

Toralf Kirsten

01.07.2008

Match Tasks

Generation, evolution and matching of bibliographic ontologies Data cleaning of patient data in clinical registers

Generation, evolution and matching of bibliographic ontologies

Generation, evolution and matching of bibliographic ontologies Data cleaning of patient data in clinical registers

Generation, evolution and matching of bibliographic ontologies

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

Generation, evolution and matching of bibliographic ontologies

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

Increasing and large number of publications

Several systems available storing bibliographic metadata, e.g., Caravela, BibSonomy, ...

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

Increasing and large number of publications

Several systems available storing bibliographic metadata, e.g., Caravela, BibSonomy, ...

- Retrieval approaches
 - □ Navigation by using an ontology
 - □ Use of tags (FolkSonomy approach)
 - Combination of both

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

Increasing and large number of publications

Several systems available storing bibliographic metadata, e.g., Caravela, BibSonomy, ...

- Retrieval approaches
 - Navigation by using an ontology
 - □ Use of tags (FolkSonomy approach)
 - □ Combination of both

I Ontology problems

- □ hard to create and adapt an ontology (hold it in a consistent state)
- □ associate citations to concepts of the ontology

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

- Selected Match
- Results

Conclusions

Data cleaning of patient data in clinical registers

- Increasing and large number of publications
- Several systems available storing bibliographic metadata, e.g., Caravela, BibSonomy, ...
- Retrieval approaches
 - Navigation by using an ontology
 - □ Use of tags (FolkSonomy approach)
 - $\hfill\square$ Combination of both

Ontology problems

- □ hard to create and adapt an ontology (hold it in a consistent state)
- associate citations to concepts of the ontology
- Tagging problems
 - associate meaningful tags to publications for a (hopefully) successful retrieval
 - often use of default values ("imported" is one of most used tags in BibSonomy)

Motivation cont.

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

Idea: Create an ontology / tags including their association to citations as recommendation that can be used in citation systems like Caravela **Reuse** available classifications: Conference sessions, journal categories, ...

Motivation cont.

Match Tasks

Generation, evolution and matching of bibliographic ontologies

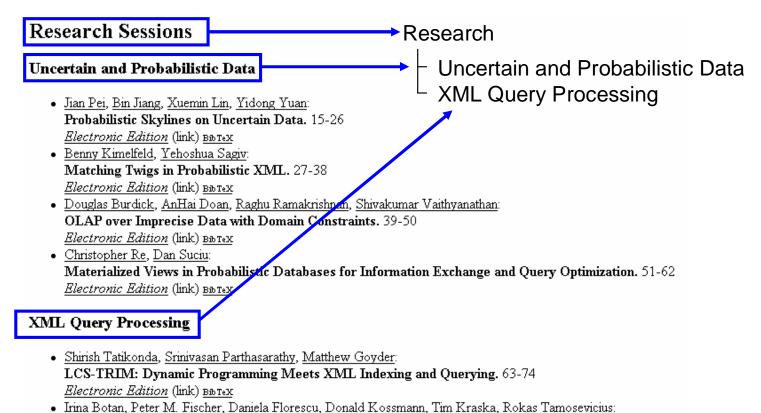
Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario


Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

- Idea: Create an ontology / tags including their association to citations as recommendation that can be used in citation systems like Caravela
 Reuse available classifications: Conference sessions, journal categories, ...
- Example: Portion of DBLP source for VLDB 2007

Extending XOvery with Window Functions 75-86

Problems

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

Avaibility: Primarily on web-pages listing conference/journal content High heterogeneity

- \Box HTML-specific encoding, e.g, $\langle H2 \rangle$ vs. $\langle H3 \rangle$
- \Box source-specific encoding
- □ source-specific categorization, e.g., VLDB vs. SIGMOD
- versioned categorization, e.g., VLDB 2006 vs. VLDB 2007
- Need for a normalization, e.g., "Research Sessions" \rightarrow "Research"

Problems

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

- Evolution
- Match Evaluation
- Scenario
- Selected Match
- Results
- Conclusions

Data cleaning of patient data in clinical registers

- Avaibility: Primarily on web-pages listing conference/journal content High heterogeneity
 - \Box HTML-specific encoding, e.g, $\langle H2 \rangle$ vs. $\langle H3 \rangle$
 - □ source-specific encoding
 - □ source-specific categorization, e.g., VLDB vs. SIGMOD
 - versioned categorization, e.g., VLDB 2006 vs. VLDB 2007
- Need for a normalization, e.g., "Research Sessions" \rightarrow "Research"

SIGMOD 2008

Research Session 1: Tracking Data in Space

- <u>Leong Hou U</u>, <u>Man Lung Yiu, Kyriakos Mouratidis, Nikos Mamoulis;</u> Capacity constrained assignment in spatial databases. 15-28 <u>Electronic Edition</u> (ACM DL) <u>BbTex</u>
- Su Chen, Beng Chin Ooi, Kian-Lee Tan, Mario A. Nascimento: ST²B-tree: a self-tunable spatio-temporal b⁺-tree index for moving objects. 2 <u>Electronic Edition</u> (ACM DL) <u>BbTex</u>
- <u>Hanan Samet, Jagan Sankaranarayanan, Houman Alborzi</u> Scalable network distance browsing in spatial databases. 43-54 <u>Electronic Edition</u> (ACM DL) <u>BbT-x</u>

Research Session 2: Ranking

- Jianlin Feng, Qiong Fang, Wilfred Ng: Discovering bucket orders from full rankings. 55-66 <u>Electronic Edition</u> (ACM DL) BbTeX
- <u>Nilesh Bansal</u>, <u>Sudipto Guha</u>, <u>Nick Koudas</u>: Ad-hoc aggregations of ranked lists in the presence of hierarchies</u>. 67-78 <u>Electronic Edition</u> (ACM DL) <u>BhDTex</u>
- <u>Tianyi Wu</u>, <u>Dong Xin</u>, <u>Jiawei Han</u>: ARCube: supporting ranking aggregate queries in partially materialized data <u>Electronic Edition</u> (ACM DL) <u>BbTex</u>
- **VLDB 2007** Research Sessions Uncertain and Probabilistic Data Jian Pei, Bin Jiang, Xuemin Lin, Yidong Yuan Probabilistic Skylines on Uncertain Data, 15-26 Electronic Edition (link) BBTeX · Benny Kimelfeld, Yehoshua Sagiv: Matching Twigs in Probabilistic XML. 27-38 Electronic Edition (link) BBTeX Douglas Burdick, AnHai Doan, Raghu Ramakrishnan, Shivakumar Vaithyanatha **OLAP over Imprecise Data with Domain Constraints.** 39-50 Electronic Edition (link) BBTeX · Christopher Re, Dan Suciu: Materialized Views in Probabilistic Databases for Information Exchange Electronic Edition (link) BBTeX XML Query Processing
 - <u>Shirish Tatikonda</u>, <u>Srinivasan Parthasarathy</u>, <u>Matthew Goyder</u>; <u>LCS-TRIM</u>: <u>Dynamic Programming Meets XML Indexing and Querying</u> *Electronic Edition* (link) PRTM

Problems

Match Tasks

Motivation

Approaches

Evolution

Scenario

Results

Conclusions

Generation, evolution
and matching of
bibliographic ontologies

Different Integration

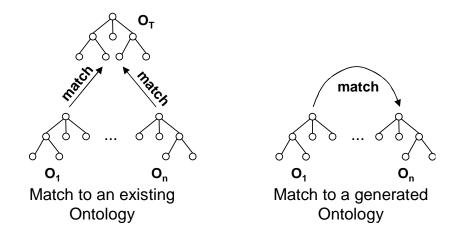
Match Evaluation

Selected Match

Data cleaning of patient data in clinical registers

- Avaibility: Primarily on web-pages listing conference/journal content High heterogeneity
 - \Box HTML-specific encoding, e.g, $\langle H2 \rangle$ vs. $\langle H3 \rangle$
 - □ source-specific encoding
 - □ source-specific categorization, e.g., VLDB vs. SIGMOD
 - □ versioned categorization, e.g., VLDB 2006 vs. VLDB 2007
- Need for a normalization, e.g., "Research Sessions" \rightarrow "Research"

It is an interesting research task.


Different Integration Approaches

Match Tasks

- Generation, evolution and matching of bibliographic ontologies
- Motivation
- Different Integration Approaches
- Evolution
- Match Evaluation Scenario
- Selected Match
- Results
- Conclusions
- Data cleaning of patient data in clinical registers

Ontology

- ontology source: use an existing vs. create an ontology from available data
- □ match operation: match (+ misc) vs. match and merge
- Tagging
 - □ tag source: use an existing tag list vs. create and adapt a tag list
 - creation of synonym lists and relationships (is synonym to, ...)
 between tags

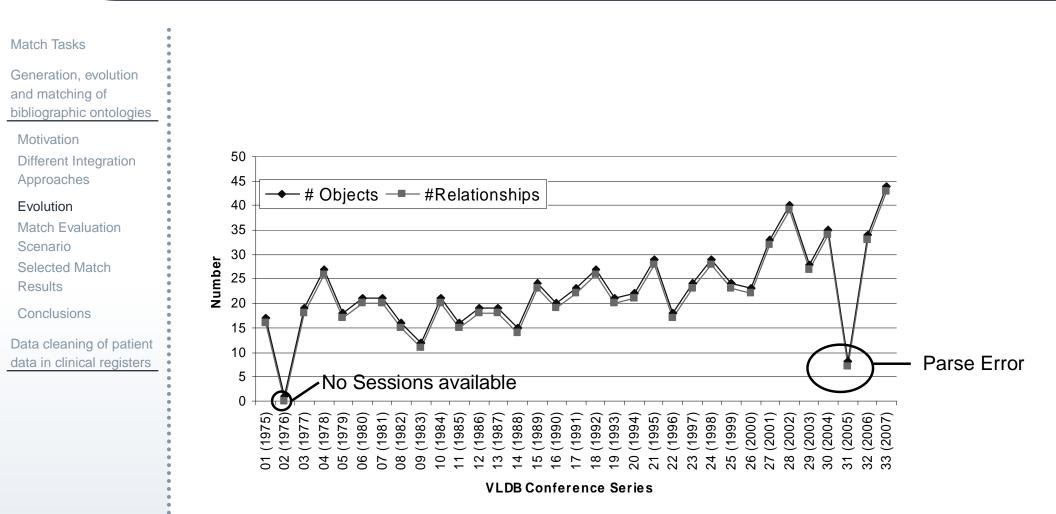
Evolution

Match Tasks

- Generation, evolution and matching of bibliographic ontologies
- Motivation
- Different Integration Approaches

Evolution

- Match Evaluation Scenario Selected Match Results
- Conclusions
- Data cleaning of patient data in clinical registers


Evaluation scenario: VLDB conf. series

- □ Yearly database conference
- □ Start: 1975 (1)
- □ Last: 2007 (33)
- □ Source: DBLP

• Let $S_v = (C, R, t)$

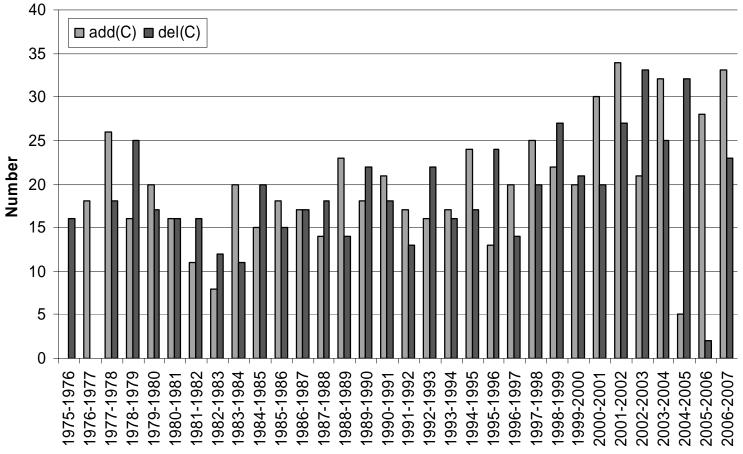
- □ C Concepts extracted from session names
- □ R Relationships between concepts
- \Box t timestamp where S_v is valid
- Global evolution statistics
 - $\hfill\square |C| \geq 1$, because of artifical root node "All Sessions"
 - $\Box \quad avg(|C|) = 22.7$
 - $\Box \quad avg(|R|) = 22,3$

Concept (Session) Numbers for VLDB Conf.

Evolution Statistics for VLDB Conf.

Match Tasks

Generation, evolution and matching of bibliographic ontologies


Motivation

Different Integration Approaches

Evolution

- Match Evaluation Scenario
- Selected Match
- Results
- Conclusions
- Data cleaning of patient data in clinical registers

$$avg(|add(C)_{v_i,v_j}|) = 19.3, avg(del(C)_{v_i,v_j}|) = 18.5$$

Conference Series Comp.

Match Evaluation Scenario

Match Tasks Generation, evolution and matching of bibliographic ontologies Motivation Different Integration Approaches Evolution Match Evaluation Scenario Selected Match Results Conclusions Data cleaning of patient data in clinical registers

Evaluation scenario:

- □ Sessions of VLDB 2006 (32) and VLDB 2007 (33)
- □ Manually created perfect mapping: 26 correspondences
- String-Matchers: AFFIX, Trigram (Dice), Jaro, Jaro-Winkler,
 - Levenstein, Monge-Elkan, Needleman-Wunch, Smith-Waterman
- □ Threshold: 0.6-1.0 (step: 0.1)

Match Problems

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation Scenario

Selected Match

Results

Conclusions

Data cleaning of patient data in clinical registers

VLDB 2006

All Sessions	
- Keynote Addresses	
- <u>Ten-</u> Year Best Paper Award <u>Talk Session</u> -	
- Research Sessions	
Data Cubes	
Indexing	
Information Integration	
New Applications	
OLAP	
Query Optimization	
Query Processing	
Query Processing Tradeoffs	
Reliability	
Scientific Applications	
Schema Matching	
Schema Mapping	
Sensor Data	
Search Applications	
Stream Load Management	
Top-k Queries 🦳	
XML Query Processing	
Continuous Query Processing	
XML Processing	
- Industry Panel	
- Industrial Sessions	
Decision Support	
Engine Infrastructure	
XML Tools and Experience	
Query Processing Engines	
- Demo Sessions 🔍	
Data Integration	
System Issues	
- Tutorials	
- Panels	
	<u> </u>

VLDB 2007

	All Sessions
	- Keynotes
	- <u>10</u> Year Best Paper Award - Research Sessions
	Data Stream Processing Information Extraction and Text
	Information Integration I
	Distributed Data Management Novel Architectures
	Information Integration II
	Private and Secure Databases
	Novel Data Mining Applications
	Outsourcing and Authentication
	Sensor Networks and Information Dissemination
	Schema and Structure Management
	Relational Models and Views
	Query Optimization for Novel Applications
	Time-Series Data Mining
	Text Databases
	Spatial Databases
	Skyline Query Processing
	Web Data Management and Search
	Uncertain and Probabilistic Data
	Top-k Queries and Ranking <u>II</u>
	Top-k Queries and Ranking I
	Indexing and Search
	Query Processing
	XML Query Processing
	Data Privacy, Anonymization, and Outsourcing
	Business and Web Services
	Data Quality
	- Industrial, Application, and Experience Sessions
	Decision Support
~	Engine Infrastructure
	Invited Talks
	Query Processing Engines
	Profiling
	Data Streams
	- Demo Sessions
	<u>Demo Group II</u>
	<u>Demo Group III</u>
	<u>Demo Group I</u>
	- Tutorials
	- Panels

1.0

1.0

0.46

0.63

•							
Match Tasks	Matcher	Affix			Trigram		
Generation, evolution and matching of	Threshold	1.0	0.6	0.7	0.8	0.9	
bibliographic ontologies	Precision	0.83	0.46	0.6	0.7	1.0	
Motivation	Recall	0.73	0.65	0.58	0.46	0.46	
Different Integration Approaches	F-Measure	0.78	0.54	0.59	0.57	0.63	

Evolution

Match Evaluation

Scenario

Selected Match Results

Conclusions

Match Tasks	Matcher	Affix			Trigram						
Generation, evolution and matching of	Threshold	1.0	0.6	0.7	0.8	0.9	1.0				
bibliographic ontologies	Precision	0.83	0.46	0.6	0.7	1.0	1.0				
Motivation	Recall	0.73	0.65	0.58	0.46	0.46	0.46				
Different Integration Approaches	F-Measure	0.78	0.54	0.59	0.57	0.63	0.63				
Evolution											
Match Evaluation	Matcher			Jaro			Jaro-Winkler				
Scenario Selected Match	Threshold	0.6	0.7	0.8	0.9	1.0	0.6	0.7	0.8	0.9	1.0
Results	Precision	0.21	0.48	0.74	1.0	1.0	0.17	0.38	0.49	0.78	1.0
Conclusions	Recall	0.88	0.77	0.65	0.46	0.38	0.92	0.88	0.81	0.69	0.38
Data cleaning of patient data in clinical registers	F-Measure	0.35	0.59	0.69	0.63	0.55	0.29	0.53	0.61	0.73	0.55

Match Tasks			1									
•	Matcher	Affix	Affix Trigram									
Generation, evolution and matching of	Threshold	1.0	0.6	0.7	0.8	0.9	1.0					
bibliographic ontologies	Precision	0.83	0.46	0.6	0.7	1.0	1.0					
Motivation	Recall	0.73	0.65	0.58	0.46	0.46	0.46					
Different Integration Approaches	F-Measure	0.78	0.54	0.59	0.57	0.63	0.63					
Evolution												
Match Evaluation Scenario	Matcher			Jaro				Jaro-Winkler				
Selected Match	Threshold	0.6	0.7	0.8	0.9	1.0	0.6	0.7	0.8	0.9	1.0	
Results	Precision	0.21	0.48	0.74	1.0	1.0	0.17	0.38	0.49	0.78	1.0	
Conclusions	Recall	0.88	0.77	0.65	0.46	0.38	0.92	0.88	0.81	0.69	0.38	
Data cleaning of patient data in clinical registers	F-Measure	0.35	0.59	0.69	0.63	0.55	0.29	0.53	0.61	0.73	0.55	
•	Matcher	Levenstein							h-Water	man		

Matcher		L	evenste	in		Smith-Waterman					
Threshold	0.6	0.7	0.8	0.9	1.0	0.6	0.7	0.8	0.9	1.0	
Precision	0.54	0.71	0.26	1.0	1.0	0.34	0.42	0.62	0.83	0.83	
Recall	0.54	0.46	0.46	0.42	0.38	0.85	0.81	0.81	0.73	0.73	
F-Measure	0.54	0.56	0.6	0.52	0.55	0.48	0.55	0.7	0.78	0.78	

•											
Match Tasks	Matcher	Affix Trigram									
Generation, evolution and matching of	Threshold	1.0	0.6	0.7	0.8	0.9	1.0				
bibliographic ontologies	Precision	0.83	0.46	0.6	0.7	1.0	1.0				
Motivation	Recall	0.73	0.65	0.58	0.46	0.46	0.46				
Different Integration Approaches	F-Measure	0.78	0.54	0.59	0.57	0.63	0.63				
Evolution											
Match Evaluation Scenario	Matcher		Jaro						ro-Wink	ler	
Selected Match	Threshold	0.6	0.7	0.8	0.9	1.0	0.6	0.7	0.8	0.9	1.0
Results	Precision	0.21	0.48	0.74	1.0	1.0	0.17	0.38	0.49	0.78	1.0
Conclusions	Recall	0.88	0.77	0.65	0.46	0.38	0.92	0.88	0.81	0.69	0.38
Data cleaning of patient data in clinical registers	F-Measure	0.35	0.59	0.69	0.63	0.55	0.29	0.53	0.61	0.73	0.55
•											
•	Matcher		L	evenste	in	Smit	h-Water	man			

Matcher		L	evenste	in	Smith-Waterman					
Threshold	0.6	0.7	0.8	0.9	1.0	0.6	0.7	0.8	0.9	1.0
Precision	0.54	0.71	0.26	1.0	1.0	0.34	0.42	0.62	0.83	0.83
Recall	0.54	0.46	0.46	0.42	0.38	0.85	0.81	0.81	0.73	0.73
F-Measure	0.54	0.56	0.6	0.52	0.55	0.48	0.55	0.7	0.78	0.78

<u>What can we observe</u>: Most used string similarity metrics produce mappings with unsatisfied F-Measure values \rightarrow need for improvement :-) ^{13/23}

Conclusions

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Motivation

Different Integration Approaches

Evolution

Match Evaluation

Scenario

Selected Match Results

Conclusions

- Ontology and tag generation for annotation of citations
- Utilization of conference and journal session names
- Problems: High heterogeneity and evolving sources (frequently changes)
- Selected match results based on string similarity metrics show unsatisfied results

Conclusions

Match Tasks

Generation, evolution and matching of bibliographic ontologies

- Motivation
- Different Integration Approaches
- Evolution
- Match Evaluation
- Scenario
- Selected Match Results
- Conclusions

- Ontology and tag generation for annotation of citations
- Utilization of conference and journal session names
- Problems: High heterogeneity and evolving sources (frequently changes)
- Selected match results based on string similarity metrics show unsatisfied results
- Future work
 - parser flexibilization (rule-based?)
 - □ evaluation
 - of concept evolution (concept fusion & split)
 - of other matchers, e.g., graph matcher / matcher combinations
 - of cleaned/normalized concept names, e.g., by using a stemmer (Porter)
 - ontology refactoring by normalization and grouping relevant concepts together (structure extension)

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

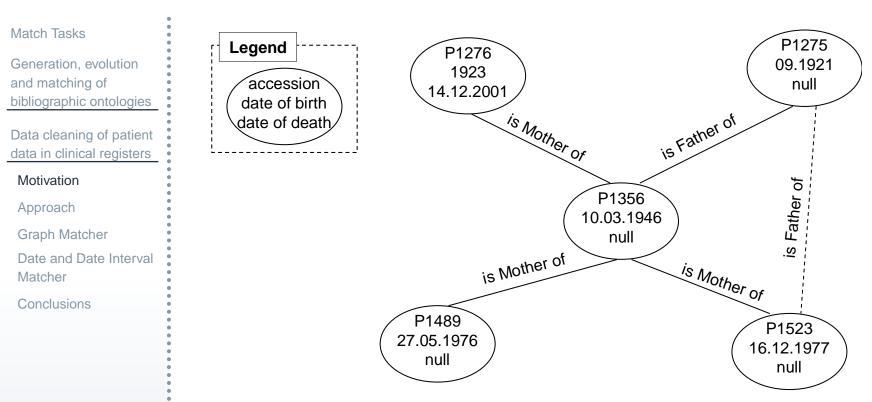
Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach


Graph Matcher

```
Date and Date Interval Matcher
```

Conclusions

- Several Germany-wide registers for hereditary cancer managed in Leipzig (IMISE); currently breast and ovarial cancer, colon cancer
- I Pseudonomyzed data aquisition in Germany distributed centers
- Centrally managed database of patients, families (trees) and their genetic data
- High data volume: Approx. 150,000 patients in around 10,000 families
- Advantages
 - ☐ for patients: Risk recognition to develop a cancer disease
 - □ for researchers: Effectiveness of early detection program

Motivation cont.

Problems:

- □ imprecise dates, e.g., date of birth, date of death, ...: Year and year-intervals instead of day-based dates
- \Box incomplete data about relatives
- □ most important: patient duplicates within and across centers
- $\hfill\square$ no manual detection because of high data volume

Approach

Match Tasks

Generation, evolution and matching of bibliographic ontologies Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

Goal: Duplicate detection and cleaning of patient data

Approach

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

- Goal: Duplicate detection and cleaning of patient data
- Duplicate search by matching patient data
- Approach:
 - 1. Match patients within a center
 - 2. Match patients across centers

Approach

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

- Goal: Duplicate detection and cleaning of patient data
- Duplicate search by matching patient data
- Approach:
 - 1. Match patients within a center
 - 2. Match patients across centers
- Matching of patients using a/set of similarity functions
- However: No application of string matcher (no names available)
- Applicable matcher
 - □ Graph-based matcher
 - Date-based matcher

Graph Matcher

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

- Many graph matching algorithms available
- But for first attempt: Keep it simple
- Approach:

Let G = (V, E) and G' = (V', E') two Graphs containing vertice sets V and V' interconnected by edge sets E and E' Idea: Compute normalized symmetric difference of G and G'

$$Sim(G, G') = 1 - \frac{|V \cup V'| - |V \cap V'| + |E \cup E'| - |E \cap E'|}{|V \cup V'| + |E \cup E'|}$$
$$Sim(G, G') \in [0, 1] \subset \mathbb{R}$$

Node (patient) inclusion:

- full connected graphs for two selected patients
- restrict graphs per patient to its parents, children, and siblings

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

- Three similarity functions: $Sim_{Complete}$, $Sim_{Inclusion}$, $Sim_{Overlap}$ Each time interval t_i is characterized by start t_i^s and end time t_i^e where $t_i^s \leq t_i^e$
- Each date t can be converted to date interval t_i by defining $t_i^s = t$ and $t_i^e = t$

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

Three similarity functions: $Sim_{Complete}$, $Sim_{Inclusion}$, $Sim_{Overlap}$ Each time interval t_i is characterized by start t_i^s and end time t_i^e where $t_i^s \leq t_i^e$

Each date t can be converted to date interval t_i by defining $t_i^s = t$ and $t_i^e = t$

$$Sim_{Complete}(t_1, t_2) = \begin{cases} 1 & \text{, if } t_1^s = t_2^s \land t_1^e = t_2^e \\ 0 & \text{, else} \end{cases} \in [0, 1] \subset \mathbb{R}$$

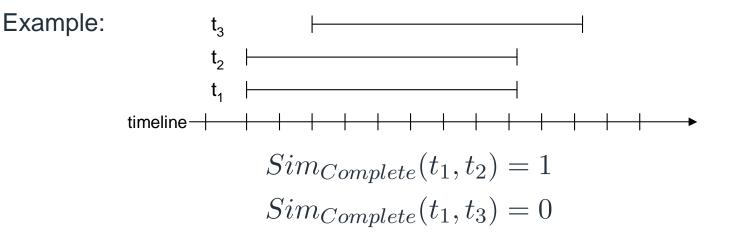
Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation

Approach


Graph Matcher

Date and Date Interval Matcher

Conclusions

- Three similarity functions: $Sim_{Complete}$, $Sim_{Inclusion}$, $Sim_{Overlap}$ Each time interval t_i is characterized by start t_i^s and end time t_i^e where $t_i^s \leq t_i^e$
- Each date t can be converted to date interval t_i by defining $t_i^s = t$ and $t_i^e = t$

$$Sim_{Complete}(t_1, t_2) = \begin{cases} 1 & \text{, if } t_1^s = t_2^s \wedge t_1^e = t_2^e \\ 0 & \text{, else} \end{cases} \in [0, 1] \subset \mathbb{R}$$

Match Tasks

Generation, evolution and matching of bibliographic ontologies

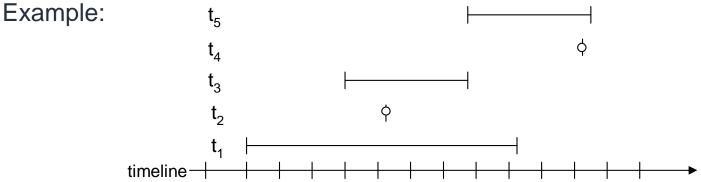
Data cleaning of patient data in clinical registers

Motivation

Approach

Graph Matcher

Date and Date Interval Matcher


Conclusions

$$Sim_{Inclusion}(t_1, t_2) = \begin{cases} 1 & \text{, if } t_1^e \ge t_2^e \\ 0 & \text{, else} \end{cases} \in [0, 1] \subset \mathbb{R}$$

Match Tasks For the Generation, evolution and matching of bibliographic ontologies Data cleaning of patient data in clinical registers Motivation Approach Graph Matcher Date and Date Interval Matcher Conclusions

For the following let t_1 and t_2 two time intervals where $t_1^s \leq t_2^s$

$$Sim_{Inclusion}(t_1, t_2) = \begin{cases} 1 & \text{, if } t_1^e \ge t_2^e \\ 0 & \text{, else} \end{cases} \in [0, 1] \subset \mathbb{R}$$

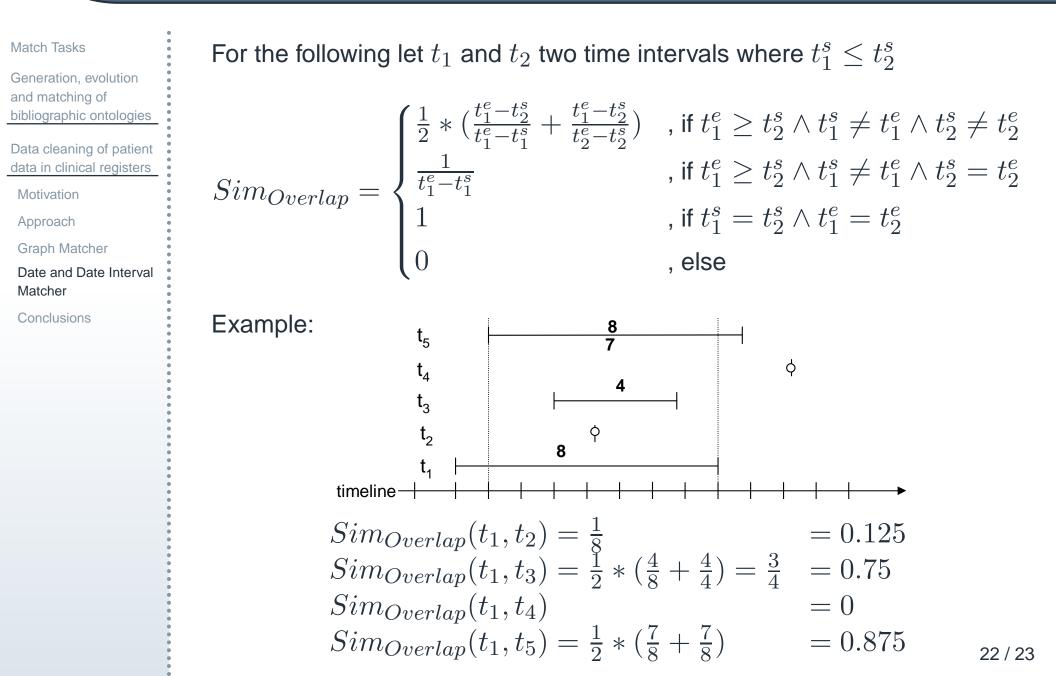
 $Sim_{Inclusion}(t_1, t_2) = 1$ $Sim_{Inclusion}(t_1, t_3) = 1$ $Sim_{Inclusion}(t_1, t_4) = 0$ $Sim_{Inclusion}(t_1, t_5) = 0$

Match Tasks

Generation, evolution and matching of bibliographic ontologies

Data cleaning of patient data in clinical registers

Motivation


Approach

Graph Matcher

Date and Date Interval Matcher

Conclusions

$$Sim_{Overlap} = \begin{cases} \frac{1}{2} * \left(\frac{t_1^e - t_2^s}{t_1^e - t_1^s} + \frac{t_1^e - t_2^s}{t_2^e - t_2^s}\right) &, \text{ if } t_1^e \ge t_2^s \land t_1^s \neq t_1^e \land t_2^s \neq t_2^e \\ \frac{1}{t_1^e - t_1^s} &, \text{ if } t_1^e \ge t_2^s \land t_1^s \neq t_1^e \land t_2^s = t_2^e \\ 1 &, \text{ if } t_1^s = t_2^s \land t_1^e = t_2^e \\ 0 &, \text{ else} \end{cases}$$

Conclusions

Match Tasks

Generation, evolution and matching of bibliographic ontologies

- Data cleaning of patient data in clinical registers
- Motivation
- Approach
- Graph Matcher
- Date and Date Interval Matcher
- Conclusions

- Duplicate detection problem for clinical registers (in Leipzig)
- Solution: Matching patients (objects) and their family trees
- No names or descriptions available \rightarrow no String-Matcher applicable
- Instead: Application of Graph- and Date-Interval-Matcher
- Next steps

- □ Graph-Matcher implementation within GOMMA
- □ Comprehensive matcher evaluation
- Data cleaning in close cooperation with clinicians