
-
e OR

ces in
allel
t re-
ence-
d and

par-
oins
r
quired
l-
/or
sent-
-

orre-
On Parallel Join Processing in
Object-Relational Database Systems

Holger Märtens*, Erhard Rahm

Universität Leipzig, Institut für Informatik, Postfach 920, D–04009 Leipzig, Germany
{maertens|rahm}@informatik.uni-leipzig.de

http://dbs.uni-leipzig.de

Abstract. So far only few performance studies on parallel object-relational da-
tabase systems are available. In particular, the relative performance of relational
vs. reference-based join processing in a parallel environment has not been inves-
tigated sufficiently. We present a performance study based on theBUCKYbench-
mark to compare parallel join processing using reference attributes with
relational hash- and merge-join algorithms. In addition, we propose a data allo-
cation scheme especially suited for object hierarchies and set-valued attributes.

1 Introduction

Object-relational database systems(ORDBS) [18] are gaining importance as OR fea
tures are covered in the latest SQL standard and more and more vendors includ
capabilities in their DBS products. The latter comprise a number ofparallel database
systems(PDBS) suited for large-scale, enterprise databases. Despite these advan
practical application, only few studies have investigated the performance of par
query processing in ORDBS. For instance, there are different views to what exten
lational data allocation and processing methods can be used and whether refer
based navigation and query processing results in a high communication overhea
disk contention [6, 14].

In this paper, we investigate these trade-offs for parallel join processing by com
ing the performance of relational hash and sort-merge joins with object-oriented j
based onreference-valued attributes.Broadly speaking, relational joins usually offe
efficient, set-oriented access to base relations but tend to read a superset of the re
data. In contrast, reference-basedassemblystrategies can minimize tuple access by fo
lowing only relevant pointers but may yield inefficient I/O (high disk contention) and
high communication overhead. Note that object references are not limited to repre
ing explicit object relationships (associations) but are also useful for implementing de
tached (often set-valued or just very large) attributes andis-a relationships within
generalization hierarchies [19, 11]. Aggregating along these references thus c
sponds to the processing ofimplicit joins.

* Supported by the Deutsche Forschungsgemeinschaft (http://www.dfg.de) under grant
Ra 497/10.

-
eth-
ess all
ntion
sing,

Our
m the
rm
hich
del-
dies
CAD

ions
ap-

ence
d in

OR
ell as
f ob-

owed
ct as-
ient
nces
on-
ards

ential

were
re-

ob-
del
erable
c-

can-
join
uts
arate
Our study focuses onshared-diskPDBS which typically provide a good combina
tion of scalability and load balancing [15]. Here, reference-based joins (assembly m
ods) do not result in extra messages since each processing node can directly acc
disks. On the other hand, irregular data access patterns may lead to high disk conte
depending on the data allocation and query characteristics. Relational join proces
in turn, may itself require a high communication overhead for data redistribution.
performance study is based on simulation and uses database characteristics fro
BUCKYbenchmark featuring large sets of objects in comparatively flat and unifo
structures. We consider such characteristics typical of business applications for w
the OR approach is of increasing interest, owing primarily to its convenience in mo
ing compared to the established relational model. This is in contrast to previous stu
on reference-based join processing assuming complex object structures, e.g., for
processing (as exemplified in theOO7 benchmark).

The remainder of this short paper is organized as follows: Sect. 2 briefly ment
some related work from the literature. Sect. 3 presents the different join methods
plied in our study and proposes a data allocation scheme supporting efficient refer
navigation and parallel query processing. Preliminary simulation results are detaile
Sect. 4 before we conclude.

2 Related Work

We are not aware of any previous work on join processing specifically addressing
systems. There are, however, a number of relevant studies on relational DBS as w
object-oriented and other ‘complex-object’ data models where the basic problem o
ject assembly has been discussed extensively.

For OODBS, a comparison of pointer-based vs. value-based join techniques sh
that pointer-based variants of sort-merge and hash joins are superior to naive obje
sembly methods that track individual pointers one-at-a-time, often leading to ineffic
I/O [16]. It was suggested to augment the latter by collecting and ordering refere
before following them, thus optimizing disk access [13]. These findings were c
firmed by other authors, who also proposed new solutions specially geared tow
(nested) sets of references [1, 20]. All these studies, however, were limited to sequ
processing, so we cannot simply extrapolate from their results.

For the parallel case, pointer-based hash, sort-merge, and nested-loop joins
modeled analytically, but not compared directly [3]. Also, new algorithms were p
sented without comparison to existing solutions [4, 7].

A cost model exists to estimate page I/O during parallel navigation in complex
jects, but it is restricted to a single partition of a single object type [8]. A related mo
using abstract ‘processing costs’ indicates that assembly techniques may be pref
to explicit joins in parallel environments due to high flexibility and better load balan
ing [9].

Finally, there is an enormous body of research on joins in relational PDBS that
not be detailed here for lack of space. However, we will build on the fact that hash
is usually the most efficient technique [10]. An obvious exception occurs if both inp
are already sorted on the join attribute, in which case a merge join (without a sep

plex-

os-
m
elves
fore-

ssage
lanc-

lation

cteris-

nal
non-
ental

ents,
sorting step) is preferable. This situation has not been considered in any of the com
object studies cited above.

Note also that most of the work mentioned is concerned with very complex comp
ite-object graphs such as theOO7benchmark. This approach differs considerably fro
the more business-oriented scenarios we have in mind, which may lend thems
more easily to parallel processing. Other aspects not addressed sufficiently in the a
mentioned articles include: joins across class hierarchies, disk contention and me
overhead in parallel environments, as well as issues of data allocation and load ba
ing.

3 Data Allocation and Query Processing

This section discusses the allocation and processing approaches used in our simu
study, which is based on theBUCKYbenchmark proposal [5].BUCKYdefines a uni-
versity scenario including students, professors, courses etc. that has all the chara
tics required for our study. In particular, there are class hierarchies expressingis-a
relationships (e.g.,PERSON-STUDENT, PERSON-EMPLOYEE-INSTRUCTOR-PROFESSOR), set-
valued attributes (e.g.,KIDS of PERSONs) and other associations (e.g.,STUDENTs advised
by PROFESSORs and enrolled inCOURSEs). A subset of the model is shown in Fig. 1.

3.1 Data Allocation

Data allocation in a parallel environment is a very complex issue even in relatio
DBMSs, and it is compounded by the special properties of the OR model such as
atomic or reference-typed attributes and class hierarchies. The three most fundam
decisions discussed in the following concern the (de)clustering of object compon

Fig. 1.BUCKY database schema (excerpt)

PERSON

DEPARTMENT TA PROFESSOR

INSTRUCTOR

EMPLOYEESTUDENT

inheritance
other associations

WORKS-IN

E
M

P
LO

Y
E

E
S

CHAIR

M
A

JO
R

M
A

JO
R

S

A
D

V
IS

O
R

ADVISEES

1

*

1 1
1

*

1

*

pa-
lso

ge
posed

nce,

ssoci-
ject
the fragmentation of relations, and the allocation of fragments to disks. While these
rameters can be optimized for any given query type, mixed workloads will usually a
contain some poorly supported queries, which will be considered in our study.

To implement theBUCKYschema for our study, we chose a declustered stora
strategy based on references as illustrated in Fig. 2. Class hierarchies are decom
such that all attributes materialize in the relation where they first occur. For insta
all PERSONattributes are stored in thePERSONrelation but not inEMPLOYEE, STUDENT

etc. Consequently, each object of a derived class is represented by a tuple in the a
ated relation but also has tuples in all its base relations. (For simplicity, we treat ob

Fig. 2.Storage model of theBUCKY database (excerpt)

PERSON

PERSONID REF:
NAME, STREET, CITY, ...

KID1, KID2 KID1, KID2, KID3

PERSONID NAME, STREET, CITY, ...

BLOB BLOB

STUDENTID . . . STUDENTID . . .

.

.

.

.

STUDENT

EMPLOYEE

INSTRUCTOR

TA

PROFESSOR

PERSON.KIDS

PERSON.PICTURE

REF, REF, REF REF, REF

PROFESSOR.ADVISEES

STUDENT
REF:

EMPLOYEE
REF:
KIDS

REF:
PICTURE

REF:
STUDENT

REF:
EMPLOYEE

REF:
KIDS

REF:
PICTURE

REF:
PERSON

REF:
PERSON

REF:
PERSON

REF:
PERSON

REF:
PERSON

REF:
TA

REF:
ADVISOR

REF:
MAJOR

REF:
PERSON

REF:
TA

REF:
ADVISOR

REF:
MAJOR

REF:
PERSON

REF:
INSTRUCT.

REF:
PERSON

REF:
INSTRUCT.

REF:
EMPLOYEE

REF:
TA

REF:
PROFESS.

REF:
EMPLOYEE

REF:
TA

REF:
PROFESS.

REF:
STUDENT

REF:
INSTRUCT.

REF:
STUDENT

REF:
INSTRUCT.

REF:
INSTRUCT.

REF:
ADVISEES

REF:
INSTRUCT.

REF:
ADVISEES

REF:
PROFESS.

REF:
PROFESS.

0

0

0 0

other association

inheritance
detached attribute

reference types:

null pointer
outside this figure

0

con-

; this
e
, 12].

ions

tored

ions
rar-
e to
effi-
lter-
l

they
ks

ovide
on

ging
nding
l I/O,

. We

can
t dis-
e node,

on
a
ing

the

then
tion
join

ents
rithm
classes and the relations implementing them as synonymous.) All these tuples are
nected using bidirectional references, e.g., between associatedINSTRUCTORandPROFES-

SOR entries. Similarly, large or set-valued attributes such asPERSON.PICTURE and
PERSON.KIDS are detached from the relations they belong to and stored separately
also applies to sets of references as inPROFESSOR.ADVISEES. Such storage strategies hav
been found superior for queries addressing only a subset of a class's properties [19
In contrast, we will consider other query types that necessitate implicit join operat
across the required class components.

Furthermore, we use a fragmentation scheme in which derived relations are s
analogously to their base relations. For instance, assuming thatPERSONis range-parti-
tioned based on thePERSONID attribute,STUDENT, EMPLOYEEetc. are all fragmented on
the same (inherited) attribute, even though it is not materialized in the derived relat
themselves. Thus, pairs of fragments can be identified for implicit joins across hie
chies that can be joined without involving other fragments. Moreover, we propos
keep all relations in the hierarchy sorted on the fragmentation attribute to enable
cient, ordered access within fragments especially for merge joins (cf. Sect. 3.2). A
natively, clustered indices onPERSONID might be used for all relations to avoid physica
sorting.

Similarly, detached attributes are fragmented in the same fashion as the tuples
belong to. Alldatasets(i.e., relations or detached attributes) are allocated to all dis
(full declustering). For each dataset, we create far more fragments than disks to pr
a smaller granule for load balancing (cf. next section) and allocate several of them
each device. We alleviate potential skew in the distribution of references by chan
the allocation pattern between datasets. In addition, we make sure that correspo
fragments from different datasets never reside on the same device, enabling paralle
for instance, between aPERSON fragment and its associatedSTUDENTs.

Orthogonal to the allocation, arbitrary indices may be defined on the datasets
merely assume a clustered index onPERSON.PERSONID for some of our experiments.

Note that, while developed for a shared-disk architecture, the same allocation
be used in shared-everything environments. For shared-nothing, we advise to firs
tribute the data across the processors such that related tuples reside on the sam
then apply our method locally if a node has multiple disks.

3.2 Query Processing

The basis of processing is ascanoperator that is parallelized based on the fragmentati
of the data. Thus, alocal scan(executed by a single processor) works exclusively on
single fragment of a dataset. On top of this scan method, we consider the follow
three join algorithms; the first two are well known from relational DBMSs whereas
third is borrowed from the object-oriented model:
• Thehash joinfirst scans the inner dataset to build hash tables on all processors,

probes the outer dataset against the hash tables. This may imply full redistribu
of one or both inputs unless their fragmentation attributes are identical to the
attribute.

• The merge joinscans both datasets simultaneously such that associated fragm
are scanned by the same processor and joins are executed locally. This algo

nor-

her
ested
set;

-
well
xten-
ell as

ssing
iginal
:

cts
ts

n
r job
tails

cas-
y as-
tion

must
er-

sing
de
ly
and
depends on its input being sorted on the join attribute and cannot be used for u
dered datasets. It can join more than two datasets at a time.

• The deref(erencing) joinscans one dataset and follows its references to the ot
dataset one-at-a-time. If more than two datasets are involved, this process is n
in a depth-first manner. An explicit scan is performed only on the first data
access to other datasets is limited to relevant tuples referenced from the first.

4 Simulation Setup and Results

We investigate the different join methods within theSIMPAD simulation system that has
been used successfully in previous studies [17].SIMPAD (Simulation ofParallel Data-
bases) is based on theCSIM/C++ simulation library and provides a full hardware envi
ronment with processors, disks, and networks (modeled as server-type facilities) as
as lock and buffer management services. We have developed an object-relational e
sion on top of the existing relational model, adding an OR database schema as w
query generation and processing modules [2].

For our experiments, we use a simulated shared-disk environment of 5 proce
nodes and 20 disks. Each node has 2000 pages of main memory. Scaling the or
BUCKY schema by a factor of 10, the sizes of the relevant datasets are as follows

For each query, acoordinatornode is selected that controls its execution and colle
the final result. All processing is fully parallelized if a sufficient number of fragmen
is involved. An adjustable number ofjobs(local scans or joins) can run concurrently o
the same processor. Disk contention is minimized by estimating the I/O required pe
and disk, then scheduling together those jobs that show minimal overlap. More de
on the implementation and its parameters can be found in [2].

We have evaluated the performance of the three join methods for three common
es of implicit, reference-based joins: hierarchies, detached attributes, and arbitrar
sociations. We expect the following factors to become manifest in the simula
results:

• The merge join will access both datasets simultaneously, whereas the hash join
do so sequentially, which is probably less efficient. The deref join follows an int
mediate strategy by interleaving access to both inputs.

• The merge- and hash-join methods read full data fragments from start to end. U
prefetching, this is very efficient and produces little disk contention but may inclu
tuples irrelevant to the query. The deref join will – by definition – access on
required tuples, at least on the ‘target’ side of a reference, but may be inefficient
contention-prone especially for unordered access.

PERSON 1000000 tuples 17860 pages
PERSON.KIDS 3000000 tuples 15960 pages

STUDENT 500000 tuples 3420 pages
PROFESSOR 250000 tuples 1900 pages

les,
join
ess
and

ribu-

stu-
ref-

as a
son,

e
valu-
ces-

iven

lec-
lace

on

times
n is
om-
next
low
eref

already

a

• The hash join requires a certain amount of main memory for its hash tab
whereas its competitors can allocate all storage to their I/O buffers. The deref
may suffer from low hit rates in a small buffer due to its potentially random acc
pattern, causing multiple I/O on the same data. This is no problem for hash
merge joins reading sequentially.

• The hash join incurs an additional communication overhead when data redist
tion is required.

4.1 Hierarchy References

Our first series of experiments targets hierarchy references between thePERSONand
STUDENTrelations. Due to our storage model, queries referring to both personal and
dent-specific information of a student will have to access both relations and use the
erences between the two tuples in order to assemble the original object.

Since both relations are sorted and partitioned on the same key (PERSONID), we can
employ the merge-join technique from the relational model, using the references
join attribute. The hash join can be ruled out as inferior (cf. Sect. 2). As a compari
we use the object-oriented deref join. Since references exist for bothPERSONto STUDENT

andSTUDENTto PERSON, this requires us to define the ‘direction’ in which to process th
query. We make this decision depending on the selection predicate so as to start e
ation with the relation that undergoes the stricter selection. No such decision is ne
sary for the merge-join operator, which reads both relations (and applies all g
selections) simultaneously.

PERSON to STUDENT. Consider the query
Find all students withPERSONID in range R.

Fig. 3a shows the comparison of merge join to deref join for this query where the se
tion rangeRwas varied to achieve different selectivities. Since the selection takes p
on aPERSONattribute, a deref join has to readPERSONtuples and follow all non-zero ref-
erences toSTUDENT(i.e., for all persons that are students). Using the clustered index
PERSON.PERSONID, both algorithms can restrict access toPERSONto the absolute mini-
mum. For the deref operator, it follows that only relevantSTUDENTtuples are accessed
as well. The merge join, by contrast, must always process full fragments ofSTUDENTbut
can exclude those for which the associatedPERSON fragment is found to be irrelevant.

The graph shows for both algorithms the same basic development of response
in relation to selectivity, owing to their similar access patterns. But the merge joi
generally faster due to its efficiency in sequential disks access. Deref join cannot c
pete here as it must interleave access to both relations and can initiate I/O to the
page only after evaluating a reference. At best, it can be on par with merge join for
selectivity values, where it avoids some unnecessary I/O. Note that optimizing the d
join's order of disk access as discussed in Sect. 2 is useless since references are
sorted.

STUDENT to PERSON. We now vary the query to
Find all students withSTUDENTID in range R.

Selection now takes place on aSTUDENTattribute that can no longer be supported by
clustered index (because both relations are fragmented byPERSONID, which is unrelated

ight
now
h re-
ly on
e
hich
r low
eref

tes,

lations
. 4.1.
.

to STUDENTID). In fact, we assume no index at all although a non-clustered one m
be of use for very small selectivity factors. As Fig. 3b shows, execution times are
almost constant for the merge-join operator, which has to perform full scans on bot
lations in all cases. The deref algorithm, on the other hand, performs a full scan on
STUDENT(which is smaller thanPERSONby a factor of 6) and must access only thos
pages ofPERSONthat contain relevant tuples. As a consequence, response times – w
are otherwise higher than for merge joins as in the previous case – drop sharply fo
percentages of selectivity, with the break-even point around 2%. Below this point, d
join is more efficient than merge join.

4.2 Detached Attributes

Next, we examine the implicit join between a relation and one of its detached attribu
using the query

Find all persons withPERSONID in range R and their children,

which involves relationPERSONand its set-valued, detached attributeKIDS. Since we as-
sume detached attributes to be ordered and partitioned in the same way as the re
they belong to, we compare only the merge-join and deref-join methods as in Sect
Basic circumstances being the same, we expect similar results in the simulations

0 20 40 60 80 100
selectivity [%]

 0

 1

 2

 3

 4

 5

 6

re
sp

on
se

 ti
m

e
[s

]

a) ‘Downward’ hierarchy join
PERSON to STUDENT

deref join
merge join

0 20 40 60 80 100
selectivity [%]

 0

 1

 2

 3

 4

 5

 6

re
sp

on
se

 ti
m

e
[s

]

b) ‘Upward’ hierarchy join
STUDENT to PERSON

deref join
merge join

0 20 40 60 80 100
selectivity [%]

 0

 1

 2

 3

 4

 5

 6

re
sp

on
se

 ti
m

e
[s

]

c) Detached-attribute join
PERSON to PERSON.KIDS

deref join
merge join

0 20 40 60 80 100
selectivity [%]

 0.0

 0.5

 1.0

 1.5

 2.0

re
sp

on
se

 ti
m

e
[s

]
d) Association join
STUDENT to PROFESSOR

deref join
hash join

Fig. 3.Simulation results.

to

ime is

arbi-

rson
e the

The

sh

de.
for

lations
can
d also
ef

stem.
unor-
ud-
n of
s.

We
puts
pete

I/O
oper-
disk
nta-

ing
, our
ed-up
clu-
Fig. 3c confirms this assumption, showing only one direction of execution due
space limitations. The clustered index onPERSONis used as for thePERSON-to-STUDENT

query above. The response time difference is about the same but total response t
higher than in the previous case because theKIDS dataset is larger thanSTUDENT.

4.3 Other Associations

The final series of simulations presented here considers reference-based joins on
trary associations. Our sample query is

Find all professors advising students withSTUDENTID in range R.
This query must access theSTUDENTandPROFESSORrelations. Both are part of thePER-

SONhierarchy and fragmented accordingly, and there is no correlation between pe
IDs of professors and those of the students they advise. Hence, we cannot assum
order and partitioning ofSTUDENTandPROFESSORto match, making the merge-join al-
gorithm unusable. We will use a hash join instead and compare it to the deref join.
latter will scan theSTUDENTrelation first to perform the selection onSTUDENTID early,
and additionally read thePROFESSORtuples referenced by selected students. The ha
join will redistribute both relations based on the join key, also beginning withSTUDENT.
As both inputs are rather small, we have reduced the buffers to 500 pages per no

Fig. 3d shows the results of our experiments. We find that hash join is inferior
all selectivities due to its message passing overhead and its need to scan both re
in full. (Note that a sort-merge join would face the same problems.) In addition, it
read only one dataset at a time whereas deref join can interleave access to both an
save some I/O onPROFESSOR. Disk contention appears to be no problem for the der
join even though its access pattern onPROFESSORis highly irregular. We ascribe this to
our allocation scheme that enables effective load balancing on the disks of the sy
This aspect, however, must be validated for a wider range of parameters as the
dered access toPROFESSORraises concerns of buffer thrashing that have yet to be st
ied thoroughly. Note, though, that in contrast to the previous cases, an optimizatio
disk access is likely to increase the deref join's advantage over relational method

5 Conclusions and Future Work

Although our study is still in an early stage, preliminary results are quite interesting.
found that, as in relational PDBS, merge join is the preferred method when both in
are fragmented and ordered on the join attribute. In this case, the deref join can com
only for low selectivity factors on non-indexed attributes, where it requires less total
than the merge operator. When inputs are ordered differently, however, the deref
ator beats relational joins by saving some communication overhead while avoiding
contention owing to our data allocation. Due to its efficacy, we propose our fragme
tion and allocation scheme as a basis of future work.

Further research on parallel OR query processing will have to include the follow
aspects: First, our workload must be extended with additional query types. Second
allocation needs to be compared to alternative schemes. Finally, scale-up and spe
as well as multi-user experiments should be performed to validate previous con
sions.

efer-
New

ste-

s in

Da-

, D.:
D

-

tra-

Ss.

Ss.

ous-

rung.

plexe

G-

llel

onf.,

ACM

ata

lish-

SN

for
99.
References

1. Braumandl, R., Claußen, J., Kemper, A.: Evaluating Functional Joins Along Nested R
ence Sets in Object-Relational and Object-Oriented Databases. Proc. VLDB Conf.,
York, 1998.

2. Bessonow, L.: Simulation objektrelationaler Join-Verfahren in parallelen Datenbanksy
men. Diplomarbeit, Universität Leipzig, 2000.

3. Buhr, P.A., Goel, A.K., Nishimura, N., Ragde, P.: Parallel Pointer-Based Join Algorithm
Memory-mapped Environments. Proc. ICDE Conf., New Orleans, 1996.

4. Bassiliades, N., Vlahavas, I.: Hierarchical Query Execution in a Parallel Object-Oriented
tabase System. Parallel Computing 22(7), 1996.

5. Carey, M.J., DeWitt, D.J., Naughton, J.F., Asgarian, M., Brown, P., Gehrke, J., Shah
The BUCKY Object-Relational Benchmark (Experience Paper). Proc. ACM SIGMO
Conf., Tucson, 1997.

6. DeWitt, D.J.: Combining Object Relational & Parallel: Like Trying to Mix Oil & Water? Pre
sentation on Object-Relational Summit, 1996.
Available at:http://www.cs.wisc.edu/~dewitt/ .

7. DeWitt, D.J., Naughton, J.F., Shafer, J.C., Venkataraman, S.: Parallelizing OODBMS
versals: a performance evaluation. VLDB Journal 5(1), 1996.

8. Gesmann, M.: A Cost Model for Parallel Navigational Access in Complex-Object DBM
Proc. DASFAA Conf., Melbourne, 1997.

9. Gesmann, M., Härder, T.: Supporting Parallel Navigation in Object-Relational DBM
Manuscript available athttp://wwwdbis.informatik.uni-kl.de/ .

10. Graefe, G.: Sort-Merge-Join: An Idea Whose Time Has(h) Passed? Proc. ICDE Conf., H
ton, 1999.

11. Härder, T., Rahm, E.: Datenbanksysteme: Konzepte und Techniken der Implementie
Springer-Verlag, Berlin, 1999.

12. Keßler, U., Dadam, P.: Benutzergesteuerte, flexible Speicherungsstrukturen für kom
Objekte. Proc. BTW Conf., Braunschweig, 1993.

13. Keller, T., Graefe, G., Maier, D.: Efficient Assembly of Complex Objects. Proc. ACM SI
MOD Conf., Denver, 1991.

14. Olson, M.A., Hong, W.M., Ubell, M., Stonebraker, M.: Query Processing in a Para
Object-Relational Database System. Data Engineering Bulletin 19(4), 1996.

15. Rahm, E.: Dynamic Load Balancing in Parallel Database Systems. Proc. Euro-Par C
Lyon, 1996.

16. Shekita, E.J., Carey, M.J.: A Performance evaluation of Pointer-Based Joins. Proc.
SIGMOD Conf., Atlantic City, 1990.

17. Stöhr, T., Märtens, H., Rahm, E.: Multi-Dimensional Database Allocation for Parallel D
Warehouses. Proc. 26th VLDB Conf., Cairo, 2000.

18. Stonebraker, M.: Object-relational DBMSs: the next great wave. Morgan Kaufman Pub
ers, San Francisco, 1996.

19. Teeuw, W.B., Blanken, H.M., Complex Object Joins in a Distributed Database. Proc. C
Conf., Amsterdam, 1991.

20. Wang, Q., Maier, D., Shapiro, L.: Revisiting Reference Materialization Techniques
Object Query Processing. Technical report CSE-99-004, Oregon Graduate Institute, 19

	On Parallel Join Processing in Object-Relational Database Systems
	Holger Märtens, Erhard Rahm
	Abstract
	1 Introduction
	2 Related Work
	3 Data Allocation and Query Processing
	Fig. 1. BUCKY database schema (excerpt)
	3.1 Data Allocation
	Fig. 2. Storage model of the BUCKY database (excerpt)

	3.2 Query Processing

	4 Simulation Setup and Results
	4.1 Hierarchy References
	Person to student
	Fig. 3. Simulation results.

	Student to person

	4.2 Detached Attributes
	4.3 Other Associations

	5 Conclusions and Future Work
	References
	1. Braumandl, R., Claußen, J., Kemper, A.: Evaluating Functional Joins Along Nested Reference Set...
	2. Bessonow, L.: Simulation objektrelationaler Join-Verfahren in parallelen Datenbanksystemen. Di...
	3. Buhr, P.�A., Goel, A.�K., Nishimura, N., Ragde, P.: Parallel Pointer-Based Join Algorithms in ...
	4. Bassiliades, N., Vlahavas, I.: Hierarchical Query Execution in a Parallel Object-Oriented Data...
	5. Carey, M.�J., DeWitt, D.�J., Naughton, J.�F., Asgarian, M., Brown, P., Gehrke, J., Shah, D.: T...
	6. DeWitt, D.�J.: Combining Object Relational & Parallel: Like Trying to Mix Oil & Water? Present...
	7. DeWitt, D.�J., Naughton, J.�F., Shafer, J.�C., Venkataraman, S.: Parallelizing OODBMS traversa...
	8. Gesmann, M.: A Cost Model for Parallel Navigational Access in Complex-Object DBMSs. Proc. DASF...
	9. Gesmann, M., Härder, T.: Supporting Parallel Navigation in Object-Relational DBMSs. Manuscript...
	10. Graefe, G.: Sort-Merge-Join: An Idea Whose Time Has(h) Passed? Proc. ICDE Conf., Houston, 1999.
	11. Härder, T., Rahm, E.: Datenbanksysteme: Konzepte und Techniken der Implementierung. Springer-...
	12. Keßler, U., Dadam, P.: Benutzergesteuerte, flexible Speicherungsstrukturen für komplexe Objek...
	13. Keller, T., Graefe, G., Maier, D.: Efficient Assembly of Complex Objects. Proc. ACM SIGMOD Co...
	14. Olson, M.�A., Hong, W.�M., Ubell, M., Stonebraker, M.: Query Processing in a Parallel �Object...
	15. Rahm, E.: Dynamic Load Balancing in Parallel Database Systems. Proc. Euro-Par Conf., �Lyon, 1...
	16. Shekita, E.�J., Carey, M.�J.: A Performance evaluation of Pointer-Based Joins. Proc. ACM SIGM...
	17. Stöhr, T., Märtens, H., Rahm, E.: Multi-Dimensional Database Allocation for Parallel Data War...
	18. Stonebraker, M.: Object-relational DBMSs: the next great wave. Morgan Kaufman Publishers, San...
	19. Teeuw, W.�B., Blanken, H.�M., Complex Object Joins in a Distributed Database. Proc. CSN Conf....
	20. Wang, Q., Maier, D., Shapiro, L.: Revisiting Reference Materialization Techniques for �Object...

