
Semantic Enrichment of Ontology Mappings: Detecting
Relation Types and Complex Correspondences

Patrick Arnold
∗

Universität Leipzig
arnold@informatik.uni-leipzig.de

ABSTRACT
While there are numerous tools for ontology matching, most
approaches provide only little information about the true na-
ture of the correspondences they discover, restricting them-
selves on the mere links between matching concepts. How-
ever, many disciplines such as ontology merging, ontology
evolution or data transformation, require more-detailed in-
formation, such as the concrete relation type of matches or
information about the cardinality of a correspondence (one-
to-one or one-to-many). In this study we present a new ap-
proach where we denote additional semantic information to
an initial ontology mapping carried out by a state-of-the-art
matching tool. The enriched mapping contains the relation
type (like equal, is-a, part-of) of the correspondences as well
as complex correspondences. We present different linguistic,
structural and background knowledge strategies that allow
semi-automatic mapping enrichment, and according to our
first internal tests we are already able to add valuable se-
mantic information to an existing ontology mapping.

Keywords
ontology matching, relation type detection, complex corre-
spondences, semantic enrichment

1. INTRODUCTION
Ontology matching plays a key role in data integration

and ontology management. With the ontologies getting in-
creasingly larger and more complex, as in the medical or
biological domain, efficient matching tools are an important
prerequisite for ontology matching, merging and evolution.
There are already various approaches and tools for ontol-
ogy matching, which exploit most different techniques like
lexicographic, linguistic or structural methods in order to
identify the corresponding concepts between two ontologies
[16], [2]. The determined correspondences build a so-called
alignment or ontology mapping, with each correspondence

∗

25th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 28.05.2013 - 31.05.2013, Ilmenau, Germany.
Copyright is held by the author/owner(s).

being a tripe (s, t, c), where s is a concept in the source ontol-
ogy, t a concept in the target ontology and c the confidence
(similarity).

These tools are able to highly reduce the effort of man-
ual ontology mapping, but most approaches solely focus on
detecting the matching pairs between two ontologies, with-
out giving any specific information about the true nature
of these matches. Thus, a correspondence is commonly re-
garded an equivalence relation, which is correct for a corre-
spondence like (zip code, postal code), but incorrect for cor-
respondences like (car, vehicle) or (tree trunk, tree), where
is-a resp. part-of would be the correct relation type. This re-
striction is an obvious shortcoming, because in many cases
a mapping should also include further kinds of correspon-
dences, such as is-a, part-of or related. Adding these infor-
mation to a mapping is generally beneficial and has been
shown to considerably improve ontology merging [13]. It
provides more precise mappings and is also a crucial aspect
in related areas, such as data transformation, entity resolu-
tion and linked data.

An example is given in Fig. 1, which depicts the basic
idea of our approach. While we get a simple alignment as
input, with the mere links between concepts (above picture),
we return an enriched alignment with the relation type an-
notated to each correspondence (lower picture). As we will
point out in the course of this study, we use different linguis-
tic methods and background knowledge in order to find the
relevant relation type. Besides this, we have to distinguish
between simple concepts (as ”Office Software”) and complex
concepts, which contain itemizations like ”Monitors and Dis-
plays”, and which need a special treatment for relation type
detection.

Another issue of present ontology matchers is their restric-
tion to (1:1)-correspondences, where exactly one source con-
cept matches exactly one target concept. However, this can
occasionally lead to inaccurate mappings, because there may
occur complex correspondences where more than one source
element corresponds to a target element or vice versa, as
the two concepts first name and last name correspond to a
concept name, leading to a (2:1)-correspondence. We will
show in section 5 that distinguishing between one-to-one
and one-to-many correspondences plays an important role
in data transformation, and that we can exploit the results
from the relation type detection to discover such complex
matches in a set of (1:1)-matches to add further knowledge
to a mapping.

In this study we present different strategies to assign the
relation types to an existing mapping and demonstrate how

Figure 1: Input (above) and output (below) of the
Enrichment Engine

complex correspondences can be discovered. Our approach,
which we refer to as Enrichment Engine, takes an ontology
mapping generated by a state-of-the-art matching tool as in-
put and returns a more-expressive mapping with the relation
type added to each correspondence and complex correspon-
dences revealed. According to our first internal tests, we
recognized that even simple strategies already add valuable
information to an initial mapping and may be a notable gain
for current ontology matching tools.

Our paper is structured as follows: We discuss related
work in section 2 and present the architecture and basic
procedure of our approach in section 3. In section 4 we
present different strategies to determine the relation types
in a mapping, while we discuss the problem of complex cor-
respondence detection in section 5. We finally conclude in
section 6.

2. RELATED WORK
Only a few tools and studies regard different kinds of

correspondences or relationships for ontology matching. S-
Match [6][7] is one of the first such tools for ”semantic ontol-
ogy matching”. They distinguish between equivalence, sub-
set (is-a), overlap and mismatch correspondences and try
to provide a relationship for any pair of concepts of two
ontologies by utilizing standard match techniques and back-
ground knowledge from WordNet. Unfortunately, the result
mappings tend to become very voluminous with many corre-
spondences per concept, while users are normally interested
only in the most relevant ones.

Taxomap [11] is an alignment tool developed for the geo-
graphic domain. It regards the correspondence types equiva-

lence, less/more-general (is-a / inverse is-a) and is-close (”re-
lated”) and exploits linguistic techniques and background
sources such as WordNet. The linguistic strategies seem
rather simple; if a term appears as a part in another term,
a more-general relation is assumed which is not always the
case. For example, in Figure 1 the mentioned rule holds
for the correspondence between Games and Action Games,
but not between Monitors and Monitors and Displays. In
[14], the authors evaluated Taxomap for a mapping scenario
with 162 correspondences and achieved a recall of 23 % and
a precision of 89 %.

The LogMap tool [9] distinguishes between equivalence
and so-called weak (subsumption / is-a) correspondences. It
is based on Horn Logic, where first lexicographic and struc-
tural knowledge from the ontologies is accumulated to build
an initial mapping and subsequently an iterative process is
carried out to first enhance the mapping and then to verify
the enhancement. This tool is the least precise one with
regard to relation type detection, and in evaluations the re-
lation types were not further regarded.

Several further studies deal with the identification of se-
mantic correspondence types without providing a complete
tool or framework. An approach utilizing current search
engines is introduced in [10]. For two concepts A, B they
generate different search queries like ”A, such as B” or ”A,
which is a B” and submit them to a search engine (e.g.,
Google). They then analyze the snippets of the search en-
gine results, if any, to verify or reject the tested relation-
ship. The approach in [15] uses the Swoogle search engine
to detect correspondences and relationship types between
concepts of many crawled ontologies. The approach sup-
ports equal, subset or mismatch relationships. [17] exploits
reasoning and machine learning to determine the relation
type of a correspondence, where several structural patterns
between ontologies are used as training data.

Unlike relation type determination, the complex corre-
spondence detection problem has hardly been discussed so
far. It was once addressed in [5], coming to the conclusion
that there is hardly any approach for complex correspon-
dence detection because of the vast amount of required com-
parisons in contrast to (1:1)-matching, as well as the many
possible operators needed for the mapping function. One
key observation for efficient complex correspondence detec-
tion has been the need of large amounts of domain knowl-
edge, but until today there is no available tool being able to
semi-automatically detect complex matches.

One remarkable approach is iMAP [4], where complex
matches between two schemas could be discovered and even
several transformation functions calculated, as RoomPrice =
RoomPrice∗(1+TaxPrice). For this, iMAP first calculates
(1:1)-matches and then runs an iterative process to gradu-
ally combine them to more-complex correspondences. To
justify complex correspondences, instance data is analyzed
and several heuristics are used. In [8] complex correspon-
dences were also regarded for matching web query inter-
faces, mainly exploiting co-occurrences. However, in order
to derive common co-occurrences, the approach requires a
large amount of schemas as input, and thus does not appear
appropriate for matching two or few schemas.

While the approaches presented in this section try to a-
chieve both matching and semantic annotation in one step,
thus often tending to neglect the latter part, we will demon-
strate a two-step architecture in which we first perform a

schema mapping and then concentrate straight on the en-
richment of the mapping (semantic part). Additionally, we
want to analyze several linguistic features to provide more
qualitative mappings than obtained by the existing tools,
and finally develop an independent system that is not re-
stricted to schema and ontology matching, but will be dif-
ferently exploitable in the wide field of date integration and
data analysis.

3. ARCHITECTURE
As illustrated in Fig. 2 our approach uses a 2-step ar-

chitecture in which we first calculate an ontology mapping
(match result) using our state-of-the-art matching tool
COMA 3.0 (step 1) [12] and then perform an enrichment
on this mapping (step 2).

Our 2-step approach for semantic ontology matching offers
different advantages. First of all, we reduce complexity com-
pared to 1-step approaches that try to directly determine the
correspondence type when comparing concepts in O1 with
concepts in O2. For large ontologies, such a direct match-
ing is already time-consuming and error-prone for standard
matching. The proposed approaches for semantic matching
are even more complex and could not yet demonstrate their
general effectiveness.

Secondly, our approach is generic as it can be used for
different domains and in combination with different match-
ing tools for the first step. We can even re-use the tool in
different fields, such as entity resolution or text mining. On
the other hand, this can also be a disadvantage, since the
enrichment step depends on the completeness and quality of
the initially determined match result. Therefore, it is im-
portant to use powerful tools for the initial matching and
possibly to fine-tune their configuration.

Figure 2: Basic Workflow for Mapping Enrichment

The basics of the relation type detection, on which we fo-
cus in this study, can be seen in the right part of Fig. 2. We
provide 4 strategies so far (Compound, Background Knowl-
edge, Itemization, Structure), where each strategy returns
the relation type of a given correspondence, or ”undecided”
in case no specific type can be determined. In the Enrich-
ment step we thus iterate through each correspondence in
the mapping and pass it to each strategy. We eventually
annotate the type that was most frequently returned by the
strategies (type computation). In this study, we regard 4
distinct relation types: equal, is-a and inv. is-a (composi-
tion), part-of and has-a (aggregation), as well as related.

There are two problems we may encounter when comput-
ing the correspondence type. First, all strategies may return

Strategy equal is-a part-of related

Compounding X
Background K. X X X X
Itemization X X
Structure X X

Table 1: Supported correspondence types by the
strategies

”undecided”. In this case we assign the relation type ”equal”,
because it is the default type in the initial match result and
possibly the most likely one to hold. Secondly, there might
be different outcomes from the strategies, e.g., one returns
is-a, one equal and the others undecided. There are different
ways to solve this problem, e.g., by prioritizing strategies or
relation types. However, we hardly discovered such cases so
far, so we currently return ”undecided” and request the user
to manually specify the correct type.

At the present, our approach is already able to fully assign
relation types to an input mapping using the 4 strategies,
which we will describe in detail in the next section. We have
not implemented strategies to create complex matches from
the match result, but will address a couple of conceivable
techniques in section 5.

4. IMPLEMENTED STRATEGIES
We have implemented 4 strategies to determine the type

of a given correspondence. Table 1 gives an overview of the
strategies and the relation types they are able to detect. It
can be seen that the Background Knowledge approach is
especially valuable, as it can help to detect all relationship
types. Besides, all strategies are able to identify is-a corre-
spondences.

In the following let O1, O2 be two ontologies with c1, c2
being two concepts from O1 resp. O2. Further, let C =
(c1, c2) be a correspondence between two concepts (we do
not regard the confidence value in this study).

4.1 Compound Strategy
In linguistics, a compound is a special word W that con-

sists of a head WH carrying the basic meaning of W , and
a modifier WM that specifies WH [3]. In many cases, a
compound thus expresses something more specific than its
head, and is therefore a perfect candidate to discover an is-a
relationship. For instance, a blackboard is a board or an
apple tree is a tree. Such compounds are called endocen-
tric compounds, while exocentric compounds are not related
with their head, such as buttercup, which is not a cup, or saw
tooth, which is not a tooth. These compounds are of literal
meaning (metaphors) or changed their spelling as the lan-
guage evolved, and thus do not hold the is-a relation, or only
to a very limited extent (like airport, which is a port only in
a broad sense). There is a third form of compounds, called
appositional or copulative compounds, where the two words
are at the same level, and the relation is rather more-general
(inverse is-a) than more-specific, as in Bosnia-Herzegowina,
which means both Bosnia and Herzegowina, or bitter-sweet,
which means both bitter and sweet (not necessarily a ”spe-
cific bitter”or a ”specific sweet”). However, this type is quite
rare.

In the following, let A, B be the literals of two con-
cepts of a correspondence. The Compound Strategy ana-
lyzes whether B ends with A. If so, it seems likely that B

is a compound with head A, so that the relationship B is-a
A (or A inv. is-a B) is likely to hold. The Compound ap-
proach allows us to identify the three is-a correspondences
shown in Figure 1 (below).

We added an additional rule to this simple approach: B is
only considered a compound to A if length(B)−length(A) ≥
3, where length(X) is the length of a string X. Thus, we
expect the supposed compound to be at least 3 characters
longer than the head it matches. This way, we are able to
eliminate obviously wrong compound conclusions, like sta-
ble is a table, which we call pseudo compounds. The value
of 3 is motivated by the observation that typical nouns or
adjectives consist of at least 3 letters.

4.2 Background Knowledge
Background knowledge is commonly of great help in on-

tology matching to detect more difficult correspondences,
especially in special domains. In our approach, we intend to
use it for relation type detection. So far, we use WordNet
3.0 to determine the relation that holds between two words
(resp. two concepts). WordNet is a powerful dictionary and
thesaurus that contains synonym relations (equivalence), hy-
pernym relations (is-a) and holonym relations (part-of) be-
tween words [22]. Using the Java API for WordNet Search
(JAWS), we built an interface that allows to answer ques-
tions like ”Is X a synonym to Y?”, or ”Is X a direct hyper-
nym of Y?”. The interface is also able to detect cohyponyms,
which are two words X,Y that have a common direct hyper-
nym Z. We call a correspondence between two cohyponyms
X and Y related, because both concepts are connected to
the same father element. For example, the relation between
apple tree and pear tree is related, because of the common
father concept tree.

Although WordNet has a limited vocabulary, especially
with regard to specific domains, it is a valuable source to
detect the relation type that holds between concepts. It al-
lows an excellent precision, because the links in WordNet are
manually defined, and contains all relation types we intend
to detect, which the other strategies are not able to achieve.

4.3 Itemization
In several taxonomies we recognized that itemizations ap-

pear very often, and which cannot be processed with the pre-
viously presented strategies. Consider the correspondence
(”books and newspapers”, ”newspapers”). The compound
strategy would be mislead and consider the source concept
a compound, resulting in the type ”is-a”, although the op-
posite is the case (inv. is-a). WordNet would not know the
word ”books and newspapers” and return ”undecided”.

Itemizations thus deserve special treatment. We first split
each itemization in its atomic items, where we define an item
as a string that does not contain commas, slashes or the
words ”and” and ”or”.

We now show how our approach determines the correspon-
dence types between two concepts C1, C2 where at least one
of the two concepts is an itemization with more than one
item. Let I1 be the item set of C1 and I2 the item set of
C2. Let w1, w2 be two words, with w1 6= w2. Our approach
works as follows:

1. In each set I remove each w1 ∈ I which is a hyponym
of w2 ∈ I.

2. In each set I, replace a synonym pair (w1 ∈ I, w2 ∈ I)

by w1.

3. Remove each w1 ∈ I1, w2 ∈ I2 if there is a synonym
pair (w1, w2).

4. Remove each w2 ∈ I2 which is a hyponym of w1 ∈ I1.

5. Determine the relation type:

(a) If I1 = ∅, I2 = ∅: equal

(b) If I1 = ∅, |I2| ≥ 1: is-a
If I2 = ∅, |I1| ≥ 1: inverse is-a

(c) If |I1| ≥ 1, I2 ≥ 1: undecided

The rationale behind this algorithm is that we remove items
from the item sets as long as no information gets lost. Then
we compare what is left in the two sets and come to the
conclusions presented in step 5.

Let us consider the concept pair C1 = ”books, ebooks,
movies, films, cds” and C2 =”novels, cds”. Our item sets are
I1 = {books, ebooks,movies, films, cds}, I2 = {novels, cds}.
First, we remove synonyms and hyponyms within each set,
because this would cause no loss of information (steps 1+2).
We remove films in I1 (because of the synonym movies)
and ebooks in I1, because it is a hyponym of books. We have
I1 = {books,movies, cds} , I2 = {novels, cds}. Now we re-
move synonym pairs between the two item sets, so we remove
cds in either set (step 3). Lastly, we remove a hyponym in I1
if there is a hypernym in I2 (step 4). We remove novel in I2,
because it is a book. We have I1 = {books,movies} , I2 = ∅.
Since I1 still contains items, while I2 is empty, we conclude
that I1 specifies something more general, i.e., it holds C1

inverse is-a C2.
If neither item set is empty, we return ”undecided”because

we cannot derive an equal or is-a relationship in this case.

4.4 Structure Strategy
The structure strategy takes the structure of the ontolo-

gies into account. For a correspondence between concepts
Y and Z we check whether we can derive a semantic rela-
tionship between a father concept X of Y and Z (or vice
versa). For an is-a relationship between Y and X we draw
the following conclusions:

• X equiv Z → Y is-a Z

• X is-a Z → Y is-a Z

For a part-of relationship between Y and X we can analo-
gously derive:

• X equiv Z → Y part-of Z

• X part-of Z → Y part-of Z

The approach obviously utilizes the semantics of the intra-
ontology relationships to determine the correspondence types
for pairs of concepts for which the semantic relationship can-
not directly be determined.

4.5 Comparison
We tested our strategies and overall system on 3 user-

generated mappings in which each correspondence was tagged
with its supposed type. After running the scenarios, we
checked how many of the non-trivial relations were detected
by the program. The 3 scenario consisted of about 350

.. 750 correspondences. We had a German-language sce-
nario (product catalogs from online shops), a health scenario
(diseases) and a text annotation catalog scenario (everyday
speech).

Compounding and Background Knowledge are two inde-
pendent strategies that separately try to determine the rela-
tion type of a correspondence. In our tests we saw that Com-
pounding offers a good precision (72 .. 97 %), even without
the many exocentric and pseudo-compounds that exist. By
contrast, we recognized only moderate recall, ranging from
12 to 43 %. Compounding is only able to determine is-a
relations, however, it is the only strategy that invariably
works.

Background Knowledge has a low or moderate recall (10 ..
50 %), depending on the scenario at hand. However, it offers
an excellent precision being very close to 100 % and is the
only strategy that is able to determine all relation types we
regard. As matter of fact, it did not work on our German-
language example and only poorly in our health scenario.

Structure and Itemization strategy depend much on the
given schemas and are thus very specific strategies to han-
dle individual cases. They exploit the Compound and Back-
ground Knowledge Strategy and are thus not independent.
Still, they were able to boost the recall to some degree.

We realized that the best result is gained by exploiting
all strategies. Currently, we do not weight the strategies,
however, we may do so in order to optimize our system. We
finally achieved an overall recall between 46 and 65 % and
precision between 69 and 97 %.

5. COMPLEX CORRESPONDENCES
Schema and ontology matching tools generally calculate

(1:1)-correspondences, where exactly one source element
matches exactly one target element. Naturally, either el-
ement may take part in different correspondences, as in
(name, first name) and (name, last name), however, having
these two separate correspondences is very imprecise and the
correct mapping would rather be the single correspondence
((first name, last name), (name)). These kind of matches
are called complex correspondences or one-to-many corre-
spondences.

The disambiguation between a complex correspondence
or 2 (or more) one-to-one correspondences is an inevitable
premise for data transformation where data from a source
database is to be transformed into a target database, which
we could show in [1]. Moreover, we could prove that each
complex correspondence needs a transformation function in
order to correctly map data. If elements are of the type
string, the transformation function is normally concatena-
tion in (n:1)-matches and split in (1:n)-matches. If the el-
ements are of a numerical type, as in the correspondence
((costs), ((operational costs), (material costs), (personnel
costs))), a set of numerical operations is normally required.

There are proprietary solutions that allow to manually
create transformation mappings including complex corre-
spondences, such as Microsoft Biztalk Server [19], Altova
MapForce [18] or Stylus Studio [20], however, to the best
of our knowledge there is no matching tool that is able to
detect complex correspondences automatically. Next to rela-
tion type detection, we therefore intend to discover complex
correspondences in the initial mapping, which is a second
important step of mapping enrichment.

We already developed simple methods that exploit the

Figure 3: Match result containing two complex cor-
respondences (name and address)

structure of the schemas to transform several (1:1)-corres-
pondences into a complex correspondence, although these
approaches will fail in more intricate scenarios. We used
the structure of the schemas and the already existing (1:1)-
matches to derive complex correspondences. Fig. 3 demon-
strates this approach. There are two complex correspon-
dences in the mapping, ((First Name, Last Name), (Name))
and ((Street, City, Zip Code, Country), Address), repre-
sented by simple (1:1)-correspondences. Our approach was
able to detect both complex correspondences. The first one
(name) was detected, because first name and last name can-
not be mapped to one element at the same time, since the
name element can only store either of the two values. The
second example (address) is detected since schema data is
located in the leaf nodes, not in inner nodes. In database
schemas we always expect data to reside in the leaf nodes,
so that the match (Address, Address) is considered unrea-
sonable.

In the first case, our approach would apply the concatena-
tion function, because two values have to be concatenated to
match the target value, and in the second case the split func-
tion would be applied, because the Address values have to
be split into the address components (street, city, zip code,
country). The user needs to adjust these functions, e.g., in
order to tell the program where in the address string the
split operations have to be performed.

This approach was mostly based on heuristics and would
only work in simple cases. Now that we are able to de-
termine the relation types of (1:1)-matches, we can enhance
this original approach. If a node takes part in more than one
composition relation (part-of / has-a), we can conclude that
it is a complex correspondence and can derive it from the
(1:1)-correspondences. For instance, if we have the 3 corre-
spondences (day part-of date), (month part-of date), (year
part-of date) we could create the complex correspondence (
(day, month, year), date).

We have not implemented this approach so far, and we as-
sume that detecting complex correspondences and the cor-
rect transformation function will still remain a very challeng-
ing issue, so that we intend to investigate additional methods
like using instance data to allow more effectiveness. How-
ever, adding these techniques to our existing Enrichment
Engine, we are able to present a first solution that semi-
automatically determines complex correspondences, which
is another step towards more precise ontology matching, and
an important condition for data transformation.

6. OUTLOOK AND CONCLUSION
We presented a new approach to semantically enrich ontol-

ogy mappings by determining the concrete relation type of a
correspondence and detecting complex correspondences. For
this, we developed a 2-step architecture in which the actual
ontology matching and the semantic enrichment are strictly
separated. This makes the Enrichment Engine highly generic
so that it is not designed for any specific ontology matching
tool, and moreover, can be used independently in various
fields different from ontology matching, such as data trans-
formation, entity resolution and text mining.

In our approach we developed new linguistic strategies
to determine the relation type, and with regard to our first
internal tests even the rather simple strategies already added
much useful information to the input mapping. We also
discovered that some strategies (Compounding, and to a less
degree Itemization and Structure) are rather independent
from the language of the ontologies, so that our approach
provided remarkable results both in German and English-
language ontologies.

One important obstacle is the strong dependency to the
initial mapping. We recognized that matching tools tend to
discover equivalence relations, so that different non-equiva-
lence correspondences are not contained by the initial map-
ping, and can thus not be detected. It is future work to
adjust our tool COMA 3.0 to provide a more convenient in-
put, e.g., by using relaxed configurations. A particular issue
we are going to investigate is the use of instance data con-
nected with the concepts to derive the correct relation type
if the other strategies (which operate on the meta level) fail.
This will also result in a time-complexity problem, which we
will have to consider in our ongoing research.

Our approach is still in a rather early state, and there
is still much space for improvement, since the implemented
strategies have different restrictions so far. For this reason,
we will extend and fine-tune our tool in order to increase
effectiveness and precision. Among other aspects, we intend
to improve the structure strategy by considering the entire
concept path rather than the mere father concept, to add
further background knowledge to the system, especially in
specific domains, and to investigate further linguistic strate-
gies, for instance, in which way compounds also indicate the
part-of relation. Next to relation type detection, we will also
concentrate on complex correspondence detection in data
transformation to provide further semantic information to
ontology mappings.

7. ACKNOWLEDGMENT
This study was partly funded by the European Commis-

sion through Project ”LinkedDesign” (No. 284613 FoF-ICT-
2011.7.4).

8. REFERENCES
[1] Arnold P.: The Basics of Complex Correspondences

and Functions and their Implementation and
Semi-automatic Detection in COMA++ (Master’s
thesis), University of Leipzig, 2011.

[2] Bellahsene., Z., Bonifati, A., Rahm, E. (eds.): Schema
Matching and Mapping, Springer (2011)

[3] Bisetto, A., Scalise, S.: Classification of Compounds.
University of Bologna, 2009. In: The Oxford Handbook
of Compounding, Oxford University Press, pp. 49-82.

[4] Dhamankar, R., Yoonkyong, L., Doan, A., Halevy, A.,
Domingos, P.: iMAP: Discovering Complex Semantic
Matches between Database Schemas. In: SIGMOD ’04,
pp. 383–394

[5] Doan, A., Halevy, A. Y.: Semantic Integration
Research in the Database Community: A Brief Survey.
In AI Mag. (2005), pp. 83–94

[6] Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match:
An Algorithm and an Implementation of Semantic
Matching. Proceedings of the European Semantic Web
Symposium (2004), LNCS 3053, pp. 61–75

[7] Giunchiglia, F., Autayeu, A., Pane, J.: S-Match: an
open source framework for matching lightweight
ontologies. In: Semantic Web, vol. 3-3 (2012), pp.
307-317

[8] He, B., Chen-Chuan Chang, H., Han, J.: Discovering
complex matchings across web query interfaces: A
correlation mining approach. In: KDD ’04, pp. 148–157

[9] Jiménez-Ruiz, E., Grau, B. C.: LogMap: Logic-Based
and Scalable Ontology Matching. In: International
Semantic Web Conference (2011), LNCS 7031, pp.
273–288

[10] van Hage, W. R., Katrenko, S., Schreiber, G. A
Method to Combine Linguistic Ontology-Mapping
Techniques. In: International Semantic Web Conference
(2005), LNCS 3729, pp. 732–744

[11] Hamdi, F., Safar, B., Niraula, N. B., Reynaud, C.:
TaxoMap alignment and refinement modules: Results
for OAEI 2010. Proceedings of the ISWC Workshop
(2010), pp. 212–219

[12] Massmann, S., Raunich, S., Aumueller, D., Arnold, P.,
Rahm, E. Evolution of the COMA Match System. Proc.
Sixth Intern. Workshop on Ontology Matching (2011)

[13] Raunich, S.,Rahm, E.: ATOM: Automatic
Target-driven Ontology Merging. Proc. Int. Conf. on
Data Engineering (2011)

[14] Reynaud, C., Safar, B.: Exploiting WordNet as
Background Knowledge. Proc. Intern. ISWCŠ07
Ontology Matching (OM-07) Workshop

[15] Sabou, M., d’Aquin, M., Motta, E.: Using the
semantic web as background knowledge for ontology
mapping. Proc. 1st Intern. Workshop on on Ontology
Matching (2006).

[16] Shvaiko, P., Euzenat, J.: A Survey of Schema-based
Matching Approaches. J. Data Semantics IV (2005),
pp. 146–171

[17] Spiliopoulos, V., Vouros, G., Karkaletsis, V: On the
discovery of subsumption relations for the alignment of
ontologies. Web Semantics: Science, Services and
Agents on the World Wide Web 8 (2010), pp. 69-88

[18] Altova MapForce - Graphical Data Mapping,
Conversion, and Integration Tool.
http://www.altova.com/mapforce.html

[19] Microsoft BizTalk Server.
http://www.microsoft.com/biztalk

[20] XML Editor, XML Tools, and XQuery - Stylus
Studio. http://www.stylusstudio.com/

[21] Java API for WordNet Searching (JAWS),
http://lyle.smu.edu/~tspell/jaws/index.html

[22] WordNet - A lexical database for English,
http://wordnet.princeton.edu/wordnet/

