
Distributed Optimistic Concurrency Control for
High Performance Transaction Processing

Erhard Rahm
Univ. Kaiserslautern
FB lriformatik, Posifach 3049
6750 Kaherslautern, West Germany 1

Abstract
The performance of high-volume transaction processing systems is
determined by the degree of hardware and data contention. This is
especially a problem in the case of distributed systems with glob~!
transactions accessing and updating objects from multiple systems.
While the conventional two-phase locking method 11f centralized sys
tems can be adapted for concurrency control in distributed systems, it
may restrict system throughput to very low levels. This is due to ~
significant increase in lock holding times and associated transaction
waiting time for locks, as compared to centralized systems. Optimistic
concurrency control (OCC) which is similarly extensible to distributed
systems has the disadvantage of repeated transaction restarts, which is
a weak point of currently proposed methods. We propose a new hy
brid method based on OCC followed by locking, which is an integral
part of distributed validation and two-phase commit. This new OCC
method assures that a transaction failing its validation will not be re
executed more than once, in general. Furthermore deadlocks, which
are difficult to handle in a distributed environment, arc avoided by
serializing lock requests. We outline implementation details and
compare the performance of the new scheme with distributed two
phase locking.

I. Introduction
For the past decade, optimistic concurrency control (O(T) has at
tracted a great deal of attention in the database research community.
Since the original proposal in 1979 f II], a large number of refined and
extended OCC schemes have hecn proposed for cmtralized and dis·
tributed database systems (sec [I 5] for an overview). Though virtually
all commercial database management systems still usc (two-pha"')
locking for synchronizing database accesses, nee protocols have bccn
implemented in several prototypes, particularly for distributed envi
ronments [191, (51, [R[, [131, [141. Also. the (centralized) high perform
ance database system IMS Fast Path actually uses a combination of
OCC and locking for 'hot spot' objects where locks are only hdd
during commit processing to reduce lock contention [7[. In this paper
we propose a similar OCC scheme for distributed transaction systems
that uses commit duration locking to guarantee global scrializability
and to reduce lock contention compared to standard locking.

Existing performance studies for OCC are mostly restricted to cen
tralized database systems and the simple validation scheme from 1111

which causes an unnecessarily high number of restarts (these unncc
cssary rollbacks can be avoided, e.g., by using timestamps for conflict
detection (see [20] and (15]). One of the most comprehensive studies
of this kind is presented in [1]. Their simulation results show that ewn
the simple validation scheme exhibits performance charactc-ristic,;
similar to two-phase locking, except in cases of high CP{ J utilization
(since restarts affect performance more seriously when thc- availahk
CPU capacity is constrained). In [4[, these observations arc confirmccl
for distributed database systems. The main emphasis of this papcr is,

Thi!> work was done while the first author \vas ~~ I JlM Rcsc<uch.

CH2728-4/90/0000/0490$01.00 © 1990 IEEE 490

Alexander Thoma.sian
IB!Jf Thoma.s .!. Wat.mn Reuarch Center
P.O. Box 704
Yorktown lfeights,NY 10598

however, on replicated databases (for which the optimistic approach
allows replication control with fewer messages than 'read-any, write
all' schemes). Another performance comparison of OCC and locking
in distributed database systems is presented in [I 0]. Their experiments,
however, which indicated superior performance for OCC, were limited
to two nodes and were mainly influenced by 1/0 bottlenecks.

A main advantage of the optimistic approach is that it is deadlock-free,
since deadlock detection schemes for distributed database systems tend
to be complex and have frequently been shown to he incorrect (91.
Alternative deadlock resolution schemes, on the other hand, like
avoidance or timeout techniques often suffer from poor flcxihility and
may cause a high number of unnecessary transaction aborts. Opti
mistic protocols also promise a higher degree of concurrency and
shorter response times than locking schemes where lock conflicts result
in the deactivation of transactions. So high performance requirements
may not be satisfiable with standard locking protocols, particularly
since higher lock contention levels have to be anticipated in distributed
database systems. This is because the total number of concurrent
transaction activations (multiprogramming level) increases with the
number of systems thus raising the lock conflict probability. Fur
thermore, inter-system communication delays increase lock holding
times and require higher multiprogramming levels per node in order
to overlap transaction deactivations due to remote requests.

On the other hand, the applicability of optimistic schemes proposed
so far is mainly restricted to environments with moderate conflict
probability. With longer transactions or higher frequency of update
accesses these schemes generally cause an intolerably high number of
restarts and are susceptible to 'starvation' (i.e. transactions may never
succeed due to permanent restart). To overcome these problems, some
authors proposed a combination of locking and nee (e.g., [12] and
[J]). where transaction may he synchronized either pessimistically or
optimistically. Though this is a step in the right direction, the resulting
schemes are no longer deadlock-free and may be difficult to control for
real applications.

In this paper, we propose a new OCC protocol which we believe offers
substantial benefits over existing optimistic schemes and can be used
for high performance transaction processing. The protocol to he de·
scribed exhibits the following main characteristics:

Transactions arc executed optimistically, i .c. they generally do not
have to wait until conflicting transactions release their locks.

Before global validation is performed, the validating transactions
request appropriate locks for all items accessed. I ,ocks arc only
held during commit time (if validation is successful) so that lock
conflicts are far less likely than with standard locking.

If validation should fail, all acquired locks arc retained by the
transaction while being execull'd again. This kind of 'preclaiming'
guarantees that the second execution will he successful if no new
objects arc referenced. In this way, frequent restarts as well as
starvation can be avoided.

The lock requests do not cause any additional messages.

Deadlocks can he avoided by requesting the locks in an appro
priate order.

The protocol is fully distributed.

One key concept utilized here is phase-dependent controlf6l. i.e., a
transaction is allowed to have multiple execution phases, with different
concurrency control methods in different phases. The current papc~
is thus a special case, tailored to distributed systems, with an optimistic
policy in the first phase and locking in the second. Even if a trans
action is known to he conflicted, its execution is continued in virtual
execution mode, despite the fact that it cannot complete successfully.
While CPU processing is mainly wasted in the virtual execution mode,
disk I/0 (and CPU processing required for disk 1/0) in fact results in
fetching data, which will be referenced again after the transaction is
restarted. This prefl'tchinf: of required data is specially valuable when
we have access invariance 161 i.e., the property that a transaction will
]ind the set of objects required for its re-execution in the database
buffer (the transaction may access the same set of objects or at least
related objects which will have been prefetched). Another benefit of
virtual execution studied in 161 for the centralized (non-distributed)
case, is the possibility of determining what locks a transaction may
acquire in a second execution phase (required if validation fails). The
present paper describes an algorithm which permits an efficient usc of
the latter property in a distributed environment.

The next section describes the system and transaction execution model
assumed in this paper. General validation strategies for distributed
databases are then reviewed and discussed in section 3. Our proposed
protocol which is based on a distributed validation scheme is outlined
in section 4. In section 5 we compare the performance of our scheme
with distributed two-phase locking.

2. System and transact;on proce.~sing model
Though our protocols are in principle applicable to a wide range of
distributed database systems, we restrict our considerations here for
definiteness to locally distributed systems without replication (parti
tioned databases). The proximity of the processors permits a high
speed interconnect generally required for high performance transaction
systems as well as a flexible load distribution, e.g., via special front-end
processors. Replicated databases are less desirable in a local environ
ment where read accesses against the partition of another node arc
satisfied much faster than in a geographically distributed system. Ad
ditionally, data availability can he easily improved by mirrored disks
and by attaching every disk drive to at least two nodes (so that after
a node crash the corresponding database partition can still be ac
cessed).

For transaction processing in partitioned database systems basically
two approaches called databa.fe call shippin~: and 1/0 req11e5t .fhif•pin~:

ca.n be chosen [22]. With the former approach, the database oper
ations arc always executed where the data objects reside. The remote
operations of a transaction are usually executed within sub
transactions or cohort processes. With 1/0 request shipping, on the
.?ther hand, all database operations of a transaction are processed at
tis site of origination (i.e. the system at which the transaction arrived
or was routed to) and remote objects are requested from the ow~rr
node. In this paper, we will concentrate on the l/0 request shipping
approach which was reported to allow for better performance than the
dataha~e cal~ shipping alternative when a high communications band
wtdth ts avatlable [22J. A main reason for this was that database call
shipping gives little flexibility for transaction routing since a node must
process all operatio~s ~gainst its database partition. Thus the pcr
forman~e (commumcalton frequency, CPU utilization) with this ap
proach ts largely determined by the static partitioning of tlw database.

Similarly to OCC protocols in centralized database systems, in our
~ch~me a transaction is processed in three phases: a read phase, a val
tdatton phase and _a possible write phase fllj. During the read pha.fe
all database operaltons of a transaction are executed at its site of orig-

491

ination. Accesses to remote objects result in an 1/0 request to the
owner system and the object is stored in the database buffer of the
requesting system. Updates are performed on private object copies
which are only accessible to the modifying transaction. The validation
and write pha.fe are started at the end of the transaction (EOT) and
are here combined with the distributed two-phase commit protocol in
order to avoid extra messages (see below). Validation basically has to
ensure global serializability; conflict resolution generally relies on
aborting transactions as opposed to blocking in locking protocols.
The write phase is only executed by successfully validated update
transactions. In this phase, sufficient log data must he forced to non
volatile storage and the modifications are made visible to other trans
actions by copying the private modifications into the database buffer.

3. Validation strategies .for dist,.;huted OCC

The simplest ace protocol for distributed databases would he a cen
tral validation .fchl'me where all validations are sequentially perfonncd
at a central system. Such an approach is not considered here since it
introduces a potential performance bottleneck, as well as a single point
of failure. Furthermore, extra messages are required for sending the
validation requests to the central node.

In the distributed validation approach, a transaction generally validates
at all nodes which were involved in its read phase (i.e. which control
the partitions that were accessed by the transaction). i\s a conse
quence, a transaction can he processed without any inter-system
communication when it has referenced only 'local' data objects being
stored at its home site. For ~:lobal transaction.f (i.e. transactions that
have referenced multiple partitions) validation and write phases can
be integrated into the two-phase commit protocol (required to ensure
the atomicity of the transaction) in order to avoid additional messages
fl7]:

At EOT when all database operations of the transaction have
been executed, the originator site of the transaction sends a
PREPARE mes.a11:e to all .nodes involved in the transaction's
execution. This message is now also used as a validation reque.ft
and to return the modified database objects of external partitions
to the owner systems. Upon receiving this message, a node per
forms local validation on behalf of the requesting transaction
where it is checked whether or not local serializability is affected.
If a local validation is successful, the modifications of local data:
base objects as well as a pt-e-commit record are logged and an
O.K. message is sent to the coordinator site. Otherwise, a
P AILED message is returned and the site forgets about the
transaction.

The second phase of the commit protocol starts after the coordi
nator site has received all response messages. If all local vali
dations were successful, a commit record is logged and COMMIT
messages are sent to the nodes participating in the commit pro
tocol. The COMMIT message processing at a remote system
consists of writing a commit log record and bringing the modified
objects into the database buffer (write phase). If any of the local
validations failed, an ABORT message is sent to the nodes which
voted 'O.K.' and the transaction is aborted by simply discarding
its modifications. -

This basic strategy alone docs not ensure correctness since local
serializability of a transaction at all nodes docs not automatically result
in global serializability (e.g., a tramaction may precede a ·second
transaction in the serialization order of one nodt', hut not in the sc
~ialization order of another node). i\n easy way to solve this problem
ts to enforce that at all sites the (local) validations of a global trans
action are processed in the same order. In this case, the local serializa
tion orders can he extended to a unique global serialization order
without introducing any cycles. The global serialization order is thus
given by the validation order.

In a local environment with a (reliable) broadcast medium, it is com
paratively simple to ensure that validation requests are processed in the
same order at all sites. Here, a broadcast (or multicast) message is
used for sending the validation request and these requests need just to
be processed in the order they were received 1151. Other strategies,
which are more generally applicable use unique FOT timestamps or
a token-ring topology to serialize validations 1161.
Another difficulty for distributed database systems is the treatment of
pre-committed database object.f, i.e. modifications of a pre-committee!
but not yet committed transaction. Ilcrc, basically three strategies can
be pursued IJ6]:

The conventional approach would he to ignore the fact that a
pre-committed object copy exists and to access the unmodified
object version. This, however, leads to the abortion of the ac
cessing transaction in the case when the pre-committed trans
action is successful (since the modifications of the pre-committed
transaction must be seen by all tramactions which arc validated
later).

A more optimistic approach would be to allow accesses to pre
committed modifications though it is uncertain whether or not
the locally successfully validated transaction will succeed at the
other systems too. The problem with this approach is that a
domino effe_c!_ (cascading al!orts) may be intnll!uccd since un

committed data is accessed. In any case one has to keep track of
the dependencies to pre-committed transactions and to make sure
that a transaction cannot commit if some of the accessed database
modifications arc still uncommitted.

To avoid the problems associated with the two fore-mentioned
strategies, we propose to block accesses to pre-committed objects
until the final outcome of the modifying transaction is known.
In general, these exclusive locks are only held during commit
processing and are released in phase 2 (after the write phase).

4. De.~cription of the admnced OCC scheme

Our scheme is based on the distributed validation approach sketched
above and uses exclusive locks to avoid accesses to pre-committed
objects. In order to solve the starvation problem associated with other
OCC schemes, we make extended use of locking by requesting locks
for all objects (not only for modified ones) at FOT before the vali
dation. A similar idea has been proposed for data sharing (shared
disk) systems, however assuming a central node pc1forming all vali
dations II R] and 1171. In that proposal, locks are acquired at the <Tn
tral node after a validation has fniled. Of course, such a scheme is also
applicable to centralized database systems lliJ. These locks arc held
only during commit processing if the validnting trnnsnction is success
ful. If the transaction should fail, the locks arc retained during the
re-processing of the transaction and guarantee a successful second ex
ecution, at least if no new objects arc accessed. With this technique,
starvation can be avoided for typical transaction processing applica
tions. ·n1is is because of the prevalence of short and preplanncd
transaction types (e.g., debit-credit) in this environment, which usually
access the same set of objects in repeated executions (high degree of
access invariance).

We assume that a broadcast message is used to simultaneously start
the lock request and validation phase of a transaction at all systems
concerned and that these requests arc processed in the order they nrc
received. This allows not only ror a parallel commit processing (sup
porting short response times), but also for guaranteeing global
serializahility (sec above) as well as nvoidance of deadlocks. Deadlocks
arc prevented since transactions request all their locks at once and the
lock request phases of global transactions arc subject to system-wide
serialization via a broadcast mechanism. !'or lock acquisition we dis
tinguish between read (shared) and write (exclusive) locks with their
usual compatibility. Validation is performed by using timestamps as
sociated with objects and by checking whether the object versions seen

IIOIIItlrif
pllan
I

e) succenful validation

I p~~,
PREP~
~ ~
loclrwoll loclrwoll
o.~~H.ED

read
phase 2

commit

write ph ...
lock-

bl1111td nlld•tlan

Figure I: Transaction execution now for successful and failed \'alitlati<llls

492

by a transaction are still up-to-date. This is not automatically ensured
by a successful lock acquisition since locks arc requested after the ob
ject accesses so that unnoted modifications by committed transactions
(for which the locks have already been released at validation time) may
have been performed.

Pigure I shows the various phases during the execution of a global
transaction for a successful first execution (Pigure Ia) as well as forth!'
case of a validation failure (Pigure lb). As indicated in Figure l,
commit phase l consists of a Jock request and validation phase, fol
lowed by pre-commit logging in the case of a successful local vali
dation. .Irrespective of whether or not the local validation was

successful, locks arc requested for ail data items accessed and the O.K.
or PAlLED message is not returned before all locks arc ae<juircd. If
all local validations were successful, commit phase 2 is slatted mn
sisting of the write phase and the release of all Jocks (Figure Ia). If
any validation failed, the transaction is re-executcd under the pro
tection of the acquired locks. If no additional objects arc accessed in
the second execution, ·the transaction can he immediately committed
at the end of its second read phase and the write phases and the release
of the locks arc performed at the respective nodes. Newly referenced
database objects are subject to a complete commit protocol induding
lock acquisition and validation (not shown in Figure lb).

\Ve now provide a more detailed, procedural description of the prn
posed protocol. As mentioned above, we assume an 1/0 rcqllc,;l
shipping approach for accesses to remote data during the read phase
of a transaction. The identifiers of all objects accessed and modified
by a transaction T are denoted as its read set RS(T) and write set
WS(T), respectively (we assume here that the write set of a transaction
is a subset of its read set). Every system maintains a so-called objPct
table to process lock and validation requests for objects of its partition.
For this purpose, the object table entries keep the following in forma·
lion:

OlD: {ob.iect idcntifit•r};
WCT: integer {write cottnft-r};
XT: cxdush·~ lock holder transaction;

ST: shared lock holdt-r transactions;
WL: waiting list for int-ompatibk lock reqttt>Sts;

WCT is a simple counter which is increml"'nted for every successful
object modification and is stored with the object itself (e.g. database
pages) as well as in the object tahlc. The WCT value in the object
table always refers to the most recent object copy, while the counter
value within a given object copy indicates the v"rsion number (or
timestamp) of this copy. The WCT field is nsecf during validation to

determine whether or not the object copies accessed by a transaction
are still valid.
Locks are held either by pre-committed transactions or by already
failed transactions during their second execution. An X-lock indicates
that the transaction holding the lock attempts to modify the object; in
order to avoid unnecessary rollbacks we delay object accesses during
the read phases until an X-lock is released. Also, an X-lock results in
the abortion of validating transactions that have accessed the unmod
ified object version (before the lock was set). Read locks arc set for
accessed objects which have not been modified. Though these locks
are basically not required for a correct synchronization, they prevent
that the object will be updated (invalidated) by other transactions.
Thus they guarantee a failed transaction a successful re-execution if it
accesses only its locked objects. Incompatible lock requests arc ap
pended to the WI, waiting list according to the request order.

We now describe how the lock acquisition and validation phase of a
transaction T at system S is processed during commit phase I. This
processing takes place within a critical section (indicated hy < < ...
> >)against other transactions which are ready to validate. RS (T,S)
and WS (T,S) denote the objects of RS (T) and WS (T). respectively,
belonging to the database partition of S. With wet (x,t) we denote the
version number of the copy of object x as seen by transaction t.

< < VAUD :=true;
for all k in RS (T,S) do;

if (X-lock set or X-rcqucst is waiting fork) lhl'n
VALID:= false;

if lock connict then do;
if k in WS (T,S)

end;

then placl' X-rcqut'St into waiting list WL;
else place S-rcqucst into WL;

else do; {no lock conflict}
if k .in WS (T,S)

then XT; = T {acquirc X-lock};
else append T to ST list (acquireS-lock};

end;
if wet (k,T) < WCT (k) thl'n VALJD : = falst'; (validatiun}

end; > >
ifVAUD then do;

wait (if neces.~ary) until all lock r<'CJUests at S arc grantt'd;
write log information; {prt'-commit)
send O.K.;

end;
else do;

wait (if neees~arv) until all lock rcqn('s(s at S ar(' grant('d;
send FAII,F:D;

end;

It is to be noted that all locks for the read and write set clements arc
requested within the critical section, even if lock confiicts occur for
some requests or the transaction is to 'be aborted. This is required to
avoid deadlocks and since the locks have to be acquired to achieve the
pre-claiming effect for the re-cxccution of a failed transaction. There
fore, as a measure of precaution, even the read locks, only required for
failed transactions, are always requested hef<>re validation. Another
reason is that deferring these lock n:-quests until the validation result
is known could result in deadlocks and/or additional communication
overhead.
Alth(mgh we request all locks before the validation, it is to he em
phasized that lock confiicts do not delay validation hut rcsu.lt at first
only in appending the lock request to the wait list. The waiting time
for conflicting lock requests as well as the logging delays occur after
the validation and are not part of the critical section. This is important
because otherwise transaction rates could seriously be limited since the
validations arc to he performed in the same order at every node mn
cerned. Therefore, a delay in the critical section of one node would
delay all other validations. The usc of timestamps allows in fact a very
efficient validation with just one comparison p<"r write set clement.

493

The procedure shows that a transaction T is aborted eitht•r if vali
dation fails, i.e., if some of the accessed object copies have been
modified (invalidated) in the meantime, or if such a modifitoation is
planned by a previously validated update transaction. The latter is
indicated by the fact that another transaction has already requested an
X-lock for one of T's read set clements. However, not every lock
conflict results in the abortion of the requesting transaction. Por in
stance, when T requests an X-lock and only S-locks arc granted (and
no other X-requests are waiting) then Tis not aborted hut waits until
the release of the read locks before returning the O.K. message to the
coordinator. If T were aborted in this case, then the same waiting time
for the X-lock would occur, hut the transaction also had to be re
executcd.

Por a failed transaction, a system returns the PAlLED message after
the transaction has acquired all of its locks at this node. This message
is also used to transmit the most recent copies of the locked objects
so that .feparate 1/0 reque.fts during the second execution ar·e
pre1•ented. The re-execution of a failed transaction is started as soon
as it has acquired its locks at all nodes concerned. If no new objects
are referenced, the second execution can he performed without any
communication interruptions (since the remote objects were already
obtained) or 1/0 delays (if all objects can be held in main memory).
As a result, the re-execution of a transaction should usually be much
faster and cheaper than its first execution. So even for failed trans
actions comparatively short lock holding times can he expected. Also,
Pigure I shows that the numher of messages for commit processing
does not increase for failed transaction, in general, since after the sec
ond execution no validation is required anymore if no additional ob
jects have been referenced.

Another important advantage not mentioned so far is that remote
objects can be kept in the database buffers to save remote 1/0 requests

for other transactions, too, thus making use of locality of reference.
Note that the buffer contents do not have to be compktcly coherent
since accesses to invalidated objects arc detected during validation.
To eliminate invalidated remote objects from the buffers, information
about which objects have been modified can he asynchronously
broadcast to all nodes (together with other broadcast messages).
Locking schemes cannot take advantage of such a buffering of remote
objects for reducing inter-system communication since they always
have to acquire their locks at the systems controlling the objects.

5. Comparison witlt distributed two-pha.fe locking

Our comparison will concentrate here mainly on performance aspects
since we are primarily interested in the relative suitability of the pro
tocols for high performance transaction processing. In terms of fault
tolerance, our OCC scheme is considered as robust as distributed
two-phase locking 12], since it mainly depe.nds on the robustness of the
commit protocol required in both schemes. The deadlock freedom of
our protocol considerably simplifies the complexity of an actual im
plementation and avoids special fault tokrancc provisions required for
deadlock detection schemes.

The number of me.uage.f required for transaction processing is a pri
mary performance indicator in distributed systems. In this respect, the
hybrid OCC scheme and two-phase locking require about the same
communication overhead for rcmotc l/0 requests and the commit
protocol. The OCC protocol, however, avoids extra messages which
may be required with locking for deadlock detection and it can reduce
the number of remote 1/0 requests by caching remote objects (sec
above).

The main performance differences between the OCC and locking
protocols are expected to rf'sult from the different detection and re
solution of concurrency control confiicts (lock waits versus transaction
restarts). It should be clear from the discussion in the previous sec
tion, that the lock contention for the hybrid OCC scheme is generally
si~ificantly lower than)Vith distributed two-phase locking (21'1,).

While in the DCC protocol locks are mostly held only during commit
processing, 2PL acquires the Jocks before the actual object accesses.
As a consequence, locks are held during large portions of the trans
action's execution phase including delays for local 1/0, remote 1/0
requests and lock conflicts. On the other hand, the OCC scheme
generally aborts more transactions than standard locking where restarts
occur only for deadlock resolution. The shorter lock holding times
may, however, allow better response times for our hybrid OCC
scheme than with distributed 2PI ,, thus favoring a reduced number of
concurrency control conflicts. Furthermore, the number of restarts is
limited compared to purely optimistic protocols, due to the acquisition
of locks making it unlikely that a transaction is restarted more than
once.

To allow for a quantitative performance comparison, our OCC pro
tocol as well as the distributed version of 2PI, have been implemented
in a simulation system of a locally distributed transaction processing
complex with partitioned databases. The model includes the concur
rency control components as well as buffer management at every sys
tem and considers delays and overhead for CPlJ, 1/0 and
communication. Key parameters are the number of systems, the CPU
speed, transaction profile (number of 1/0 requests, write frequency,
locality of data access, arrival rates, ...) and the cache sizes. Although
space limitations do not permit us to provide a more detailed de
scription of the simulation study, we want to summarize some pre
liminary simulation results in order to underline the attractiveness of
our scheme.

A general observation is that in order to fully utilize fast processors to
achieve high transaction rates, high multiprogramming levels (MPI .)
are required to overlap 1/0 and communication delays during the ex
ecution of transactions. However, data contention (e.g. probability
of lock conflict per lock request) has been shown to increase propor
tionally with the concurrency degree of transactions. Transaction
blocking due to lock conflicts reduces the effective MPL, thus lowering
transaction throughput. With OCC, restarts waste CPU processing
so that the CPU becomes saturated at lower MPI .'s than it would if
there was no data contention. The wasted processing is determined
by the fraction of transactions being restarted (I 00% in the worst
case), since the second execution of the transaction is always successful
(provided we have access in variance). The effective system throughput
is determined by the useful (total minus wasted) CPU utilization. The
processor speed and its useful utilization determine the effective MPI.
i.e., the number of transactions that can run to completion success
fully.

Our simulation results show that the OCC method has a performance
similar to distributed 2PL for low data contention levels. There are
few restarts with OCC and very few transactions are in the blocked
state with 2PL. In experiments with faster CPUs, the MPL had to
he increased to attain a higher throughput by keeping the processors
busy thus introducing an increased data contention level. For these
configurations our hybrid ace protocol clearly outperformrd 21'1.
where high lock contention levels prevented the effective degree of
concurrency to increase significantly. As a result, 2PL allowed only
for modest transaction rates and CPU utilization. With the hyhrid
OCC scheme, on the other hand, the effective throughput could be
increased as long as the system was not saturated. The increased
number of transaction restarts (due to the higher level of data con
tention) could be more easily tolerated with the faster processors than
in the cases with slow CI'Us and fewer abortions. With fast pr<?ccssors
we observed a throughput improvement for up to relatively high
MPL's because of sufficient excess capacity for rc-executing failed
transactions. A detailed performance analysis of the schemes appears
in (21).

494

6_ Summary

We presented a new optimistic concurrency control protocol for dis
tributed high-performance transaction systems. Unlike other pro
posals for ace in distributed systems, our scheme limits tht' number
of restarts by acquiring locks to guarantee a failed transaction a suc
cessful second execution. Lock acquisition as well as validation ar~
imbedded in the commit protocol in order to avoid any extra mes
sages. Deadlocks are avoided by requesting all locks at once ~fore

performing validation. TI1e protocol is fully distributed and employs
parallel validation and lock acquisition.

A main advantage compared to distributed locking schemes is that
locks are held only during commit processing, in general, thus con
siderably reducing the degree of lock contention. As first simulation
results have confirmed, this is of particular henefit for high
performance transaction processing complexes with fast processors.
For these environments, the maximal throughput is often limited by
lock contention in the case of pure locking schemes. The new hybrid
ace protocol, on the other hand, often allows here for significantly
higher transaction rates since the extra overhead required for re
executing failed transactions is more affordable than under-utilizing
fast processors. This is also favored by utilizing large main memory
buffers for caching data objects from local and remote partitions. As
a result, in the new scheme many re-exccutions of failed transactions
can he processed without any interruption for local 1/0 or remote data
requests.

Our current effort is to investigate the performance of the new method
-in more detail and compare its performance with other algorithms.
We are also working on new protocols which depend less on access
in variance.

References
I. R. Agrawal, M. Carey, and M. I .ivny. "Concurrency control

performance modeling: alternatives and implications," ACM
Tran.~. on Database Systems 12,4 (December 19R7), 607-654.

2. P. A. Bernstein, V. lladzilacos, and N. Goodman. Concun·ency
Control and Recovery in Database System.~. Addison Wesley,
19R7.

3. H. Bora! and I. Gold. 'Towards a self-adapting centralized con
currency control algorithm," Pmc. ACM SIGMOD Cof!f. on
Management of Data, 19R4, pp. 18-32.

4. M. J. Carey and M. Livny. "Distributed concurrency control
performance: a study of algorithms, distribution, and replication,"
Proc. 14th In(/ Conf on Very Large Data Rase.~. I ,os Angeles,
CA , August 1988, pp. 13-25.

5. D. II. Pislunan, M. Lai, and W. K. Wilkinson. "Overview of the
Jasmin database machine," Proc. ACM SIGMOD Cof!f. on
Management of Data, I9R4, pp. 234-239.

6. P. A. Pranas7.ek, J. T. Robinson, and A. Thomasian. "Access
invarianee and its use in high-contention environments," 111111
Re.~earch Report RC 14704, Yorktown Heights, NY, July 1989
(to appear in Proc. 7th lnt'l Data Eng. Co'!f., Los Angeles, CA,
February 1990).

7. D. Gawliek. "Processing 'hot spots' in high performance sys
tems," Proc. IEEE 1985 Spring COMPCON, San Francisco, CA,
February 1985, 249-251.

8. M. L. Kersten and II. Tebra. "Application of an optimistic con
currency control method," Software - Practice and Experience
14,2 (1984), IS3-I6R.

9. E. Knapp. "Deadlock detection in distributed databases," ACM
Computing Surveys 1,4 (December 1987), 303-328.

10. W. J. Kohler and B. P. Jenq. "Performance evaluation of inte
grated concurrency control and recovery algorithms using a dis
tributed transaction testbed," Proc. 6th IEEE lnt'l Conf on
Distributed Computing Systems, Boston, Mass. Sept. 1986, pp.
130-139.

II. H. T. Kung and J. T. Robinson. "On optimistic methods for
concurrency control," ACJ\,1 Trans. on Database Sy.~tems 6,2
(June 1981), 213-226 (also presented at 5th VLDB lnt'l Conf.,
1979).

495

12. G. Lausen. "Concurrency control in database systems: a step
towards the integration of optimistic methods and locking," Pmc.
ACM Annual Co'!f.l982, pp. 64-68.

13. M.D. P. Leland and W. D. Roome. 'The Silicon database rna
chine," Proc. 4th lnt'l Worbhop on Databa.~e Machine.~,
Springer-Verlag, 1985, pp. 169-189.

14. S. J. Mullender and A. S. Tanenbaum. "A distributed file service
based on optimistic concurrency control," Proc. lOth ACM Symp.
on Operating Sy.ftem Principles, 1985, pp. 51-62.

15. E. Ralun. "Design of optimistic methods for concurrency control
in database sharing systems," Proc. 7th IEEE lnt'l Conf on Di.~
tributedComputingSy.~tems, West Berlin, Sept. 1987, 154-161.

16. E. Rahrn. "Concepts for optimistic concurrency control in cen
tralized and distributed database systems" IT lnformation.~technik
30,1, (1988), pp. 28-47 (in German).

I 7. E. Rahm. "Empirical performance evaluation of concurrency and
coherency control protocols for data sharing," IBM Re.~earch
Report RC 14.125, Hawthorne, NY, December 19R8.

18. A. Reuter and K. Shoens. "Synchroni7.ation in a data sharing
environment," Unpublished report, TRM San Jose Research
Center, 1984.

19. W. D. Roome. 'The intelligent store: a content-addressable page
manager," Bell System.~ Tech .. Tourna/61,9 (19R2), 2567-2596

20. I. K. Ryu and A. Thomasian. "Performance analysis of central
ized databases with optimistic concurrency control," Performance
Evaluation 7,3 (1987), 195-211

21. A. Thomasian and E. Rahm. "A new distributed optimistic
concurrency control method and a comparison of its performance
with two-phase locking," IBM Research Report RC 15073,
Hawthorne, NY, October 1989.

22. P. S. Yu, D. W. Cornell, D. M. Dias, and A. Thomasian. "On
coupling partitioned data systems," Proc. 6th IEEE Int. Conf on
Distributed Computing SyJtem.v, Boston, M~ss. Sept. 19Rt>,' pp.
148-157

