

SCADS.AI TOPICS OF THE DATABASE GROUP

Erhard Rahm

GERMAN AI CENTERS

UNIVERSITÄT LEIPZIG

 5 new national AI centers in Germany (in addition to older DFKI)

- Berlin (BIFOLD)
- Dortmund / Bonn (ML2R)
- Dresden / Leipzig (ScaDS.AI)
- Munich (MCML)
- Tübingen (tuebingen.ai)

SCADS.AI

- SCADS.AI: Center for Scalable Data AnalyticS and Artificial Intelligence
- extends the Big Data center ScaDS Dresden/Leipzig, started in 2014
- since Nov. 2019: Al center ScaDS.Al
- Highlights ScaDS.AI
 - 8 new Al professorships (4 at Univ. of Leipzig)
 - graduate school for Ph.D. students
 - Demo and Living Lab

3

SCADS.AI RESEARCH TOPICS

TOPICS OF DATABASE GROUP

UNIVERSITÄT LEIPZIG

- Knowledge graphs
 - refinement of large knowledge graphs from many data sources
 - incremental matching and clustering of new entities
 - research based on prototype FAMER

- Privacy-preserving machine learning
 - combination with privacy-preserving record linkage (PPRL)
 - use of anonymisation techniques like differential privacy
 - based on PPRL protototype PRIMAT

- ML on dynamic graph data
 - based on graph analysis platform GRADOOP
 - utilization of context knowledge (e.g., graph embeddings) for improved predictions, also for data streams

- Introduction
- Holistic entity resolution for knowledge graph completion
 - data integration challenges
 - entity resolution / FAMER
 - incremental entity resolution
- Privacy-related research
- Graph data analysis

BIG DATA ANALYSIS/ML PIPELINE

UNIVERSITÄT LEIPZIG

7

DATA INTEGRATION

- provision of uniform access to data originating from multiple, autonomous sources
- physical data integration
 - original data is combined within a new dataset / database for access and analysis
 - approach of data warehouses, knowledge graphs and most Big Data applications
- virtual data integration
 - data is accessed on demand in their original data sources, e.g. based on an additional query layer
 - approach of federated databases and linked data

- uniform representation and semantic categorization of entities of different types
 - examples: DBPedia, Yago, Wikidata, Google KG, MS Satori, Facebook, ...
 - entities often extracted from other resources (Wikipedia, Wordnet etc.) or web pages, documents, web searches etc.
 - knowledge graphs provide valuable background knowledge for enhancing entities (based on prior entity linking), improving search results ...

The Scale of Knowledge Graphs # of Edges | # of Edges | # web

Shao, Li, Ma (Microsoft Asia): Distributed Real-Time Knowledge Graph Serving (slides, 2015)

EXAMPLE: PRODUCT KNOWLEDGE GRAPH

UNIVERSITÄT LEIPZIG

from: Dong. KDD2018

KEY DATA INTEGRATION CHALLENGES

UNIVERSITÄT LEIPZIG

- data quality
 - unstructured, semi-structured sources
 - need for data cleaning and enrichment
 - need for advanced matching and clustering of entities
- large-scale data integration
 - large data/metadata volume or/and many sources
 - improve runtime by reducing search space (e.g. with blocking) and parallel processing (Hadoop clusters, GPUs, etc.)
 - many sources require holistic data integration: clustering of schema elements and entities, not only binary matching
- support for evolution and change
 - addition of new sources and new entities without having to integrate everything again
 - incremental / dynamic vs batch / static data integration
- privacy for sensitive data
 - privacy-preserving record linkage and data mining

11

ENTITY RESOLUTION (DEDUPLICATION)

- identification of semantically equivalent objects
 - within one data source or between different sources
- original focus on structured (relational) data, e.g. customer data

Cno	LastName	FirstName	Gender	Address	Phone/Fax
24	Smith	Christoph	M	23 Harley St, Chicago IL, 60633-2394	333-222-6542 / 333-222-6599
493	Smith	Kris L.	F	2 Hurley Place, South Fork MN, 48503-5998	444-555-6666

CID	Name	Street	City	Sex
11	Kristen Smith	2 Hurley Pl	South Fork, MN 48503	0
24	Christian Smith	Hurley St 2	S Fork MN	1

HOLISTIC DATA INTEGRATION USE CASE

UNIVERSITÄT LEIPZIG

Integration of product offers in comparison portal

- thousands of data sources (shops/merchants)
- millions of products and product offers
- continuous changes
- many similar, but different products
- low data quality

Canon VIXIA HF S10 Camcorder - 1080p - 8.59 MP - 10 x optical zoom

Flash card, 32 GB, 1y warranty, F/1.8-3.0 The VIXIA HF S10 delivers brilliant video and photos through a Canon exclusive 8.59 megapixel CMOS image sensor and the latest version of Canon's advanced image

**** 12 reviews - Add to Shopping List

Canon (VIXIA) HF S10 iVIS Dual Flash Memory Camcorder
Canon HF S10 iVIS Dual Flash Memory CamcorderSPECIAL SALE PRICE: \$899
Display both English/Japanese + we supplu all English manuals in English as PDF. ...

Canon VIXIA HF S10
Dual Flash Memory High Definition Camcorder The Next Step Forward in HD Video
Canon has a well-known and highly-regarded reputation for optical excellence,
Add to Shopping List

Canon VIXIA HF S100 Flash Memory Camcorder
***Canon Video HF S100 Instant Rebate Receive \$200 with your purchase of a new
Canon VIXIA HF S100 Flash Memory Camcorder. (Price above includes \$200

Canon Vixia Hf S10 Care & Cleaning
Care & Cleaning Digital Camera/Camcorder Deluxe Cleaning Kit with LCD Screen
Guard Canon VIXIA HF S10 Camcorders Care & Cleaning.

\$975 new from 52 sells Compare

\$899.00

Made in Jap

\$999.00

Performance 2 seller ratings

\$899 95

Arlingtoncan 5 seller ratings

\$2.99 nev shop.com ★★★☆☆ <u>38:</u>

13

SAMPLE CAMERA OFFERS

property	value	
"35mm equivalent"	"25-300mm"	
1	"Nikon Coolpix S6800 Digital	
" <page title="">"</page>	Camera (Black) UK Digital	
	Cameras"	
"brand"	"Nikon"	
"camera resolution"	"16 Megapixels"	
"colour"	"Black",	
"features"	"Slimline"	
"hd video"	"Full HD (1080P)"	
"lcd size"	"3.0""	
"lens tele mm"	"300"	
"lens wide mm"	"25"	
"mpn"	"VNA520E1"	
"optical zoom"	"23"	
"optical zoom range"	"18x and higher"	

property	value	
	"Nikon Coolpix S6800 Price in	
" <page title="">"</page>	India with Offers, Reviews & Full	
	Specifications PriceDekho.com"	
"color"	"Black",	
"amazon"	"Infibeam Ebay Homeshop18	
amazon	Snapdeal Flipkart"	
"digital zoom"	"4x"	
"bongolono"	"Hyderabad Chennai Mumbai	
"bangalore"	Delhi Pune"	
"approx resolution"	"16 MP"	
"external memory"	"Yes"	
"face detection"	"NA"	
"gps"	"NA"	
"hdmi"	"NA"	
"maximum shutter speed"	"1/2000 sec"	
"metering"	"NA"	
"minimum shutter speed"	"1 sec"	
"optical zoom"	"18x"	
"screen size"	"3 Inches"	
"usb"	"Yes",	
"video display resolution"	"NA"	
"wifi"	"Yes; Wi-Fi 802.11 b/g/n"	

ENTITY RESOLUTION WORKFLOW

UNIVERSITÄT LEIPZIG

- input: 1, 2 or n data sources
- n>=2: duplicate-free (clean) sources or not
 - cluster sizes <= n für clean sources
 - at most one match per source

15

- naïve: pairwise matching of all entities
 - quadratic complexity, not scalable
 - strong need to reduce match search space

blocking

- group similar objects within blocks / partitions
- only compare entities of the same block
- many variations: Standard Blocking, LSH, Sorted Neighborhood, ...
- dirty data may require use of multiple blocking keys
- block size critical for runtime and quality

- combined use of several similarity values
 - attribute similarities, e.g. using numeric or string similarity measures (e.g., edit distance, n-gram)
 - context-based matchers
- use of match rules
 - e.g. pubs match if title sim. ≥ 0.9 & author sim. > 0.4
 - special case: similarity joins (sim (e1, e2) $\geq t$)
 - strong dependency on threshold and not well scalable
- learned/supervised match classification models
 - requires suitable training data
 - e.g. decision tree, logistic regression, SVM, deep neural networks
 - use of representation learning (embeddings) to enhance matchability of attribute values

17

ENTITY CLUSTERING

UNIVERSITÄT LEIPZIG

grouping of matching entities

- cluster/group can be used to fuse information from different variants and create golden record/cluster representative, e.g. for knowledge graph
- for duplicate-free sources at most one entity per cluster similarity
- clustering approaches
 - input: match candidates with their similarity (similarity graph)
 - try to maximize similariy within cluster and minimize similarity between clusters
- baseline: connected component /trans. closure
 - good recall but can lead to huge clusters with low precision

FAst Multi-source Entity Resolution System

scalable linking & clustering for many sources

LINK STRENGTH (USED IN CLIP)

UNIVERSITÄT LEIPZIG

- Link Strength
 - Strong
 - Normal
 - Weak

CLIP clustering

- weak links are ignored
- strong links are preferred
- normal links with high similarity are used as long as they do not lead to violation of source consistency

23

INCREMENTAL ENTITY CLUSTERING

FAMER INCREMENTAL ER*

UNIVERSITÄT LEIPZIG

- based on existing clusters and similarity graph
- matching of new entities with existing similarity graph
 - optional matching among new entities
 - Max-both assignment between new entities and existing clusters
- reclustering possible to repair wrong clusters

*A. Saeedi, E. Peukert, E. Rahm: Incremental Multi-source Entity Resolution for Knowledge Graph Completion. Proc. ESWC 2020

25

N-DEPTH RECLUSTERING (FAMER)

1-depth reclustering

- n=1 sufficient
- highly effective in evaluations
 - same quality after several source additions as for batch ER with all sources
 - different insert orders lead to same/similar result

PLANNED RESEARCH ITEMS

UNIVERSITÄT LEIPZIG

- more general graph-based ER
 - multiple entity types
 - matching of relationships
 - Context/neigbhborhood-based match approaches
- learning-based methods
 - decision about blocking / matching / clustering strategies
 - determine order in which different entity types are considered
- strategies to deal with dirty sources with duplicates
- cope with all steps for knowledge graph completion
 - prediction of entity type for new entities
 - schema/property matching
 - entity resolution
 - fusion of entities / relations

27

AGENDA

UNIVERSITÄT LEIPZIG

- Introduction
- Holistic entity resolution for knowledge graph completion

- Privacy-related research
 - Introduction
 - PPRL with Bloom filters / PRIMAT
 - PPML

Graph data analysis

PRIVACY FOR DATA SCIENCE

UNIVERSITÄT LEIPZIG

- need for comprehensive privacy support ("privacy by design")
- privacy-preserving publishing of datasets
 - anonymization of datasets
- privacy-preserving record linkage (PPRL)
 - combine data about persons (e.g., patients) without revealing privacy
- privacy-preserving data mining / machine learning
 - analysis of anonymized data without re-identification

UNIVERSITÄT PPRL + DATA ANALYSIS **LEIPZIG** Data owner **Data owner** ords Data owner PID + use data ds Privacy-Person records preserving Encryption data analysis PID-driven data PIDs (global pseudonyms) combination C-IDAT Trusted Linkage Unit **PPRL Algorithm**

UNIVERSITÄT LEIPZIG

- effective and simple encoding uses bloom filters (Schnell et al., 2009)
- tokenize match-relevant quasi-identifiers, e.g. using bigrams or trigrams
 - typical attributes: first name, last name (at birth), sex, date of birth, country of birth, place of birth
- map each token with a family of one-way hash functions to fixed-size bit vector (fingerprint)
 - original data cannot be reconstructed
- match of bit vectors (e.g., using Jaccard similarity) is good approximation of true match result

31

UNIVERSITÄT LEIPZIG

 $Sim_{laccard} (r1, r2) = (r1 \wedge r2) / (r1 \vee r2)$

 $Sim_{Jaccard}(r1, r2) = 7/11$

32

- filtering for specific similarity metrics / thresholds to reduce number of comparisons
 - privacy-preserving PPJoin (P4Join)
 - metric space: utilize triangular inequality
- (private) blocking approaches
 - partition datasets such that only records from same partition (block) need to be matched with each other
 - blocking at data owner on unencoded data (e.g., soundex) or at LU on bloom filters (e.g., LSH)
- parallel linkage
 - GPU-based matching of bit vectors
 - parallel matching on clusters, e.g. using Apache Spark/Flink

- <u>Pri</u>vate <u>Ma</u>tching <u>T</u>oolbox (Uni Leipzig)
- open-source PPRL Tool for entire PPRL process
- separate modules for data owner and linkage unit
- flexible configuration and execution of PPRL workflows
- high performance by blocking and parallel execution
- comparative evaluation of different PPRL approaches/configurations on test datasets

Franke, M.; Sehili, Z.; Rahm, E.: PRIMAT: A Toolbox for Fast Privacy-preserving Matching. PVLDB 2019

DISTRIBUTED PPML WITHOUT PPRL

PLANNED RESEARCH ITEMS

UNIVERSITÄT LEIPZIG

- comparison of PPML with and without PPRL
 - suitable applications, e.g. in medicine
 - different degrees of overlap between data sources
- PPRL on training data only ?
- investigation of advanced data mining / ML on anonymized data,
 e.g., graph based pattern mining
 - use case: money laundring with hidden money transfer bewtween many persons/participants

37

- Introduction
- Holistic entity resolution for knowledge graph completion
- Privacy-related research

- Graph data analysis
 - requirements
 - graph analysis with GRADOOP
 - support for temporal graphs

"GRAPHS ARE EVERYWHERE"

UNIVERSITÄT LEIPZIG

Social science

Engineering

Internet ca. 2.9 billion users

Life science

Gene (human)
20,000-25,000
ca. 4 million individuals
Patients
> 18 millions (Germany)
Illnesses

> 30.000

Information science

World Wide Web ca. 1 billion Websites LOD-Cloud ca. 90 billion triples

39

Facebook

ca. 1.3 billion users ca. 340 friends per user

Twitter

ca. 300 million users

ca. 500 million tweets per day

ScaDS.All

GRAPH DATA ANALYTICS: REQUIREMENTS

- powerful but easy to use graph data model
- interactive, declarative graph queries
- scalable graph mining and machine learning
- high performance and scalability
- graph-based integration of many data sources
- versioning and evolution (dynamic /temporal graphs)
- comprehensive visualization support

41

GRADOOP CHARACTERISTICS

- open-source Hadoop-based framework for graph data management and analysis, www.gradoop.org
 - utilization of powerful dataflow system (Apache Flink) for parallel, in-memory processing
- Extended property graph data model (EPGM)
 - operators on graphs and sets of (sub) graphs
 - support for semantic graph queries and mining
- declarative specification of graph analysis workflows
 - Graph Analytical Language GrALa
- end-to-end functionality
 - graph-based data integration, data analysis and visualization

END-TO-END GRAPH ANALYTICS

UNIVERSITÄT LEIPZIG

- integrate data from one or more sources into a dedicated graph store with common graph data model
- definition of analytical workflows from operator algebra
- result representation in meaningful way

43

UNIVERSITÄT LEIPZIG

```
vertexGrKeys = [:label]
edgeGrKeys = [:label]
sumGraph = databaseGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])
```


47

GROUPING: PROPERTY-SPECIFIC

- most graph databases and graph processing systems focus on static graphs
- real graphs like social networks, citation networks, road networks etc change over time
- analytical questions are often time-related
 - as-of queries on past states (snapshots)
 - change/evolution analysis ...
 - need to efficiently update/refresh analysis results (graph metrics, communities/clusters, ...)
- need of scalable approaches for managing and analyzing temporal graphs and graph data streams

49

TEMPORAL GRAPHS IN GRADOOP

- support for bitemporal graphs
 - time intervals for valid time and transaction time for vertices, edges and graphs
 - valid time provided by user, tx time is systemprovided
- changes to existing operators
 - time predicates (as-of, between, overlap, precedes/suceeds ...) for subgraph, pattern matching, grouping ...
- new operators
 - snapshot extraction (as-of subgraph)
 - graph diff (between two snaphshots)

51

EXAMPLE QUERIES

- affiliation memberships with a duration of less than 3 years
 - graph.subgraph (null, e -> e.label = 'member' AND YEAR(e.to)-YEAR(e.from) < 3</p>
- authors who had an US affiliation in 2017 (temporal pattern matching)
 - (a:Author)-[m:member]->(f:Affiliation country : USA) WHERE m.asOf(2017)
- graph snapshot as of 2010
 - graph.snapshot (asOf(2010))
- graph difference
 - graph.diff (asOf(2010),asOf(2019))

GRAPH DIFF BETWEEN 2010 AND NOW

UNIVERSITÄT LEIPZIG

53

PLANNED RESEARCH ITEMS

- real-time graph analysis on data streams
 - consideration of limited time intervals
- graph-based machine learning
 - utilization of context knowledge for improved predictions
- graph embeddings
 - comparative evaluations of different graph embeddings
- protoytpe developement
 - application to and evaluation for diverse use cases

Knowledge graph research

- better automatic ways to integrate data and update knowledge graphs
- incremental entity resolution (FAMER)
- more complete and more learning-based approaches needed

Privacy-preserving data analysis

- usable approaches for PPRL have been developed (PRIMAT)
- will explore use cases requiring both PPRL and PPML
- advanced analysis approaches needed, e.g., privacy-preserving graph pattern mining

ML on graph data

- powerful framework for analysis of static and temporal graphs (GRADOOP)
- need to support machine learning on graphs and streams of graph data

55

REFERENCES ON DATA INTEGRATION

- P. Christen: *Data Matching*. Springer 2012
- H. Köpcke, A. Thor, S. Thomas, E. Rahm: Tailoring entity resolution for matching product offers. Proc. EDBT 2012: 545-550
- L. Kolb, E. Rahm: Parallel Entity Resolution with Dedoop. Datenbank-Spektrum 13(1): 23-32 (2013)
- M. Nentwig, A. Groß, E. Rahm: Holistic Entity Clustering for Linked Data. IEEE Int. Conf. on Data Mining Workshop, ICDMW 2016 2016
- D. Obraczka, A. Saeedi, A. E. Rahm, E.: Knowledge Graph Completion with FAMER. Proc. KDD workshop on Data Integration to Knowledge Graphs (DI2KG), 2019
- E. Rahm: *The case for holistic data integration*. Proc. ADBIS, 2016
- A. Saeedi, M. Nentwig, E. Peukert, E. Rahm: Scalable matching and clustering of entities with FAMER.
 Complex Systems Informatics and Modeling Quarterly 2018
- A. Saeedi, E. Peukert, E. Rahm: Comparative Evaluation of Distributed Clustering Schemes for Multi-source Entity Resolution. Proc. ADBIS, LNCS 10509, 2017
- A. Saeedi, E. Peukert, E. Rahm: *Using Link Features for Entity Clustering in Knowledge Graphs.* Proc. ESWC 2018 (Best research paper award)
- A. Saeedi, E. Peukert, E. Rahm: Incremental Multi-source Entity Resolution for Knowledge Graph Completion. Proc. ESWC 2020

REFERENCES ON PPRL

UNIVERSITÄT LEIPZIG

- M. Franke, Z. Sehili, E. Rahm: PRIMAT: A Toolbox for Fast Privacy-preserving Matching. PVLDB 2019
- M. Franke, M. Gladbach, Z. Sehili, F. Rohde, E. Rahm ScaDS Research on Scalable Privacy-preserving Record Linkage. Datenbank-Spektrum 2019
- M. Franke, Z. Sehili, E. Rahm: Parallel Privacy-Preserving Record Linkage using LSH-based blocking.
 Proc. IoTBDS 2018
- M. Franke, Z. Sehili, M. Gladbach, E. Rahm: Post-processing Methods for High Quality Privacy-Preserving Record Linkage, LNCS 11025, 2018
- D. Vatsalan, P. Christen, E. Rahm: Incremental Clustering Techniques for Multi-Party Privacy-Preserving Record Linkage. Data & Knowledge Engineering 2020
- D. Vatasalan, Z. Sehili, P. Christen, E. Rahm: Privacy-Preserving Record Linkage for Big Data: Current Approaches and Research Challenges. In: Handbook of Big Data Technologies, Springer 2017

57

REFERENCES ON GRAPH ANALYSIS

- M. Junghanns, M. Kießling, A. Averbuch, A. Petermann, E. Rahm: Cypher-based Graph Pattern Matching in Gradoop. Proc. ACM SIGMOD workshop on Graph Data Management Experiences and Systems (GRADES), 2017
- M. Junghanns, M. Kießling, N. Teichmann, K. Gomez, A. Petermann, E. Rahm: Declarative and distributed graph analytics with GRADOOP. PVLDB 2018
- M. Junghanns, A. Petermann, M. Neumann, E. Rahm: Management and Analysis of Big Graph Data: Current Systems and Open Challenges. In: Big Data Handbook (eds.: S. Sakr, A. Zomaya), Springer, 2017
- M. Junghanns, A. Petermann, E. Rahm: Distributed Grouping of Property Graphs with GRADOOP. Proc. BTW, 2017
- M. Junghanns, A. Petermann, N. Teichmann, K. Gomez, E. Rahm: Analyzing Extended Property Graphs with Apache Flink. Proc. ACM SIGMOD workshop on Network Data Analytics (NDA), 2016
- M. Kricke, E. Peukert, E. Rahm: Graph transformations in Gradoop. Proc. BTW 2019
- A. Petermann, M. Junghanns, S. Kemper, K. Gomez, N. Teichmann, E. Rahm: Graph Mining for Complex Data Analytics. Proc. ICDM 2016
- A. Petermann, M. Junghanns, R. Müller, E. Rahm: Graph-based Data Integration and Business Intelligence with BIIIG. PVLDB 2014
- A. Petermann, M. Junghanns, E. Rahm: DIMSpan Transactional Frequent Subgraph Mining with Distributed In-Memory Dataflow Systems. Proc. BDCAT 2017
- E. Rahm et al.: Big Data Competence Center ScaDS Dresden/Leipzig: Overview and selected research activities. Datenbank-Spektrum 2019
- C. Rost, A. Thor, E. Rahm: Temporal graph analysis using Gradoop. Proc. BTW workshops, 2019
- C. Rost, A. Thor, E. Rahm: Analyzing temporal graphs with Gradoop. Datenbankspektrum 2019
- C. Rost, A. Thor, P. Fritzsche, K. Gomez, E. Rahm, E.: Evolution Analysis of Large Graphs with Gradoop. ECML PKDD 2019 workshops, Springer 2020
- M.A. Rostami, M. Kricke, E. Peukert, S. Kühne, M. Wilke, S. Dienst, E. Rahm: BIGGR: Bringing Gradoop to Applications. Datenbank-Spektrum 2019