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Abstract. So far only few performance studies on parallel object-relational da-
tabase systems are available. In particular, the relative performance of relational
vs. reference-based join processing in a parallel environment has not been inves-
tigated sufficiently. We present a performance study based @ik Ybench-

mark to compare parallel join processing using reference attributes with
relational hash- and merge-join algorithms. In addition, we propose a data allo-
cation scheme especially suited for object hierarchies and set-valued attributes.

1 Introduction

Object-relational database systeif@RDBS) [18] are gaining importance as OR fea-
tures are covered in the latest SQL standard and more and more vendors include OR
capabilities in their DBS products. The latter comprise a numbeaddllel database
systemgPDBS) suited for large-scale, enterprise databases. Despite these advances in
practical application, only few studies have investigated the performance of parallel
query processing in ORDBS. For instance, there are different views to what extent re-
lational data allocation and processing methods can be used and whether reference-
based navigation and query processing results in a high communication overhead and
disk contention [6, 14].

In this paper, we investigate these trade-offs for parallel join processing by compar-
ing the performance of relational hash and sort-merge joins with object-oriented joins
based orreference-valued attribute®roadly speaking, relational joins usually offer
efficient, set-oriented access to base relations but tend to read a superset of the required
data. In contrast, reference-bassdemblgtrategies can minimize tuple access by fol-
lowing only relevant pointers but may yield inefficient 1/O (high disk contention) and/or
high communication overhead. Note that object references are not limited to represent-
ing explicit object relationshipsaésociationgbut are also useful for implementing de-
tached (often set-valued or just very large) attributes @ra relationships within
generalization hierarchies [19, 11]. Aggregating along these references thus corre-
sponds to the processingiofplicit joins.
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Our study focuses oshared-diskPkDBS which typically provide a good combina-
tion of scalability and load balancing [15]. Here, reference-based joins (assembly meth-
ods) do not result in extra messages since each processing node can directly access all
disks. On the other hand, irregular data access patterns may lead to high disk contention
depending on the data allocation and query characteristics. Relational join processing,
in turn, may itself require a high communication overhead for data redistribution. Our
performance study is based on simulation and uses database characteristics from the
BUCKY benchmark featuring large sets of objects in comparatively flat and uniform
structures. We consider such characteristics typical of business applications for which
the OR approach is of increasing interest, owing primarily to its convenience in model-
ing compared to the established relational model. This is in contrast to previous studies
on reference-based join processing assuming complex object structures, e.g., for CAD
processing (as exemplified in t@E7 benchmark).

The remainder of this short paper is organized as follows: Sect. 2 briefly mentions
some related work from the literature. Sect. 3 presents the different join methods ap-
plied in our study and proposes a data allocation scheme supporting efficient reference
navigation and parallel query processing. Preliminary simulation results are detailed in
Sect. 4 before we conclude.

2 Related Work

We are not aware of any previous work on join processing specifically addressing OR
systems. There are, however, a number of relevant studies on relational DBS as well as
object-oriented and other ‘complex-object’ data models where the basic problem of ob-
ject assembly has been discussed extensively.

For OODBS, a comparison of pointer-based vs. value-based join techniques showed
that pointer-based variants of sort-merge and hash joins are superior to naive object as-
sembly methods that track individual pointers one-at-a-time, often leading to inefficient
I/O [16]. It was suggested to augment the latter by collecting and ordering references
before following them, thus optimizing disk access [13]. These findings were con-
firmed by other authors, who also proposed new solutions specially geared towards
(nested) sets of references [1, 20]. All these studies, however, were limited to sequential
processing, so we cannot simply extrapolate from their results.

For the parallel case, pointer-based hash, sort-merge, and nested-loop joins were
modeled analytically, but not compared directly [3]. Also, new algorithms were pre-
sented without comparison to existing solutions [4, 7].

A cost model exists to estimate page 1/0O during parallel navigation in complex ob-
jects, but it is restricted to a single partition of a single object type [8]. A related model
using abstract ‘processing costs’ indicates that assembly techniques may be preferable
to explicit joins in parallel environments due to high flexibility and better load balanc-
ing [9].

Finally, there is an enormous body of research on joins in relational PDBS that can-
not be detailed here for lack of space. However, we will build on the fact that hash join
is usually the most efficient technique [10]. An obvious exception occurs if both inputs
are already sorted on the join attribute, in which case a merge join (without a separate
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Fig. 1.BUCKY database schema (excerpt)

sorting step) is preferable. This situation has not been considered in any of the complex-
object studies cited above.

Note also that most of the work mentioned is concerned with very complex compos-
ite-object graphs such as t¥®7benchmark. This approach differs considerably from
the more business-oriented scenarios we have in mind, which may lend themselves
more easily to parallel processing. Other aspects not addressed sufficiently in the afore-
mentioned articles include: joins across class hierarchies, disk contention and message
overhead in parallel environments, as well as issues of data allocation and load balanc-

ing.
3 Data Allocation and Query Processing

This section discusses the allocation and processing approaches used in our simulation
study, which is based on tH®UCKY benchmark proposal [SBUCKY defines a uni-
versity scenario including students, professors, courses etc. that has all the characteris-
tics required for our study. In particular, there are class hierarchies expressing
relationships (e.gRERSONSTUDENT PERSONEMPLOYEEINSTRUCTORPROFESSOR set-

valued attributes (e.g«JDs of PERSOI$) and other associations (e.gTUDENTS advised

by PROFESSO®& and enrolled ikOURSE). A subset of the model is shown in Fig. 1.

3.1 Data Allocation

Data allocation in a parallel environment is a very complex issue even in relational
DBMSs, and it is compounded by the special properties of the OR model such as non-
atomic or reference-typed attributes and class hierarchies. The three most fundamental
decisions discussed in the following concern the (de)clustering of object components,
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Fig. 2. Storage model of thBUCKY database (excerpt)

the fragmentation of relations, and the allocation of fragments to disks. While these pa-
rameters can be optimized for any given query type, mixed workloads will usually also
contain some poorly supported queries, which will be considered in our study.

To implement theBUCKY schema for our study, we chose a declustered storage
strategy based on references as illustrated in Fig. 2. Class hierarchies are decomposed
such that all attributes materialize in the relation where they first occur. For instance,
all PERSONattributes are stored in ttrRERSONrelation but not inEMPLOYEE STUDENT
etc. Consequently, each object of a derived class is represented by a tuple in the associ-
ated relation but also has tuples in all its base relations. (For simplicity, we treat object



classes and the relations implementing them as synonymous.) All these tuples are con-
nected using bidirectional references, e.g., between assoriateicTORANAPROFES-

SOR entries. Similarly, large or set-valued attributes suchPaBSONPICTURE and
PERSONKIDS are detached from the relations they belong to and stored separately; this
also applies to sets of references aBROFESSORDVISEES Such storage strategies have
been found superior for queries addressing only a subset of a class's properties [19, 12].
In contrast, we will consider other query types that necessitate implicit join operations
across the required class components.

Furthermore, we use a fragmentation scheme in which derived relations are stored
analogously to their base relations. For instance, assuminggRabNis range-parti-
tioned based on theersoND attribute, STUDENT EMPLOYEEetc. are all fragmented on
the same (inherited) attribute, even though it is not materialized in the derived relations
themselves. Thus, pairs of fragments can be identified for implicit joins across hierar-
chies that can be joined without involving other fragments. Moreover, we propose to
keep all relations in the hierarchy sorted on the fragmentation attribute to enable effi-
cient, ordered access within fragments especially for merge joins (cf. Sect. 3.2). Alter-
natively, clustered indices ®ERSOND might be used for all relations to avoid physical
sorting.

Similarly, detached attributes are fragmented in the same fashion as the tuples they
belong to. Alldatasetdi.e., relations or detached attributes) are allocated to all disks
(full declustering). For each dataset, we create far more fragments than disks to provide
a smaller granule for load balancing (cf. next section) and allocate several of them on
each device. We alleviate potential skew in the distribution of references by changing
the allocation pattern between datasets. In addition, we make sure that corresponding
fragments from different datasets never reside on the same device, enabling parallel /O,
for instance, betweenrERSONfragment and its associateUUDEN.

Orthogonal to the allocation, arbitrary indices may be defined on the datasets. We
merely assume a clustered indexr@RsSONPERSOND for some of our experiments.

Note that, while developed for a shared-disk architecture, the same allocation can
be used in shared-everything environments. For shared-nothing, we advise to first dis-
tribute the data across the processors such that related tuples reside on the same node,
then apply our method locally if a node has multiple disks.

3.2 Query Processing

The basis of processing isaanoperator that is parallelized based on the fragmentation

of the data. Thus, Bbcal scan(executed by a single processor) works exclusively on a

single fragment of a dataset. On top of this scan method, we consider the following

three join algorithms; the first two are well known from relational DBMSs whereas the
third is borrowed from the object-oriented model:

» Thehash joinfirst scans the inner dataset to build hash tables on all processors, then
probes the outer dataset against the hash tables. This may imply full redistribution
of one or both inputs unless their fragmentation attributes are identical to the join
attribute.

* Themerge joinscans both datasets simultaneously such that associated fragments
are scanned by the same processor and joins are executed locally. This algorithm



depends on its input being sorted on the join attribute and cannot be used for unor-
dered datasets. It can join more than two datasets at a time.

« The deref(erencing) joirscans one dataset and follows its references to the other
dataset one-at-a-time. If more than two datasets are involved, this process is nested
in a depth-first manner. An explicit scan is performed only on the first dataset;
access to other datasets is limited to relevant tuples referenced from the first.

4 Simulation Setup and Results

We investigate the different join methods within B®PAD simulation system that has
been used successfully in previous studies [SfJPAD (Sirrulation of Parallel Data-
bases) is based on tlESIM/C++ simulation library and provides a full hardware envi-
ronment with processors, disks, and networks (modeled as server-type facilities) as well
as lock and buffer management services. We have developed an object-relational exten-
sion on top of the existing relational model, adding an OR database schema as well as
query generation and processing modules [2].

For our experiments, we use a simulated shared-disk environment of 5 processing
nodes and 20 disks. Each node has 2000 pages of main memory. Scaling the original
BUCKYschema by a factor of 10, the sizes of the relevant datasets are as follows:

PERSON 1000000 tuples 17860 pages
PERSONKIDS 3000000 tuples 15960 pages
STUDENT 500000 tuples 3420 pages
PROFESSOR 250000 tuples 1900 pages

For each query, aoordinatornode is selected that controls its execution and collects

the final result. All processing is fully parallelized if a sufficient number of fragments

is involved. An adjustable number jobs(local scans or joins) can run concurrently on

the same processor. Disk contention is minimized by estimating the I/O required per job

and disk, then scheduling together those jobs that show minimal overlap. More details

on the implementation and its parameters can be found in [2].

We have evaluated the performance of the three join methods for three common cas-
es of implicit, reference-based joins: hierarchies, detached attributes, and arbitrary as-
sociations. We expect the following factors to become manifest in the simulation
results:

* The merge join will access both datasets simultaneously, whereas the hash join must
do so sequentially, which is probably less efficient. The deref join follows an inter-
mediate strategy by interleaving access to both inputs.

« The merge- and hash-join methods read full data fragments from start to end. Using
prefetching, this is very efficient and produces little disk contention but may include
tuples irrelevant to the query. The deref join will — by definition — access only
required tuples, at least on the ‘target’ side of a reference, but may be inefficient and
contention-prone especially for unordered access.



¢ The hash join requires a certain amount of main memory for its hash tables,
whereas its competitors can allocate all storage to their I/O buffers. The deref join
may suffer from low hit rates in a small buffer due to its potentially random access
pattern, causing multiple 1/O on the same data. This is no problem for hash and
merge joins reading sequentially.

« The hash join incurs an additional communication overhead when data redistribu-
tion is required.

4.1 Hierarchy References

Our first series of experiments targets hierarchy references betweegriseNnand
STUDENTrelations. Due to our storage model, queries referring to both personal and stu-
dent-specific information of a student will have to access both relations and use the ref-
erences between the two tuples in order to assemble the original object.

Since both relations are sorted and partitioned on the samekeg@ND), we can
employ the merge-join technique from the relational model, using the references as a
join attribute. The hash join can be ruled out as inferior (cf. Sect. 2). As a comparison,
we use the object-oriented deref join. Since references exist foPBEaSDONO STUDENT
andsTUDENTto PERSON this requires us to define the ‘direction’ in which to process the
query. We make this decision depending on the selection predicate so as to start evalu-
ation with the relation that undergoes the stricter selection. No such decision is neces-
sary for the merge-join operator, which reads both relations (and applies all given
selections) simultaneously.

PERSONt0O STUDENT. Consider the query

Find all students witlPERSOND in range R.

Fig. 3a shows the comparison of merge join to deref join for this query where the selec-
tion rangeRwas varied to achieve different selectivities. Since the selection takes place
on aPERsoONattribute, a deref join has to readrsoNuples and follow all non-zero ref-
erences t@TUDENT(i. e., for all persons that are students). Using the clustered index on
PERSONPERSOND, both algorithms can restrict accessPERSONtO the absolute mini-
mum. For the deref operator, it follows that only relevantDENTtuples are accessed

as well. The merge join, by contrast, must always process full fragmestaoENTbuUt

can exclude those for which the associserRisoNfragment is found to be irrelevant.

The graph shows for both algorithms the same basic development of response times
in relation to selectivity, owing to their similar access patterns. But the merge join is
generally faster due to its efficiency in sequential disks access. Deref join cannot com-
pete here as it must interleave access to both relations and can initiate 1/0 to the next
page only after evaluating a reference. At best, it can be on par with merge join for low
selectivity values, where it avoids some unnecessary I/O. Note that optimizing the deref
join's order of disk access as discussed in Sect. 2 is useless since references are already
sorted.

STUDENT to PERSON We now vary the query to

Find all students witlsTUDENTD in range R.
Selection now takes place orsauDENTattribute that can no longer be supported by a
clustered index (because both relations are fragmentedrksoND, which is unrelated
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Fig. 3. Simulation results.

to STUDENTD). In fact, we assume no index at all although a non-clustered one might
be of use for very small selectivity factors. As Fig. 3b shows, execution times are now
almost constant for the merge-join operator, which has to perform full scans on both re-
lations in all cases. The deref algorithm, on the other hand, performs a full scan only on
STUDENT(which is smaller thaPERSONbY a factor of 6) and must access only those
pages oPERSONhat contain relevant tuples. As a consequence, response times —which
are otherwise higher than for merge joins as in the previous case — drop sharply for low
percentages of selectivity, with the break-even point around 2%. Below this point, deref
join is more efficient than merge join.

4.2 Detached Attributes

Next, we examine the implicit join between a relation and one of its detached attributes,
using the query
Find all persons witlPERSOND in range R and their children,

which involves relatioPERsONaNd its set-valued, detached attribuies. Since we as-

sume detached attributes to be ordered and partitioned in the same way as the relations
they belong to, we compare only the merge-join and deref-join methods as in Sect. 4.1.
Basic circumstances being the same, we expect similar results in the simulations.



Fig. 3c confirms this assumption, showing only one direction of execution due to
space limitations. The clustered index®ERSONS used as for theERSONtO-STUDENT
query above. The response time difference is about the same but total response time is
higher than in the previous case becaus&itbedataset is larger tha8TUDENT

4.3 Other Associations

The final series of simulations presented here considers reference-based joins on arbi-
trary associations. Our sample query is

Find all professors advising students wathubeNTD in range R.
This query must access tBg8UDENTandPROFESSORelations. Both are part of theer-
soNhierarchy and fragmented accordingly, and there is no correlation between person
IDs of professors and those of the students they advise. Hence, we cannot assume the
order and partitioning acfTUDENTaNndPROFESSORO match, making the merge-join al-
gorithm unusable. We will use a hash join instead and compare it to the deref join. The
latter will scan thesTuDENTrelation first to perform the selection ®&TUDENTD early,
and additionally read theroFeEssoruples referenced by selected students. The hash
join will redistribute both relations based on the join key, also beginning STtDENT
As both inputs are rather small, we have reduced the buffers to 500 pages per hode.

Fig. 3d shows the results of our experiments. We find that hash join is inferior for
all selectivities due to its message passing overhead and its need to scan both relations
in full. (Note that a sort-merge join would face the same problems.) In addition, it can
read only one dataset at a time whereas deref join can interleave access to both and also
save some I/0O oRROFESSORDIsk contention appears to be no problem for the deref
join even though its access patternRROFESSORS highly irregular. We ascribe this to
our allocation scheme that enables effective load balancing on the disks of the system.
This aspect, however, must be validated for a wider range of parameters as the unor-
dered access ROFESSORaises concerns of buffer thrashing that have yet to be stud-
ied thoroughly. Note, though, that in contrast to the previous cases, an optimization of
disk access is likely to increase the deref join's advantage over relational methods.

5 Conclusions and Future Work

Although our study is still in an early stage, preliminary results are quite interesting. We
found that, as in relational PDBS, merge join is the preferred method when both inputs
are fragmented and ordered on the join attribute. In this case, the deref join can compete
only for low selectivity factors on non-indexed attributes, where it requires less total I/O
than the merge operator. When inputs are ordered differently, however, the deref oper-
ator beats relational joins by saving some communication overhead while avoiding disk
contention owing to our data allocation. Due to its efficacy, we propose our fragmenta-
tion and allocation scheme as a basis of future work.

Further research on parallel OR query processing will have to include the following
aspects: First, our workload must be extended with additional query types. Second, our
allocation needs to be compared to alternative schemes. Finally, scale-up and speed-up
as well as multi-user experiments should be performed to validate previous conclu-
sions.
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