
High Performance Cache Management for Sequential

Erhard Rahm Donald Ferguson

IBM T.J. Watson Research Center

IP.O. Box 704

Yorktown Heiglhts, NY 10598

Data Access

rahm@uklirb.informatik. uni-kl.ec[u dfferg@watson.ibm .com

1 Introduction

This study presents and evaluates new caching algo-

rithms for sequentially accessed data that is being con-

currently used by several processes or jobs. This type

of access is common in many data processing environ-

ments. In this paper, we focus on batch processing,

which is often dominated by concurrent sequential ac-

cess to data. Several of our algorithms are applicable

to other domains in which sequential scanning of data

is common, such aa query processing or long running

transactions in database systems. A survey of rellated

prior work can be found in the full version of this plaper

[1].

2 Problem Statement

There are M datasets (files) in the system, which are

denoted D1, D2,..., D~. The system processes a set of

batch jobs denoted J1, J2,. . . . JN. All of the jobs are

ready to execute when the batch window begins and

we assume that they can be processed in any order. A

job Ji reads M(i) datasets Di,l, Di,2, Di,M(i). J(ob Ji

reads every record in a dataset in order from the first to

the last. A granule (e.g. - ~ack, Cylinder) is a group of

records and is the unit of transfer between the disks and

the memory of the computer system. Given this model,

the problem is to minimize the time between starting

o

Job3

Jobl Job 2
* b

mm I m I m I mmm I m I

12345678910 1112131415

Use Bit Set = 5,7,9,10,11,13.15

UseTlme(5) = 2/4 + T, T = l/O Delay

Use Time Replacement Order = 3,2,1,15,7,13,5,9,11,10

Deadline Pref etch Order = 8,4,12,6,14

. Velocity

Figure 1: An example of the replacement

ing algorithms

the batch jobs and the completion of the

and prefetch-

last job. One

way of decreasing the elapsed time is to cache granules

from the datasets in memory.

3 Algorithms

We present four new cache management algorithms: the

Binary Use Count (B UC), Weighted Binary Use Count

(WBUC) and use Time cache replacement algorithms,

and the Deadline Prefetch Algorithm. All four algo-

rithms rely on estimation of job velocities. The velocity

of job Ji through dataset Dj is the number of granule

read requests for granules in IIj that job Ji submits per

unit of active time. All algorithms are parameterized

by a look ahead time L and use the job velocities to d+

termine which granules will be referenced and in what

order during the next L seconds.

243. Performance Evaluation Review, Vol. 20, No. 1, June 1992

Figure 1 presents an example of the cache man-

agement algorithms. The horizontal line represents a

dataset, the numbers are granule IDs and the circles

represent cached granules. The vector associated with

each job represents its velocity vector. The Use Time

algorithm and the Deadline Prefetch algorithm use the

velocity estimations and predicted misses to estimate “.

the next use time for granules. The Use Time algorithm 2“-

replaces granules from largest to smallest use time and ‘~~
+...+

the Deadline Prefetch algorithm prefetches from small-
~m_ %&.

~::..
est to largest use time. The BUC algorithm randomly

.+ n. CC&@

selects a granule not in any look ahead for replacement.

The WBUC! algorithm follows the same policy, but it

preselects the dataset from which a cached granule is

stolen based on expected future readers of the dataset.
: *E

m~m ,

4 Simulation Results
r.ldlw each. .1,.

We compared the cache management algorithms using
Figure 2: Elapsed time versus cache size for 4 replace-

a detailed simulation model [1]. In figure 2 the three
ment algorithms

cache replacement algorithms are compared with LRU

and no caching of data. The X-axis is cache size relative References
to the sum of the dataset sizes and the Y-axis is elapsed

time to complete the batch workload. The Use Time [1] Erhard Rahm and Donald Ferguson. Cache manage-

algorithm ehibits the best performance, especially for ment algorithms for sequential data access. Techni-

relatively small cache sizes (30Y0 better than the other cal Report RC15486, IBM Research, 1990.

algorithms at .5Yo). In our simulations, Most Recently

Used achieved performance very similar to LRU.

Figure 3 shows the performance of the 4 replace-

ment algorithms when the Deadline Prefetch algorithm

is also active. The relative performance of the replace-

ment algorithms is similar to the performance witbout

prefetching. Using prefetching decreases elapsed time

by approximately 10’?10for all algorithms for this work-

load.

5 Summary

We also studied the performance of an algorithm that

schedules jobs based on datasets accessed to increase

inter-job reuse of data. There are several possible areas

for further work on the problems studied in this paper.

These include enhancing the algorithms to deal with

updates and non-sequential 1/0 activity.

SOc

2.403

1
!.+ +...

l.mx-

lm-

WOI-

r,w–

1.x0-

!#c-

H
.+“. cdlirq

* Lwu

+ BIiC

-8’ WWC

+ u,, time

“~,
rdnfh call, ,!.,

Figure 3: Elapsed time versus cache size for 4 replace-

ment algorithms with prefetching

244. Performance Evaluation Review, Vol. 20, No. 1, June 1992

