parent of c1‘.  

AgreementMaker  

This ontology matching prototype is developed at the University of Illinois at Chi-
cago (Cruz et al. 2009). It provides a sophisticated GUI so that the user can con-
trol the iterative execution of matchers. AgreementMaker was among the best per-
forming systems in the OAEI 2009 contest.  

Harmony  

Harmony is the match component within the Open Information Integration project 
on developing a publicly available infrastructure for information integration 
(Seligman et al. 2010). It provides many of the known features of previous match 
prototypes as well as a GUI. Instance-based matching is not yet supported. The 
combination of matcher results uses a non-linear combination of similarity values 
to favor matchers with higher similarity values (Mork et al. 2008) as briefly dis-
cussed in Section 3.3. According to (Smith et al. 2009) Harmony is able to match 
larger schemas with about 1000 elements each. However, so far no detailed evalu-
ation of Harmony’s effectiveness and efficiency has been published.  

6. Conclusions 

We have provided an overview of selected approaches and current implementa-
tions for large-scale schema and ontology matching. Commercial systems increas-
ingly support automatic matching but still have to improve much to better handle 
large schemas. The current research prototypes share many similarities, in particu-
lar a multi-matcher architecture with support for combining linguistic, structural 
and instance-based matching. We discussed first approaches in several areas that 
seem promising for large-scale matching, in particular partition-based matching, 
parallel matching, self-tuning of match workflows and reuse of previously deter-
mined match mappings. Such techniques are not yet common in current match 
systems and more research is needed in all these areas.  

Research on holistic (n-way) schema matching mostly focused on very simple 
schemas such as web forms. More research is therefore needed for n-way match-
ing (clustering) of more complex schemas. An important variation of this problem 
is searching the most similar schemas for a given schema. Within advanced match 
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strategies for large schemas such search approaches are also needed for finding 
relevant sub-schemas.  

Fully automatic schema matching is possible and may provide sufficient match 
quality for simple schemas such as web forms. This is especially the case for the 
idea of probabilistic mediated schemas considering several alternatives for cluster-
ing attributes. For large schemas and ontologies, on the other hand, user interac-
tion remains necessary to configure match workflows, perform incremental match-
ing on selected schema portions, and to provide feedback on the correctness of 
match candidates. Integrating the various match techniques within a usable and ef-
fective data integration infrastructure is challenging and also requires much more 
work.  
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