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Abstract. There is an increasing need to interconnect biomedical ontolo-
gies. We investigate a simple but promising approach to generate map-
pings between ontologies by reusing and composing existing mappings
across intermediate ontologies. Such an approach is especially promising
for highly interconnected ontologies such as in the life science domain.
There may be many ontologies that can be used for composition so that
the problem arises to find the most suitable ones providing the best results.
We therefore propose measures and strategies to select the most promis-
ing intermediate ontologies for composition. We further discuss advanced
composition techniques to create more complete mappings compared to
standard mapping composition. Experimental results for matching ana-
tomy ontologies demonstrate the effectiveness of our approaches.
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1 Introduction

In recent years ontologies have become increasingly important in the life sciences
[5,22]. For instance, Bio2RDF [3], the OBO Foundry [29] or BioPortal [24,33] dis-
tribute a growing number of biomedical ontologies from different domains such
as anatomy and molecular biology. The ontologies are primarily used to anno-
tate objects such as proteins, genes or literature to achieve a better information
exchange. Often there are different ontologies from one domain containing over-
lapping or related information. As an example information about mammalian ana-
tomy is available in NCI Thesaurus [23], Adult Mouse Anatomy [1] or the Unified
Medical Language System [32]. In such cases ontology mappings can be used to
express correspondences between different but related ontologies, e.g., which con-
cepts of two different ontologies are equivalent.

Mappings between related ontologies are useful in many ways, in particular
for data integration and enhanced analysis [18,24]. They are needed to merge
ontologies [28], e.g., to create an integrated cross-species anatomy ontology such
as the Uber ontology [31] or may also be useful to transfer knowledge from
different experiments between species [6]. There are already numerous mappings
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Fig. 1. Mapping composition with multiple intermediate alternatives

between ontologies available, e.g., BioPortal provides mappings between approx.
300 ontologies. However, there is still a strong need for increasing the number of
mappings as most ontologies are interlinked to only one or a few other ontologies.
Furthermore, new ontologies need to be connected to existing ones. The size of
biomedical ontologies makes a manual generation of new mappings unfeasible,
hence (semi-) automatic match algorithms are required.

We focus on the reuse and composition of existing mappings between ontolo-
gies to indirectly determine new ontology mappings and correspondences. Such
an approach is especially promising for the life science domain where many
mappings can be reused (e.g., from BioPortal). A main advantage of such a
composition approach is its simplicity and high efficiency even for large ontolo-
gies. As shown in Fig. 1, one can use multiple alternatives (routes) to establish a
new mapping between a source (S) and target (T ) ontology using composition.
First, there can be multiple intermediate ontologies IO (IO1 . . . IOn) leading to
questions like: “Is it better to use IO1 instead of IO2 or both?”. Second, for one
single intermediate ontology there can be several alternatives if there are multi-
ple mappings between two ontologies (dotted/dashed lines between S and IO1),
e.g., determined by different match approaches. Considering a large number of
possible composition alternatives we need an automatic approach to select the
most suitable intermediates that likely result in the best composed mappings.

In this paper we study such selection methods and make the following con-
tributions:

– We propose an efficiently computable measure to determine the effectiveness
of composition routes via intermediate ontologies. For the case of composing
two mappings, the effectiveness measure helps to find the most promising
intermediate ontology.

– We describe two strategies using the proposed effectiveness measure to rank
and select the top-k intermediates for mapping composition. Combining the
derived mappings for the top-k routes helps to improve the overall mapping
quality. We further discuss advanced composition techniques that may help to
generate more complete ontology mappings compared to the standard tech-
nique.

– We evaluate the proposed approach on the OAEI [25] anatomy match task
by using existing mappings determined by different match approaches. The
obtained mapping quality results demonstrate the effectiveness of the
proposed selection strategies.
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This paper is an extended version of [15]. In Sect. 2 we introduce our ontology
and mapping model. Section 3 presents the composition-based match approach.
We describe our effectiveness measure and outline two strategies for selecting the
most promising routes. In Sect. 4 we discuss advanced composition techniques.
We evaluate the approach in Sect. 5. After a discussion of related work (Sect. 6),
we summarize and outline possible future work.

2 Preliminaries – Ontologies and Mappings

An ontology O = (C,R,A) consists of a set of concepts C which are interrelated
by directed relationships R. Each concept has an unique identifier (e.g., accession
number, URI) that is used to reference the concept, e.g., the concept ‘Vertebra’
in NCI Thesaurus is unambiguously referenced by C12933. A concept typically
has further attributes a ∈ A to describe the concept, e.g., C12933 has the name
‘Vertebra’ and a synonym ‘Vertebrae’. A relationship r ∈ R forms a directed
connection between two concepts and has a specific type, e.g., is a or part of. In
our case C12933 is a special ‘Bone’ (C12366): [C12933, is a, C12366].

A mapping between two ontologies S and T , MS,T = {(c1, c2, sim)|c1 ∈
S, c2 ∈ T, sim ∈ [0, 1]}, consists of a set of correspondences between these ontolo-
gies, e.g., as determined by some ontology match method (see Related Work).
Each correspondence interconnects two related concepts c1 and c2. Their related-
ness is represented by a similarity value sim between 0 and 1 determined by the
used match approach. The greater the sim value the more similar are the cor-
responding objects. Note that we focus on equality correspondences and leave
the consideration of other correspondence types for future work. For already
validated mappings we assume a similarity of 1 for each correspondence.

3 Rating and Selection of Composition Routes

In this section we present our approach to rate composition routes and to select
the most promising ones. After introducing the concept of mapping composi-
tion, we propose an effectiveness measure to rate the value of routes in Sect. 3.2.
Using this measure we describe the strategies topKByEffectiveness and topKBy-
Complement for ranking and selecting the routes (Sect. 3.3). We finally describe
in Sect. 3.4 the combined use of multiple selected routes to create a new mapping.

3.1 Composition for Generating New Mappings

The general idea behind mapping composition is to derive new mappings between
two ontologies by reusing already existing mappings. Thus, new mappings are
generated indirectly via one or more intermediate ontologies instead of a direct
match between the two input ontologies. The typical situation for one intermedi-
ate is depicted in Fig. 2. The input consists of two ontologies S/T and two map-
pings MS,IO/MIO,T w.r.t. an intermediate ontology IO. The domain and range
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Fig. 2. General situation for mapping composition using one intermediate ontology

of the mappings can be used to find out which concepts are covered by the given
mappings. For instance, all concepts of S covered by the mapping to IO are in
its domain: domain(MS,IO). Similarly, IO concepts covered by this mapping are
in its range: range(MS,IO). Mapping composition is then applied in the follow-
ing way. A compose operator takes as input two mappings (from S/T to IO) and
produces new correspondences between concepts of S and T if correspondences
share the same concept in IO. The result is a new mapping MS,T :

MS,T = compose(MS,IO,MIO,T ) =
{(c1, c2, aggSim(sim1, sim2))|c1 ∈ S, c2 ∈ T, b ∈ IO :

∃(c1, b, sim1) ∈ MS,IO ∧ ∃(b, c2, sim2) ∈ MIO,T }
The similarity values of input correspondences are aggregated (aggSim) into
new similarity values, e.g., by computing their maximum or average. In Fig. 2
we would create two correspondences between S and T since two concepts in IO
overlap.

3.2 Effectiveness of Routes

The result of a mapping composition heavily depends on which intermediate
ontologies are used and how the mappings to these intermediates look like. First,
compose can at best create correspondences between concepts of S/T that are
covered by the input mappings to an IO. The more concepts are covered by
an input mapping the more likely it is that they can be interlinked to concepts
in the other ontology. Thus, an intermediate for which mappings only cover a
small portion of S/T are less effective compared to those covering larger portions.
Second, there should be a high overlap of mapped objects in IO, i.e., many IO
concepts should be in both range(MS,IO) and domain(MIO,T ). This is because
new correspondences can only be created if there are intermediate concepts for
the composition. By contrast, a small overlap will only permit the creation of
few correspondences, i.e., small and likely incomplete mappings. Based on these
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Fig. 3. Examples for applying the effectiveness measure

observations we define a measure to rate the effectiveness of a route between
sources S and T via an intermediate IO:

eff(S, IO, T ) =
2 · |range(MS,IO) ∩ domain(MIO,T )|

|S| + |T |
The measure is largely based on the size of the overlap of concepts in the

intermediate ontology, i.e., the larger the overlap the better the effectiveness.
Second, we relate this overlap to the sizes of the ontologies to be matched S and
T . Only mappings with many correspondences can produce a high overlap and a
good coverage of concepts in S and T . Figure 3 shows two examples for applying
the measure. The left example results in a good effectiveness of ( 2·3

4+4 = 0.75)
because the overlap in the intermediate ontology covers a large part of S and
T . By contrast, in the right example there is only one overlapping concept in
the intermediate ontology resulting in a poor effectiveness of 2·1

4+4 = 0.25. The
compose operator would produce the following mappings (without similarity
values): (a) MS,T = {(A,A′), (B,B′), (C,C ′)} and (b) MS,T = {(B,B′)}. This
shows that the better rated intermediate ontology is able to produce more cor-
respondences and thus a more complete mapping.

3.3 Ranking and Selection of Routes

Mapping composition using only one route may lead to insufficient (incomplete)
match results. Composing mappings for several routes via different intermediates
and combining their results is likely to improve the mapping to be determined.
This is because other intermediate sources may provide additional correspon-
dences between the input ontologies. The question thus arises which of the avail-
able routes should be selected for mapping composition. In the following, we
describe two selection strategies that we will also evaluate later.

The first strategy topKByEffectiveness simply uses a ranking based on the
effectiveness measure described in Sect. 3.2. Hence, we perform composition only
on the k most effective routes and combine their results.

The second strategy topKByComplement also selects the most effective route
but selects the remaining routes based on the number of complementary corre-
spondences they can provide. The strategy determines how much additional gains
can be achieved by considering further routes. For instance, if one has to match
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Algorithm 1. topKByComplement
Input: set of intermediates allIO, input ontologies S and T , number of

intermediates to consider k
Output: top intermediates topK

1 topIO ← getMostEffectiveIntermediate(allIO);
2 topK.add(topIO);
3 allIO.remove(topIO);
4 covall ← domain(MS,topIO) ∪ range(MtopIO,T );
5 while |topK| < k do
6 complmax ← ∅;
7 topIO ← null;
8 foreach IO ∈ allIO do
9 complIO ← (domain(MS,IO) ∪ range(MIO,T )) \ covall;

10 if |complIO| > |complmax| then
11 complmax ← complIO;
12 topIO← IO;

13 covall ← covall ∪ complmax;
14 topK.add(topIO);
15 allIO.remove(topIO);

16 return topK;

two anatomy ontologies, an ontology about the skeletal system would be com-
plementary to one about the nervous system or blood circuit. Hence, it makes
sense to consider intermediate ontologies that contain additional knowledge that
others do not provide.

Algorithm 1 shows the implementation of this strategy. It first selects the
most effective intermediate based on our effectiveness measure (lines 1–3). It
then iteratively (while loop) adds the intermediate possessing the maximum
complement (complmax) compared to the already covered objects (covall) in S
and T (lines 5–12). Particularly, we compare the covered concepts of the current
intermediate with the covered concept set (covall) from already selected interme-
diates. In each round we select the intermediate which brings us the maximum
complement. Note that the algorithm could be adapted to not only consider a
fixed number (k) of intermediates. Instead we could stop taking further inter-
mediates into account if their complement does not succeed a given threshold.

3.4 Overall Composition Algorithm

We use the algorithm topKComposeMatch (see Algorithm 2) to perform the com-
position for the k selected intermediates and to combine the composition results
to obtain the overall mapping between two input ontologies.

We first apply our effectiveness measure on each route (line 1). Based on
the given selection strategy (topKByEffectiveness, topKByComplement) we filter
the top k promising intermediates (line 2). We then iteratively compose the
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Algorithm 2. topKComposeMatch
Input: set of possible intermediates allIO, input ontologies S and T , selection

strategy selectionStrategy, merge strategy mergeStrategy, number of
intermediates to consider k

Output: mapping between S and T MS,T

1 allIO ← computeEffectiveness(allIO,S,T);
2 topK ← getTopRoutes(allIO,selectionStrategy,k);
3 mapList ← empty;
4 foreach IO ∈ topK do
5 MS,IO ←getMapping(S,IO);
6 MIO,T ←getMapping(IO,T);
7 mapList.add(compose(MS,IO,MIO,T ));

8 return merge(mapList, mergeStrategy);

mappings between S and T along each selected intermediate (lines 4–7). The
generated mappings are temporarily stored in a mapList and are finally merged
according to a specified merge strategy, such as union or intersection.

4 Advanced Composition Techniques

The compose operator described in Sect. 3.1 is most effective when many concepts
in the intermediate ontology participate in both the first and the second input
mapping. To improve the applicability of composition in less favorable settings
we propose two generalized composition techniques to derive correspondences by
reusing existing mappings. Such techniques can be applied incrementally, i.e., we
would first use the standard compose operator to generate an initial mapping and
then try to find further correspondences with the advanced techniques.

The two strategies we discuss in the following are Semantic Neighborhood
Composition and Multi-Step Composition. We will not evaluate these strategies
in this paper but leave this for future work.

4.1 Semantic Neighborhood Composition

Standard composition joins two correspondences (c1, c2′) and (c2′′, c3) only for
c2′ = c2′′, i.e., if they share a concept in the intermediate ontology. With Seman-
tic Neighborhood composition (SNcompose) we want to relax this condition by
also composing correspondences where c2′ and c2′′ are in close semantic neigh-
borhood, e.g., if there are in a parent, child or sibling relationship. For the exam-
ple in Fig. 4(a), standard composition only derives correspondence (B,B′) via
the shared concept B′′ in the intermediate ontology IO. With SNcompose we can
additionally find out that concept C in S and concept C ′ in T correspond to the
closely related IO concepts C1′′ and C2′′ (that are in a parent-child relationship)
so that the correspondence (C,C ′) may also hold. A similar kind of composi-
tion has already been applied by the taxonomy matcher of the COMA++ [2]
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Fig. 4. Examples for advanced composition techniques

matching tool where a taxonomy is used as an intermediate ontology for repre-
senting background knowledge.

In general, the SNcompose operator can be defined as follows:

MS,T = SNcompose(MS,IO,MIO,T ) =
{(c1, c2, aggSim(sim1, sim2, sim3))|c1 ∈ S, c2 ∈ T, a, b ∈ IO :

∃(c1, a, sim1) ∈ MS,IO ∧ ∃(b, c2, sim2) ∈ MIO,T ∧ ∃neighbor(a, b, sim3) ∈ IO}

It is assumed that the neighbor relation provides an intra-ontology distance or
similarity (sim3) between concepts depending on the type of relationship (parent
of, child of, sibling of) and possibly further criteria such as cardinalities. This
similarity is additionally used to compute the final similarity (aggSim) of the
derived correspondence. However, one should be aware of that the resulting
correspondences may no longer be of type ‘equality’, but that the relationship
between the related concepts in the intermediate ontology may hold (e.g., an
is a relationship between C and C ′ in Fig. 4(a)).

4.2 Multi-Step-Composition

A second strategy to create additional correspondences is the adoption of a
multi-step composition to combine multiple mappings within longer mapping
paths over two or more intermediate ontologies. For the example in Fig. 4(b) we
can only derive correspondence (B,B′) when considering only the composition of
two mappings via a single intermediate ontology such as IO1. Considering longer
mapping routes via the intermediates IO2 and IO3 can help us to identify addi-
tional correspondences. In particular, composing the correspondences (C,C1′)
and (C1′, C2′) and the result with (C2′, C ′) leads to a second correspondence
(C,C ′) between S and T . The idea thus is to apply the standard compose several
times along a complete mapping path between the ontologies to match, i.e., to
determine compose(compose(MS,IO2 ,MIO2,IO3),MIO3,T ) in our example.

There may be many applicable mapping paths of length three or more so that
it becomes even more important to select the most promising one. Our effective-
ness measure introduced in Sect. 3.2 can be generalized to longer routes via
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several intermediates. In general such routes are mapping chains across ontolo-
gies O1, . . . , On with O1 = S and On = T and we can iteratively compute the
overlap in each intermediate ontology. We determine the effectiveness as follows:

eff(O1 . . . On) =
2 · minn−1

i=2 [|range(MOi−1,Oi
) ∩ domain(MOi,Oi+1)|]

|O1| + |On|
We take the minimal overlap since the intermediate with the smallest overlap
restricts the overall effectiveness and a composition path must be represented in
the overlaps of all intermediate ontologies. It is easy to see that the effectiveness
measure for a single intermediate is a special case of the formula. In our evalu-
ation, we will focus on routes with a single intermediate ontology and leave the
evaluation of multi-step composition for future work.

5 Evaluation

We evaluate our approach by composing mappings between anatomy ontolo-
gies. In particular, we focus on generating mappings between the Adult Mouse
Anatomy (MA) and the anatomy part of NCI Thesaurus (NCIT) which is a chal-
lenging task in the yearly OAEI [25] match contest. This has the advantage that
we can use the publicly available OAEI gold standard (perfect mapping) to assess
the quality of computed mappings (using precision, recall and F-measure) and
to compare the achieved results with the published results of other approaches.
Furthermore, we can reuse a lot of already existing mappings, in particular map-
pings provided by BioPortal [33] and mappings that we previously generated
using our GOMMA ontology management infrastructure [20].

We first describe our experimental setup in more detail (Sect. 5.1). We then
correlate the effectiveness measure with the achieved match results by composing
the mappings according to different intermediate ontologies (Sect. 5.2). Finally,
we adopt our selection strategies and present results of performing composition-
based matching via the most promising intermediate ontologies (Sect. 5.4).

5.1 Experimental Setup

The experiment focuses on generating mappings between the ontologies MA (2,737
concepts) and NCIT anatomy part (3,298 concepts) as available in June 2011.
We use 28 input mappings interrelating MA/NCIT via 11 different intermediate
ontologies. The input mappings are separated in two different sets. The first map-
ping set (referred to as Mapping set 1) is taken from the community platform
BioPortal [33] and comprises 20 mappings from MA or NCIT to 10 ontologies
including BRENDA Tissue Ontology (BTO), Cell Line Ontology (CL), Founda-
tional Model of Anatomy (FMA), Galen (Galen), Logical Observation Identifiers
Names and Codes (LOINC), Medical Subject Headings (MeSH), RadLex, Uber
Anatomy Ontology (Uber), Teleost Anatomy (TAO), and ZebraFish Anatomy
(ZF). These mappings have been created with the LOOM match approach [12].
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Table 1. Mappings between MA and NCIT included in the evaluation according to
the two used mapping sets

LOOMtakes all names and synonyms of the ontology concepts as input and returns
concept pairs as matching when one of their name or synonym differ in at most one
character. We use the mappings as provided by the BioPortal web page1.

The second set of mappings (called Mapping set 2) consists of eight mappings
interrelating MA and NCIT with four intermediate ontologies including Unified
Medical Language System (UMLS), Uber, FMA, and Radlex. These mappings
have been automatically created by a GOMMA match process. It uses a high
trigram string similarity between concept name and synonyms to generate cor-
respondences between concepts. Moreover, post-processing steps are applied to
select only the best correspondence(s) per concept (MaxDelta selection (see [8]))
and removal of crossing correspondences [19].

5.2 Route Effectiveness

We focus on routes involving a single intermediate ontology since there are many
such routes. Typically, routes with chains of two or more intermediate ontologies
may result in a reduced effectiveness. Table 1 shows selected statistics for the
considered routes over different intermediates indicated in the columns. The
routes are grouped by mapping set and ordered by the computed effectiveness
(last row) starting with the route having the highest effectiveness. The first two
rows characterize the input mappings for each route by showing the number
of correspondences they comprise. These numbers are very different in both
mapping sets ranging from approx. 1,900 (4,300) of the largest to about 200
(1,000) correspondences of the smallest mapping in Mapping set 1 (Mapping set
2). For the ontologies used in both mapping sets (Uber, FMA, and Radlex), the
mappings in Mapping set 2 are larger than in Mapping set 1.

The third row displays the sizes of the mapping overlap in the intermediate
ontology that is decisive for the effectiveness. In Mapping set 1, the route via
Uber has the largest overlap (1,048 objects) and the highest effectiveness value of
0.35. In Mapping set 2, the number of referenced concepts in the intermediates is
larger resulting in higher effectiveness values, but the relative order Uber, FMA,

1 BioPortal: http://bioportal.bioontology.org, http://rest.bioontology.org.

http://bioportal.bioontology.org
http://rest.bioontology.org
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Fig. 5. Match quality for mapping compositions of routes with a single intermediate
(sorted by effectiveness) for Mapping set 1 (a) and Mapping set 2 (b)

and Radlex remains. However, the route via UMLS has the highest effectiveness
measure (0.67) and, is thus the most promising route for Mapping set 2.

5.3 Correlation of Routes Effectiveness and Composition Quality

Figure 5 correlates the effectiveness (dashed line, z-axis on the right) for each
route with the match quality of the composed mapping in terms of precision,
recall and F-measure (bars, y-axis). The routes are decreasingly ordered by their
effectiveness from left to right and separated for both mapping sets. Overall,
there is an excellent correlation between the effectiveness values and achieved
match quality for both mapping sets. This means that the composed correspon-
dences are indeed valuable and contribute to the match result so that higher effec-
tiveness values translate into higher F-measure values. For instance, for Mapping
set 1 the route via Uber has the best effectiveness and the highest F-measure
of 0.76 whereas the route via TAO with the lowest effectiveness (0.05) results in
the worst F-measure of only 0.16. The same holds for Mapping set 2: the route
via UMLS (Radlex) with the highest (lowest) effectiveness generates a mapping
with the best (worst) F-measure of 0.87 (0.6). Therefore, using the effectiveness
metric is a valid and reliable means to select the intermediate ontology providing
the best match quality.

5.4 Top K Selection and Composition

In the next experiment, we evaluate whether the match quality (F-measure) can
be increased when using the proposed selection strategies topKByEffectiveness
and topKByComplement for selecting k routes and combining their composition
results. We set k to 3 and use union as merge operation in both selection strate-
gies. According to the effectiveness values for each route (see Table 1 and Algo-
rithm 1) we select routes via Uber, FMA, and CL (UMLS, Uber, and FMA) in
Mapping set 1 (Mapping set 2) for the topKByEffectiveness strategy and routes
via Uber, FMA, and Galen (UMLS, Uber, and FMA) in Mapping set 1 (Mapping
set 2) for the topKByComplement strategy. For comparison, we consider several
additional selection strategies. They include the single route with the highest
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F-measure in the mapping set (BestSingle) and the strategies resulting in the
worst (Min3), average (Avg3), and best (Max3) F-measure result for combin-
ing any three routes. Moreover, we computed the combination of all routes per
mapping set (All).

Figure 6 shows the F-measure for all selection strategies and both mapping
sets. The results show that in both cases the topKByComplement strategy focus-
ing on complementary mappings produces the max. possible match quality, i.e.,
it is able to identify the best and most effective composition routes. Interestingly,
doing a compose-based match on only three out of the 10/4 possible routes results
in better match quality than using all available routes since it apparently avoids
wrong correspondences introduced by weaker routes. For instance, in Mapping
set 1 F-measure is increased by 3 % (74.2 % → 77.4 %) compared to the ‘All’
strategy. For Mapping set 2, the F-measure is improved by 0.2 % compared to
‘All’. Using this strategy we participated with GOMMA in the 2011.5 OAEI
contest2. The achieved F-measure of 91.5 % is comparable to the best result in
the OAEI contest (91.7 % F-measure of AgreementMaker [7] in 2011). While the
OAEI contest poses certain restrictions, the participating prototypes did also
exploit background knowledge for the Anatomy test case. Our topKByEffective-
ness strategy shows marginally worse results compared to topKByComplement
(76.2 % vs. 77.4 % for Mapping set 1), apparently since CL complements Uber
and FMA less well than using Galen as intermediate ontology.

6 Related Work

Ontology matching is the process of determining a set of semantic correspondences
(ontology mapping) between concepts of two ontologies. A manual matching by
domain experts is very time-consuming and for large ontologies almost infeasible.
Thus, many (semi-)automatic matching algorithms have been developed for ontol-
ogy matching (see [10,26,27] for surveys). Common match approaches follow a

2 http://oaei.ontologymatching.org/2011.5/.

http://oaei.ontologymatching.org/2011.5/
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direct matching by employing lexical and structural methods; some approaches
also consider the similarity of ontology instances. State-of-the art match systems
such as COMA++ [2], Falcon [16] or SAMBO [21] combine multiple matchers
within a match strategy to achieve better match quality. Results of matching bio-
medical ontologies showed that linguistic matching methods based on the similar-
ity of concept names and synonyms produce very good results [12,35]. To improve
the runtime ofmatching (especially for large ontologies) some systems try to reduce
the search space [17] or perform parallel matching on multiple compute nodes [13].

The composition of mappings has mainly been studied for schemas [9,11] and
in model management [4]. Only a few approaches consider mapping composition
for deriving new mappings in ontology matching. For instance, [34] utilizes FMA
as an intermediate to indirectly generate a mapping between MA and NCIT.
Similarly, the SAMBO system [21] utilizes background knowledge (e.g., UMLS)
to find additional correspondences in the match process. Reference [30] presents
an empirical analysis of mapping composition available in BioPortal. In own
related work [14], we already studied mapping composition. The primary focus of
this work was on match quality (F-measure) by a manual intermediate selection
but not on automatic strategies to select the best intermediates according to
their expected contribution to the overall match quality.

In contrast to these approaches this paper differs in the following points.
First, we apply mapping composition with multiple routes, while most match
approaches only consider one route or purely apply a direct match. Second, we
focus on finding the most valuable routes for mapping composition out of a pool
of possible routes in two different mapping sets. A ranking of routes w.r.t. their
effectiveness allows us to compose mappings for a reduced number of routes
saving time and possibly improving match quality as shown in the evaluation.

7 Conclusion and Future Work

We proposed a new approach to rank and select promising routes for composing
mappings between biomedical ontologies. The introduced effectiveness measure
can be easily computed and allows a reliable identification of the most promis-
ing intermediate ontologies for composition-based ontology matching. We further
proposed the selection of the k top routes and the combination of their composi-
tion results for improved match quality. Our evaluation for an OAEI match task
on large anatomy ontologies showed the effectiveness of the proposed approach.
In particular we found that the effectiveness metric for different routes corre-
lates excellently with their achievable F-measure quality. Furthermore, we found
that the topKByComplement ranking strategy is most effective that combines
the route with the best effectiveness with routes providing most complementary
correspondences. Our approach could effectively exploit existing mappings and
achieved an excellent 91.5 % F-measure for the challenging OAEI anatomy task.
This shows that mapping composition is not only an efficient method to derive
new mappings but can also increase the match quality, e.g., by finding additional
correspondences compared to a direct match approach.
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In future work we plan to apply and extend the approach for other domains,
ontologies and data sources, e.g., matching Linked Data sources. In particular, we
want to investigate inter-linking of instance objects and to consider further cor-
respondence types. We further like to study the discussed advanced composition
techniques in more detail, e.g., longer mapping chains via multiple intermediates.
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