
A New Distributed Optimistic Concurrency Control Method and

a Comparison of its Performance with Two-Phase Locking

Abstract

Alexander Thomasian
IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598, USA

The performance of high-volume transaction processing
systems is determined by the degree of contention for
hardware resources as well as data. Data contention is es
pecially a problem in the case of data partitioned (e.g., dis
tributed) systems with global transactions accessing and
updating objects from multiple systems. While the conven
tional two-phase locking (2PL) method of centralized sys
tems can be adapted to data partitioned systems. it may
restrict system throughput to levels inconsistent with the
available processing capacity. This is clue to a significant
increase in lock holding times and associated transaction
waiting time1' for locks in distributed data partitioned sys
tems, as compared to centralized systems. Optimistic con
currency control (OCC) is similarly extensible to data
partitioned systems, but has the disadvantage of repeated
transaction restarts, which is a weak point of currently pro
posed methods. We present a new distributed OCC method
followed by locking, such that locking is an integral part of
distributed validation and two-phase commit. This OCC
method assures that a transaction failing its validation will
not be re-executed more than once. in general. Furthermore
deadlocks, which are difficult to handle in a distributed en
vironment, are avoided by serializing lock requests. We
outline implementation details and compare the perform
ance of the new scheme with distributed 2PL through a de
tailed simulation, which incorporates queueing effects at the
devices of the computer systems, buffer management, con
currency control, and commit processing. It is shown that
in the case of higher data contention levels, the hybrid OCC
method allows a much higher maximum transaction
throughput than distributed 2PL. We also report the per
formance of the new method with respect to variable size
transactions. It is shown that by restricting the number of
r·estarts to one, the performance achieved for variable size
transactions is comparable to fixed size transactions with
the same mean size.

1. Introduction
Since the original proposal of optimistic concurrency control
in 1979 [9], a large number of OCC schemes have been
proposed for centralized and distributed database systems
(see [14] for an overview). Though virtually all commercial
database management systems still use two-phase locking

(2PL) for synchronizing database accesses, OCC protocols
have been implemented in several prototypes, particularly
for distributed environments [18], [4], [6], [11], and [12]. In
this paper we propose a hybrid OCC scheme for transaction
processing in partitioned database systems (including dis
tributed databases) that uses commit duration locking to
guarantee global serializability [2] and to reduce lock con
tention compared to standard locking.

A main advantage of OCC methods compared to 2PL is that
they are deadlock-free, since deadlock detection schemes
for distributed database systems tend to be complex and

CH2878-7/90/0000/0294$01.00 © 1990 IEEE
294

Erhard Rahm
Univ. Kaiserslautern
FB lnformatik, Postfach 3049
6750 Kaiserslautern, West Germany

have frequently been shown to be incorrect [7]. Alternative
deadlock resolution schemes are prevention and time-out
techniques. The difficulty with time-outs is the determi
nation of an appropriate time-out interval. Several
deadlock-free locking schemes such as wound-wait and
wait-die [2] have been proposed, but their performance in
distributed database systems requires further investigation.
Furthermore high performance requirements may not be
satisfiable with 2PL, particularly since higher lock contention
levels have to be anticipated in distributed database sys
tems. This is because the total number of concurrent
transactions activated (Multi-Programming Levei-MPL) is
further increased with the number of systems, thus raising
the lock conflict probability. The lock contention probability
is further increased due to the increase in lock holding
times, which is due to the extra delays introduced by inter
system communication.

An important issue in OCC is the efficiency of the validation
method. The simple validation scheme first proposed in [9]
(for centralized systems) causes an unnecessarily high
number of restarts, which can be prevented, e.g., by using
timestamps for conflict detection [20], [13]. There have been
several extensions of the original validation method to a
distributed environment (see e.g., [3] and [1]) ([1] uses ver
sioning to improve performance for read-only transactions).
With longer transactions or a higher frequency of update
accesses these schemes generally cause an intolerably
high number of restarts and are susceptible to 'starvation'
(i.e., transactions may never succeed due to repeated re
starts). To overcome these problems, some authors pro
posed a combination of locking and OCC (see e.g. [10])
where transactions may be synchronized either pessimis
tically or optimistically. Though this is a step in the right
direction, the resulting schemes are no longer deadlock-free
and may be difficult to control for real applications.

The proposed OCC protocol offers substantial benefits over
existing OCC schemes and can be used for high perform
ance transaction processing in distributed and especially
data-partitioned or shared-nothing systems. The protocol to
be described exhibits the following characteristics:

Before global validation is performed, the validating
transactions request appropriate locks for all items ac
cessed. Locks are only held during commit time (if val
idatron' is s!iccessful) so that lock conflicts are far less
likely than with standard locking.

• If validation should fail, all acquired locks are retained
by the transaction while being executed again (the sec
ond execution tends to be much faster than the first one
as is explained in Section 4). This kind of "pre-claiming"
guarantees that the second execution will be successful
if no new objects are referenced. In ltris way, frequent
restarts as well as starvation can be prevented.

The lock requests do not cause any additional mes
sages.

Deadlocks can be avoided by requesting the locks re
quired by a transaction in an appropriate order.

The protocol is fully distributed.

One key concept utilized here is phase-dependent control
[5], i.e., a transaction is allowed to have multiple execution
phases, with different concurrency control methods in dif
ferent phases, e.g., optimistic CC in the first phase and
locking in the second phase. Even if a transaction is known
to be conflicted, its execution is continued in virtual exe
cution mode, despite the fact that it cannot complete suc
cessfully. While CPU processing is mainly wasted in the
virtual execution mode, disk 1/0 (and CPU processing re
quired for disk 1/0) in fact results in fetching data, which will
be referenced after the transaction is restarted. This pre
fetching of required data is specially valuable when we have
access invariance [5], i.e., the property that a transaction
will find the set of objects required for its re-execution in the
database buffer (the transaction may access the same set
of objects or at least related objects which will have been
pre-fetched). Another benefit of virtual execution is the
possibility of determining the locks which a transaction
should acquire in a second execution phase (if any) [5]. The
present paper describes an algorithm which permits an effi
cient use of the latter property in a distributed environment.

A key measure of the success of the proposed method is its
relative performance compared to 2PL. An experiment to
compare OCC and 2PL using the em· experimental system
at CMU was reported in [17]. This experiment was incon
clusive in that both CC methods achieved a similar per
formance. This was due to a system-specific bottleneck,
which resulted in the maximum transaction throughput be
ing attained at a rather low degree of concurrency. Another
experiment [8), indicated the superior performance of dis
tributed OCC with respect to distributed 2PL, but was limited
to two nodes and the resu Its were influenced by the fact that
1/0 constituted a bottleneck. A simulation study was under
taken as part of this effort, although an approximate analysis
based on the approach in [20] (for a centralized system) is
feasible. The problem with an approximate analytic solution
is that it requires simplifying modeling assumptions to make
the analysis tractable and that a simulation of the system
would be required in any case for validation purposes.

The next section describes the model for the computer sys
tems, the database, and transactions considered in this pa
per. General validation strategies for OCC in distributed
databases are then reviewed in Section 3. Our proposed
protocol, which is based on a distributed validation scheme
is outlined in Section 4. In Section 5 we describe the simu
lation model and compare the performance of 2PL and the
new OCC method. Conclusions appear in Section 6.

2. System and Transaction Processing Model

Though our protocols are in principle applicable to a wide
range of distributed database systems, we restrict our dis
cussion to locally distributed systems with no data repli
cation, i.e., a partitioned database. This is because of the
practical significance of shared-nothing systems based on
multi-micro systems. The proximity of the processors per
mits a high-speed interconnect generally required for high
performance transaction systems as well a's a flexible load
distribution, e.g., via a front-end processor. Replicated da
tabases are less desirable in a local environment where
read accesses against the partition of another node are sat
isfied much faster than in a geographically distributed sys
tem. Additionally data availability can be easily improved
~y mirrored disks and by attaching every disk drive to at
least two nodes (so that after a node crasl1 the correspond
ing database partition can still be accessed).

295

A transaction arriving at the system is routed by a front-end
processor to the system which holds relevant data. This
node will constitute the primary node of transaction exe
cution. In case the transaction references data which is not
available locally basically two approaches called database
call shipping and //0 request shipping can be chosen [22].
With the former approach, the database operations are al
ways executed by sub-transactions or cohort processes
where the data objects reside. With 1/0 request shipping.
on the other hand, the required data is sent to the primary
node where it is processed (e.g., a capability provided by
Tandem's file system). While the proposed CC method is
applicable to both approaches, in this paper, we will con
centrate on the 1/0 request shipping approach, which was
reported to allow for better performance than the databasro
call shipping alternative when a high communication b<Ind
width is available [22]. A main reason for this was that d<I
tabase call shipping gives little flexibility for transaction
routing, since a node must process all operations against its
database partition. The partitioning of the database affects
the frequency of inter-system communication and CPU utili
zation and hence the overall performance.

Similarly to the OCC protocol in a centralized system, in our
scheme a transaction is processed in three phases: a read
phase, a validation phase and a write phase if the validation
was successful [9]. The last two phases are initiated at the
end of transaction execution (EOT) and are combined here
with the distributed two-phase commit protocol in order to
avoid extra messages (see Section 3).

3. Validation Strategies for Distributed Databases
The simplest OCC protocol for distributed databases would
be a central validation scheme where all validations are
sequentially performed at a central system. This approach
is not considered here since it introduces a potential per
formance bottleneck, as well as a single point of failure.
Furthermore, extra messages are required for sending the
validation requests to the central node.

In the distributed validation scheme, a transaction generally
validates at all nodes which were involved in its read phase
(i.e., which control the partitions that were accessed by the
transaction). As a consequence, a transaction can be proc
essed without any inter-system communication when it has
referenced only 'local' data objects being stored at its pri
mary node. For global transactions (i.e., transactions that
have referenced multiple partitions) validation and write
phases can be integrated into the two-phase commit proto
col (required to ensure the atomicity of the transaction) in
order to avoid additional messages:

At EOT when all database operations of the transaction
have been executed, the (transaction manager at the)
primary node of transaction execution acts as a coordi
nator for commit processing and sends a PREPARE
message to all nodes involved in the execution of the
transaction (after logging a prepare or pre-commit re
cord). This message is now also used as a validation
request and to return the modified database objects of
external partitions to the owner systems. Upon receiv
ing this message, a node performs local validation on
behalf of the requesting transaction where it is checked
whether or not local serializability is affected. If local
validation is successful, the modifications of local data
base objects as well as a pre-commit or ready record
are logged and an O.K. message is sent to the coordi
nator node. Otherwise, a FAILED message is returned
and the node forgets about the transaction.

• The second phase of the commit protocol starts after the
coordinator node has received all response messages.

If all local validations were successful, a commit record
is logged and COMMIT messages are sent to the nodes
participating in the commit protocol. The COMMIT
message processing at a remote system consists of
writing a commit log record and updating the database
buffer with modified objects (write phase). If any of the
local validations failed, an ABORT message is sent to
the nodes which voted 'O.K.' and the transaction is.
aborted by simply discarding its modifications.

This basic strategy alone does not ensure correctness since
local serializability of a transaction at all nodes does not
automatically result in global serializability (e.g. a trans
action may precede a second transaction in the serialization
order of one node, but not another). An easy way to sol~
this problem is to enforce that at all nodes the (local) vali
dations of a global transaction are processed in the same
order. In this case, the local serialization orders can be ex
tended to a unique global serialization order without intro
ducing any cycles. The global serialization order is thus
given by the validation order.

In a local environment with a (reliable) broadcast medium,
it is comparatively simple to ensure that validation requests
are processed in the same order at all nodes. Here, a
multi-cast message is used to send the validation request
(including a message to the primary node in case it holds
data accessed by the transaction) and these requests need
to be processed in the order they are received. Other
strategies which are more generally applicable use unique
EOT timestamps or a circulating token to serialize vali
dations (a discussion of such schemes in the context of a
data-sharing system appears in [14]).

Another difficulty for distributed database systems is the
treatment of pre-committed database objects, i.e. modifica
tions of a pre-committed, but not yet committed transaction.
Here, basically three strategies can be pursued [14]:

1. The conventional approach would be to ignore the fact
that a pre-committed object copy exists and to access
the unmodified object version. This, however, leads to
the abort of the accessing transaction in the case when
the pre-committed transaction is successful (since the
modifications of the pre-committed transaction must be
seen by all transactions which are validated later).

2. A more optimistic approach would be to allow accesses
to pre-committed modifications, although it is uncertain
whether or not the locally successfully validated trans
action will succeed at the other systems too. The prob
lem with this approach is that a domino effect
(cascading aborts) may be introduced since uncommit
ted data is accessed. In any case one has to keep track
of the dependencies with respect to pre-committed
transactions and to make sure that a transaction cannot
commit if some of the accessed database modification5
are still uncommitted. Note that this method does not
lead to deadlocks since transactions blocked in the op
timistic mode do not hold any locks.

3. It seems best to block accesses to pre-committed ob
jects until the final outcome of the modifying transaction
is known. In general, these exclusive locks are only
held during commit processing and are released in
phase 2 after transaction commit . On the other hand
this approach contributes to the elongation of the dura
tion of the optimistic first phase, decreasing the chances
of a successful validation.

The results reported in this paper are based on the first ap
proach, since it is the simplest to implement and for the set
of parameters considered in this study resulted in a small
increase in the fraction of transactions failing their validation
compared to the third approach.

296

4. Description of the Hybrid OCC Scheme
Our scheme is based on the distributed validation approach
sketched above and uses exclusive locks to avoid accesses
to pre-committed objects. In order to solve the starvation
problem associated with other OCC schemes, we make ex
tensive use of locking by requesting locks for all objects (not
only for modified ones) at EOT before the validation.' If the
validating transaction is successful, these locks are held
only during commit processing. If the transaction should
fail, the locks are retained during the re-processing of the
transaction and guarantee a successful second execution,
at least if no new objects are accessed. With this technique,
starvation can be avoided for typical transaction processing
applications. This is because of the prevalence of short and
preplanned transaction types in this environment, which
usually access the same set of objects in repeated exe
cutions (high degree of access invariance).

We assume that a multi-cast message (over the broadcast
medium) is used to simultaneously make lock requests and
start the validation phase of a transaction at all systems
concerned and that these requests are processed in the or
der they are received at each node. This not only allows
parallel commit processing (supporting short response
times), but also guarantees global serializability, as well as
avoidance of deadlocks. Deadlocks are avoided since
transactions request all their locks at once and the lock re
quest phases of global transactions are subject to system
wide serialization via a broadcast mechanism.

For lock acquisition we distinguish between read (shared)
and write (exclusive) locks with their usual compatibility
matrix. Validation is performed by using timestamps asso
ciated with objects and by checking whether the object ver
sions seen by a transaction are still up-to-date. This is not
automatically ensured by a successful lock acquisition since
locks are requested after the object accesses, so that un
noted modifications by committed transactions (for which
the locks have already been released at validation time) may
have been performed.

Figure 1 shows the various phases during the execution of
a global transaction for a successful first execution (Figure
1a) as well as for the case of a validation failure (Figure 1b).
As indicated in Figure 1, commit phase 1 consists of a lock
request and validation phase, followed by pre-commit log
ging in the case of a successful local validation. Irrespective
of whether or not the local validation was successful, locks
are requested for all data items accessed and the O.K. or
FAILED message is not returned before all locks are ac
quired. If all local validations were successful, commit
phase 2 is started consisting of the write phase and the re
lease of all locks (Figure 1a). If any validation failed, the
transaction is re-executed under the protection of the ac
quired locks. If no additional objects are accessed in the
second execution, the transaction can be immediately com
mitted at the end of its second read phase and the write
phases and the release of the locks are performed at the
respective nodes. Newly referenced database objects are
subject to a complete commit protocol including lock acqui
sition and validation (not shown in Figure 1 b).

To elaborate, in the case of an access to a new object a
transaction may revert to its first phase, i.e., release all of its
locks and continue its execution in optimistic mode. At the
other extreme it may revert to 2PL and obtain locks only for
the newly referenced objects. The issue of "access vari
ance" and the performance of the fore-mentioned methods
is beyond the scope of this discussion.

A similar idea has been proposed for data sharing (shared disk)
sys_tems, however, assuming a central node performing all vali
dations [16), (15]. In these proposals, locks are acquired at the cen
tral node after a validation has failed.

commit
pMn ,

'"d phaoe ~
PREP~
lock requ...to
vafidation
loclc wait

pre-commit

lock requeo\11
validation
lock wait

P"'-commit

0.~/o.K.

commit { pha.n
2

l commit

/ ~MMIT
write phose write phose
lock release lock releose

a) successful validation

PREPARE

lock reque9l9
val"odation
lock woil

p"'-commil

read
phase 1

lock requests
validation
lock wail

O.~,<ILED
read

phase 2

write phose
lock release

commit

write phose
lock release

b) failed validation

Figure 1: Transaction execution flow
for successful and failed validations

We now provide a more detailed, procedural description of
the rroposed protocol. The identifiers of all objects ac
cessed and modified by a transaction T are denoted as its
read set RS(T) and write set WS(T), respectively (we assume
here that the write set of a transaction is a subset of its read
set). Every system maintains a so-called object table to
process lock and validation requests for objects of its parti
tion. For this purrose, the object table entries keer the fol
lowing information:

OlD:.... {object identifier};
WCT: integer {write counter};
XT: exclusive lock holder transaction;
ST: shareg lock holder transactions;
WL: waiting list (or incompatible lock requests;

297

WCT is a simple counter which is incremented for every
successful object modification and is stored with the object
itself (e.g. database pages) as well as in the object table.
The WCT value in the object table always refers to the most
recent object copy, while the counter value within a given
object copy indicates the version number (or timestamp) of
this copy. The WCT field is used during validation to deter
mine whether or not the object copies accessed by a trans
action are still valid.
Locks are held either by pre-committed transactions or by
already failed transactions during their second execution.
An X-lock indicates that the transaction holding the lock at
tempts to modify the object; in order to prevent unnecessary
rollbacks we may delay object accesses during the read
phase until an X-lock is released (see Section 3). Also, an
X-lock results in the abortion of validating transactions that
have accessed the unmodified object version (before the
lock was set). Read locks are set for accessed objects
which have not been modified. Though these locks are
basically not required for a correct synchronization, they
prevent the object from being updated (invalidated) by other
transactions. Thus they guarantee a successful re-execution
for a failed transaction, provided it accesses only its locked
objects. Incompatible lock requests are appended to the
WL waiting list according to the request order.

We now describe the first commit phase (including lock ac
qu is it ion and validation) of a transaction T at system S. Part
of the processing has to take place within a critical section
(indicated by < < ... > >) against other transactions which
are ready to validate. RS (T,S) and WS (T,S) denote the ob
jects of RS (T) and WS (T), respectively, belonging to the
database partition of S. With wet (x,t) we denote the version
number of the copy of object x as seen by transaction t.

< < VALID:= true;
for all k in RS (T,S) do;

if (X-Iock set or X-request is waiting fork) then
VALID:= false;

if lock conflict then do;
if k in WS (T,S)

then place X-request into waiting list WL;
else place 5-request into WL;

end·
els~ do; {no lock conffict}

if k in WS (T,S)
then XT: = T {acquire X-/ock};
else append T to ST list {acquire S-tock};

end;
{validation}

if wet (k, T) < WCT (k) then VALID : = false;
end;>>
if VALID then do;

wait (if necessary) until all lock requests
at S are granted;

write log information; {pre-commit}
send O.K.;

end;
else do;

wait (if necessary) until all lock requests
at S are granted;

send FAILED;
end;

It is to be noted that all locks for the read and write set ele
ments are requested within the critical section, even if lock
conflicts occur for some requests or the transaction is to be
aborted. This guarantees that deadlocks cannot occur since
all locks are requested atomically with respect to other
transactions, because (i) all locks on a node are requested
in a critical section, (ii) the lock request/validation phases
are processed in the same order at every node. As a
measure of precaution, we even request read locks before

validation although they are only needed to achieve the
pre-claiming effect for failed transactions. If ~ea~ lock re
quests were deferred until after the global valrdatron result
(abort) is known, deadlocks would be possible. Als?, re
questing these lock requests separately could result m ad
ditional communication overhead.

Although we request all locks before the validat!on •. it is to
be emphasized that lock conflicts do not delay valldatron, but
result at first only in appending unsuccessful lock requests
to the wait list. The waiting time for conflicting lock requests
as well as the logging delays occur after the validation and
are not part of the critical section. This is important b~c~use
otherwise transaction throughput could be senously lrmrted,
since the validations are to be performed in the same order
at every node concerned. Therefore, a delay in the critical
section of one node would delay all other validations. The
use of timestamps in fact allows a very efficient validation
with just one comparison per write set element.

The procedure shows that a transaction T is aborted either
if validation fails, i.e., if some of the accessed object copies
have been modified (invalidated) in the meantime, or if such
a modification is planned by a previously validated update
transaction. The latter is indicated by the fact that anottwr
transaction has already requested an X-lock for one of T's
read set elements. However, not every lock conflict results
in the abortion of the requesting transaction. For instance,
when T requests an X-lock and only S-lacks are granted (and
no other X-requests are waiting) then T is not aborted but
waits until the release of the read locks before returning the
O.K. message to the coordinator. For a failed transaction, a
system returns the FAILED message after the transaction
has acquired all of its locks at this node. This message is
also used to transmit the most recent copies of the locked
objects, so that separate 110 requests during the second
execution are avoided. The re-execution of a failed trans
action is started as soon as it has acquired its locks at all
nodes concerned. If no new objects are referenced, the
second execution can be performed without any communi
cation interruptions (since the remote objects were already
obtained) or l/0 delays (if all objects can be held in the da
tabase buffer). As a result, the re-execution of a transaction
should usually be much faster and cheaper than its first ex
ecution. So even for failed transactions comparatively short
lock holding times can be expected. Also, Figure 1 shows
that the number of messages for commit processing does
not increase for failed transactions, in ger1eral, since after
the second execution no validation is required anymore if
no additional objects have been referenced.

Data objects can be buffered remotely (in addition to their
home node) to save remote 1/0 requests. This approach is
quite suitable for an OCC based method, but not for 2PL.
This is because a remote access to acquire a lock is re
quired for 2PL, even if the data is locally available, but this
is not so for OCC. In the case of OCC the buffer contents
do not have to be up-to-date, since accesses to invalidated
objects are detected during validation. The buffer coher
ence problem can be addressed using a buffer invalidate or
refresh policy. This is beyond the scope of this paper.

5. Performance Comparison with Standard Locking
Our comparison will concentrate here mainly on perform
ance aspects, since we are primarily interested in the rela
tive suitability of the protocols for high performance
transaction processing. In terms of fault tolerance, the new
OCC scheme is considered as robust as distributed two
phase locking [2]. since it mainly depends on the robustness
of the commit protocol required in both schemes. The
deadlock freedom of our protocol considerably simplifies the
complexity of an actual implementation.

298

The relative performance of OCC and 2PL is quantified in
this section using a simulation study. In Sections 5.1, 5.2,
and 5.3 we describe the simulation model for: (i) the multi
computer system, (ii) the partitioned database, and (iii1
transactions. Simulation results are reported in Section 5.4

5.1. The Multi-Computer System Model
The system model and the settings for the simulation pa
rameters are as follows:

1-Multi-system configuration. There are N = 4 computer
systems, consisting of tightly-coupled 4-way multiprocess
ors. The total processing capacity per system is varied to
study this effect on the relative performance of 2PL and OCC
methods. We considered 100, 200, and 400 MIPS per system
or 25, 50, 100 MIPS per processor, respectively.

2-lnter-system communication. A high bandwidth bus with
broadcast capability interconnects the computer systems.
The communication delay is assumed to be negligibly small.
We take into account, however, the CPU overhead to send
and receive messages.

3-1/0 subsystem. The 1/0 configuration, more specifically
the number of disks per system, is selected to match the
corresponding CPU processing capacity, such that the ratio
of CPU and disk utilization, taking into account the database
cache hit ratio (see below), is 75/20. Disk accesses are
uniformly distributed (no skew).

4-Database cache. A database cache with a global LRU
policy for caching local data is considered. This implies that
objects are not cached remotely, i.e., non-local objects are
purged upon transaction commit, but are retained in case a
transaction is to be re-executed. Comparative results ob
tained in this study are therefore favorable to 2PL, since re
mote caching would result in a significant improvement in
performance in conjunction with read-only transactions
(queries) for OCC. High contention items (see Section 5.3)
are always in the cache, while the hit ratio for low contention
items is FoB low= 0.50. The cache is large enough such that
data referenced by an in progress or restarted transaction
is not replaced before the transaction is committed.

S-Logging and recovery. Non-volatile (random access) stor
age is available for logging, such that synchronous disk 1/0
for logging is not required. Logging time is therefore an
order-of magnitude smaller than what would be required to
write on disk (such a capability is provided in modern
cached disk controllers). This results in reducing lock hold
ing time for both CC methods.

5.2. Database Access Model
The database model considered in this study is described
below:

1-Database objects. We distinguish high and low contention
data items based on their access frequency by transactions.
The effective database size for each category of data items
at each system is Dhigh = 1000 and D 1ow = 31000. A fraction
Fhigh = 0.25 (resp. F 1ow = 0.75) of all transaction accesses are
to high (resp. low) contention items. High contention data
items, which are thus accessed roughly ten times more fre
quently than low contention items, determine the level of
data contention.

The overall cache hit ratio for a transaction executing for the
first time is: Phit =FoB low X F 1ow + Fh,gh = 0.625. This hit ratio
also applies to nonlocal database accesses.

2-Granularity of locking. The 1/0 request shipping architec
ture postulated in our study requires locking or
timestamping data items (in the first phase of OCC) at the
level of disk blocks.

3-Access mode. Data items are accessed in exclusive
mode, since we are interested in the relative performance
of the two methods. Shared accesses would have resulted
in a reduction in the data contention level (e.g., 50% re
duction in lock conflicts when 70% of accesses are in
shared mode). Note that the same effect can be achieved
by setting Dhigh = 2000 rather than Dhigh = 1000.

5.3. Transaction Processing Model

In this section we describe the characteristics of the trans
actions.

1-Transaction "arrivals". We consider a closed system with
M transactions in each system (and N x M transactions in
the complex), i.e., a completed transaction is immediately
replaced by a new transaction at the same system.

2-Transaction classes. There are multiple transaction
classes based on transaction size, i.e., the number of data
items (ncl accessed by a transaction in class c. Transactions
are introduced into the system with frequencies
f,, c = 1, ... ,C according to what would be expected in a
stream of arriving transactions. Transaction sizes and their
relative frequencies used in our simulation are as follows:
4(0.20), 8(0.20), 16(0.35), 32(0.25). In addition we consider the
case 16(1.0), i.e., a single transaction class with a fixed size
equaling the mean for variable size transactions. This as
sures the same throughput at a single system (or when all
transactions are local) for fixed and variable size trans
actions when there is no data contention thus allowing an
easy comparison. This is not so in the case of a multi
system configuration with global transactions, since variable
size transactions tend to access data at a fewer number of
distinct remote nodes than fixed size transactions on the
average. To be specific, for the set of parameters used in
our simulations fixed (resp. variable) size transactions ac
cess 3.25 (resp. 2.97) nodes on the average, which always
includes the primary node of transaction execution. This
issue is discussed thoroughly in [21].

3-Transaction processing stages.

a-Transaction initialization. This requires CPU processing
only and the path-length for this stage is ''"'" = 100,000 in
structions. If the transaction is restarted due to failed vali
dation or having been selected the victim for deadlock
resolution then ''""' = 50,000.
b-Database processing. There are n steps in this stage,
corresponding to the number of data items accessed from
the database (from local or remote partitions). Each trans
action is routed to a system at which it exhibits a high de
gree of locality. The fraction of local accesses at each
system is F10,.1 = 0.75, while the remaining 1 - F,o,., accesses
are uniformly distributed over the remaining systems.

A data item may be available in the database cache in which
case the path-length per data item is l,.che = 20,000. This in
cludes the overhead for concurrency control. Otherwise
when data has to be accessed from disk, an additional
ldi,. = 5000 instructions are required (the processing required
to retrieve cached data is considered to be negligible). It
takes '••n• = 5000 instructions to send (resp. receive) a mes
sage. Therefore 20,000 instructions are executed for inter
system communication to access remote data.

c-Transaction completion. The CPU processing in this stage
requires /complete= 50,000 instructions. In case a transaction
has accessed local data only, it commits without requiring
a two-phase commit (after local validation in the case of
OCC). Commit processing requires l,omnut = 5000 instructions
to force a log record onto stable storage.

In case multiple systems are involved in processing a
transaction with 2PL, as part of two-phase commit
IP«-commrt = 5000 instructions are executed at the primary node

299

of transaction execution (mainly to write a pre-commit log
record). There is also a per system overhead of !,.". and
!, ... ,,. to send and receive PRECOMMIT messages. Pre
commit processing at secondary nodes from which data was
accessed requires /,.mote= 5000 instructions, which includes
writing pre-commit records. Each remote system after forc
ing modified data onto stable storage sends an ACK mes
sage in the case of 2PL to the primary system, which in turn
sends a COMMIT message to all of the nodes involved after
forcing a commit record onto the log. All systems release
their locks at this point.

The processing in the case of OCC is more complicated as
explained before. If transaction validation is unsuccessful
at any node, it is re-executed at the primary node after the
required data has been locked and an up-to-date copy of all
modified or invalidated data has been made available to the
transaction.

5.4. Simulation Results

A discrete-event simulation program was written to compare
the performance of 2PL and OCC methods. The overall
system throughput for all N systems is the performance
measure of interest in comparing the distributed 2PL and the
new OCC method. Due to symmetry the throughput at each
system is 1/N of the overall throughput. Furthermore, due
to conservation of flow, the throughput for class c trans
actions is a fraction f, of the overall throughput.

To quantify the effect of data contention on system perform
ance, we consider a situation when there is No Data Con
tention (NDC), e.g., we have 2PL or OCC with all accesses
in shared mode. Given in Figure 2 are the transaction
throughputs (in transactions per second) versus the per
system degree of concurrency or MPL for the three cases
where each one of the four systems has a total processing
capacity of 100, 200, and 400 MIPS, respectively. Each graph
depicts the throughput characteristic for NDC, 2PL, and OCC
for fixed and variable transaction sizes. Ea.ch point on the
graphs corresponds to the mean obtained from three runs,
such that the system throughputs measured in different runs
were within 5% of each other (with the exception of the
thrashing region for 2PL). With no data contention a slightly
higher overall throughput is attained in the case of variable
size transactions relative to fixed size transactions. This is
due to the tendency of variable size transactions to access
objects at a fewer number of distinct remote nodes than
fixed size transactions, as noted earlier. This results in re
duced CPU processing for inter-system communication and
a slightly higher throughput for variable size transactions
compared to fixed size transactions.

In the case of NDC as M (the number of activated trans
actions) is increased the system throughput (TNoc(M)) in
creases initially and saturates beyond the point where the
CPU is fully utilized (T,V'00). Such a behavior is typical of a
"well-behaved" multiprogrammed computer system af
fected only by hardware resource contention, but before
bottlenecks in systems software are encountered.

In the case of 2PL the system throughput T,p,(M) initially fol
lows TNoc(M) rather closely, since very few transactions are
blocked and there is little wasted work due to restarts to
resolve deadlocks. As M is increased further the number
of blocked transactions increases gradually, but the wasted
processing due to deadlocks remains small, such that
T2PL(M) < TNoc(M). A peak in transaction throughput is
achieved, followed by a decrease in system throughput,
which constitutes the thrashing region for 2PL (see e.g., [19)
~n~ [2]). The maximum throughput attained by 2PL (T;p•()
tndtcates the best performance attainable by 2PL for the
given degree of data contention.

~

4 100 t.AIPS SYSTEt.AS

F=FIXED SIZE TRANS.
V=VARIABLE SIZE TRANS.

NEW OPTIMISTIC

NO DATA CONTENTION

u_ __ ~ro----J----4~0~--~--~~~---L--~~--~--~
NUMBER OF TRANSACTIONS PER SYSTEM

4 200 t.AIPS SYSTEt.AS

NO DATA CONTENTION

NEW OPTIMISTIC

FcFIXED SIZE TRANS.
V•VARIABLE SIZE TRANS.

40 110 120 ,~ 200

40

NUMBER OF TRANSACTIONS PER SYSTEM

4 400 t.AIPS SYSTEt.AS

NO DATA CONTENTION

NEW OPTIMISTIC

F=FIXED SIZE TRANS.
V=VARIABLE SIZE TRANS.

110 120 100 200

NUMBER OF TRANSACTIONS PER SYSTEM

Figure 2: System throughput (in transactions/sec.)
versus MPL for three cases with 100, 200, and 400
MIPS processing capacity per node.

300

It can be observed that the throughput for 2PL in the case
of variable size transactions is much lower than the corre
sponding throughput for fixed size transactions. This can he
explained as follows [19]: (i) The mean number of locks held
by variable size transactions with a given mean say L tends
to be higher than that of transactions with fixed size L, re
sulting in an increase in the lock conflict probability. (ii) The
mean delay per conflict (waiting for a lock) is also higher
when transaction sizes are variable rather than fixed.

In the case of OCC Tocc(M) follows TNoc(M) initially, but as M
is increased further Tocc(M) < TNoc(M), which is due to the
wasted processing caused by failed validations. The per
formance for OCC is determined by the fraction of trans
actions validated successfully in the first phase. A higher
degradation in performance is thus expected in the case of
variable size transactions, since longer transactions with
OCC are restarted with a higher probability than shorter
transactions on two accounts, which constitutes a quadratic
effect (this fo[lows from the an?lysis in [20]): (i) they access
more data items, (ii) they stay longer in the system and thus
encounter a larger number of transaction commits. The fact
that this effect is negligible in our study is attributable to the
iact that long transactions can be restarted only once. Vari
able size transactions slightly outperform fixed size trans
actions beyond the point where the maximum throughput is
achieved, i.e., the processors become 100% utilized. This
is because of the inherently higher throughput attainable by
variable size transactions. It should be noted that as the
transaction concurrency is increased, the maximum system
throughput for the OCC method is obtained at the point
where the processors are 100% utilized. Increasing the
concurrency beyond this point results in a slight reduction
in throughput, which is due to a decrease in the fraction of
successfully validated transactions.

In comparing 2PL and OCC we have three cases based on
the relative speeds of the processors (Figure 2).

1. In the case of 100 MIPS systems, the 2PL method out
performs the OCC method both for fixed and variable
size transactions.

2. In the case of 200 MIPS systems, 2PL outperforms OCC
in the case of fixed size transactions, but the reverse is
true in the case of variable size transactions.

3. In the case of 400 MIPS systems, OCC outperforms 2PL
for both fixed and variable size transactions. OCC (resp.
2PL) peak at 1490 (resp. 570) transactions per second in
the case of variable size transactions, which is a factor
of 2.7 improvement in the maximum throughput achiev
able by the system.

It follows from the above discussion that this trend continues
for even faster processors. In the limit the mean throughrut
for OCC will be determined by the maximum degree of con
currency for transactions holding locks in the second phase.

Other performance measures ot interest are the (per class)
mean response times and device utilizations. CPU utiliza
tion can be deduced simply in cases when there is no or
little wasted processing (NDC and 2PL) as the product of
system throughput and the mean transaction processing
time at the CPU. The CPU is 100% utilized beyond the point
that the throughput achieves asymptotic behavior in the
case of NDC. In the case of OCC, the CPU is 100% utilized
at the peak system throughput and also beyond that point,
but otherwise CPU utilization can be estimated directly from
the simulation or indirectly from the fraction of transactions
that fail their validation.

Transaction response times are of interest from two view
points: (i) that they are accertably low, and (ii) that they only
increase proportionately to transaction size (and not the
square of transaction size, for examrle). A straightforward

implementation of optimistic CC methods may re~ult in an
excessive number of restarts and long response t1mes, but
this is not a concern for the proposed hybrid OCC method
~inr.e transactions may be restarted only once.

Simulation studies while varying parameters such as: (i) the
level of data contention (as noted earlier), (ii) the number of
systems, (iii) imbalanced transaction loads at each system
and non-uniform remote accesses, yielded results support
ing our conclusions.

6. Conclusions
We presented a new optimistic concurrency control protocol
for distributed high-performance transaction systems. Un
like other proposals for OCC in distributed systems, our
scheme limits the number of restarts by acquiring locks to
guarantee a failed transaction a successful second exe
cution. Lock acquisition as well as validation are imbedded
in the commit protocol in order to avoid any extra messages.
Deadlocks are avoided by requesting all locks at once be
fore performing validation. The protocol is fully distributed
and employs parallel validation and lock acquisition.

A main advantage compared to distributed locking schemes
is that locks are held only during commit processing, in
general, thus considerably reducing the degree of lock con
tention. As simulation results have confirmed, this is of
particular benefit for high-performance transaction process
ing complexes with fast processors. For these environ
ments, the maximum throughput is often limited by lock
contention in the case of pure locking schemes. The new
hybrid OCC protocol, on the other hand, allows significantly
higher transaction throughputs, since the overhead required
for re-executing failed transactions is more affordable than
under-utilizing fast processors. This is also favored by uti
lizing large main memory buffers for caching data objects
from local and remote partitions. As a result, in the new
scheme many re-executions of failed transactions can be
processed without any interruption for local 1/0 or remote
data requests.

This work can be extended in several directions. A more
realistic simulation study would allow shared (in addition to
exclusive) locks and the caching of remote data. It is ex
pected that such a configuration would yield more favorable
results for OCC than 2PL. Another area of investigation is
the performance of the proposed variants of the OCC
method to deal with access variance (see Section 4) with
respect to 2PL.

References
1. D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta.

"Distributed optimistic concurrency control with reduced
rollback," Distributed Computing 2,1 (1987), 45-59.

2. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

3. S. Ceri and S. Owicki. "On the use of concurrency con
trol methods for concurrency control in distributed data
bases," Proc. 6th Berkeley Workshop on Distributed
Data Management and Computer Networks, February
1982, pp. 117-129.

4. D. H. Fishman, M. Lai, and W. K. Wilkinson. "Overview
of the Jasmin database machine," Proc. ACM SIGMOD
Conf. on Management of Data, 1984, pp. 234-239.

5. P. A. Franaszek, J. T. Robinson, and A. Thomasian.
"Access invariance and its use in high-contention envi
ronments," Proc. 7th lnfl Data Engineering Conf., Los
Angeles, CA, February 1990, pp. 47-55.

301

6.

7.

M. L. Kersten and H. Tebra. "Application of an optimistic
concurrency control method," Sonware - Practice and
Experience 14,2 (1984), 153-168.

E. Knapp. "Deadlock detection in distributed data
bases," ACM Computing Surveys 1,4 (December 1987),
303-328.

8. W. J. Kohler and B. P. Jenq. "Performance evaluation
of integrated concurrency control and recovery algo
rithms using a distributed transaction testbed," Proc. 6th
IEEE lnfl Conf. on Distributed Computing Systems,
Boston, Mass. Sept. 1986, pp. 130-139.

9. H. T. Kung and J. T. Robinson. "On optimistic methods
for concurrency control," ACM Trans. on Database Sys
tems 6,2 (June 1981), 213-226 (also Proc. 5th lnfl Conf.
on Very Large Data Bases, 1979).

10. G. Lausen. "Concurrency control in database systems:
a step towards the integration of optimistic methods and
locking," Proc. ACM Annual Conf. 1982, pp. 64-68.

11. M. D. P. Leland and W. D. Roome. "The Silicon database
machine," Proc. 4th lnfl Workshop on Database Ma
chines, Springer-Verlag, 1985, pp. 169-189.

12. s. J. Mullender and A. S. Tanenbaum. "A distributed file
service based on optimistic concurrency control," Proc.
10th ACM Symp. on Operating System Principles, 1985,
pp. 51-62.

13. E. Rahm. "Design of optimistic methods for concurrency
control in database sharing systems," Proc. 7th IEEE lnfl
Conf. on Distributed Computing Systems, West Berlin,
Sept. 1987, pp. 154-161.

14. E. Rahm. "Concepts for optimistic concurrency control
in centralized and distributed database systems" IT
lnformationstechnik 30,1, (1988), pp. 28-47 (in German).

15. E. Rahm. "Empirical performance evaluation of concur
rency and coherency control protocols for data sharing,"
IBM Research Report RC 14325, Yorktown Heights, NY,
December 1988.

16. A. Reuter and K. Shoens. "Synchronization in a data
sharing environment," Unpublished report, IBM San
Jose Research Center, 1984.

17. J. T. Robinson. "Experiments with transaction process
ing on a multi-microprocessor system," IBM Research
Report RC 9725, Yorktown Heights, NY, December 1982.

18. W. D. Roome. "The intelligent store: a content-
addressable page manager," Bell Systems Tech. Jour
nal 61,9 (1982), 2567-2596.

19. I. K. Ryu and A. Thomasian. "Analysis of database per
formance with dynamic locking," IBM Research Report
RC 11428, Yorktown Heights, NY, October 1986 (to ap
pear in the Journal of the ACM).

20. I. K. Ryu and A. Thomasian. "Performance analysis of
centralized databases with optimistic concurrency con
trol," Performance Evaluation 7,3 (1987), 195-211.

21. A. Tho:nasian "On the number of remote sites in dis
tributeo transaction processing," IBM Research Report
RC 15430, Yorktown Heights, NY, January 1990.

22. P. S. Yu, D. W. Cornell, D. M. Dias, and A. Thomasian.
"On coupling partitioned data systems," Proc. 6th IEEE
Int. Conf. on Distributed Computing Systems, Boston,
Mass. Sept. 1986, pp. 148-157.

