Data Warehouses and Web Data Integration

Andreas Thor July 2nd, 2008

Two worlds: Data warehouse & web data

Data warehouse

- integrated, centralized data
- closed world (company-internal information)
- high data quality
- stable
- Web data
 - non integrated
 - open world ("data about everything")
 - diverse data quality
 - volatile
- Web data can enhance DWH data
 - additional dimensions for fact table(s)
 - additional characteristics for existent dimension(s)
- \rightarrow Increase coverage by preserving high data quality

Example scenarios

- E-Commerce: product sales
 - DWH: products (article information, supplier, purchases, ...)
 - Web: reviews, competitor's prices, ...
- E-Commerce: customer relationship management
 - DWH: customers (address, channels, ...)
 - Web: socio-economic data, territory risk analysis, ...
- Bibliographic domain
 - DWH: bibliographic information (title, venue, authors, ...)
 - Web: citation counts, institutions, keywords, ...
- Geographic domain
 - DWH: geographic places (name, inhabitants, region, ...)
 - Web: hotel ratings, point of interest, ...
- Bioinformatics: GeWare (?)

Agenda

Motivation

- Web entity search architecture
- OCS 2.0: Lessons learned
- Search strategy generation
 - by query relaxation
 - by page analysis
- Conclusion

Finding web entities

- Problem: Find all relevant (web) entities for a given subset of the data warehouse
- Google approach"
 - crawl the WWW, extract entities, import into warehouse
 - too expensive, even for focused crawling
- Search-based approach ("Use Google approach")
 - use existing (and powerful) search engine technology
 - efficient access to millions of web sources

Architecture / workflow

- Find all relevant (web) entities for a given DWH subset
 - set of fact table instances + associated dimensions
 - set of dimension instances

Entity search

Entity search engines: Google Scholar, Google Base, ...

- General search engines: Google, Yahoo, ...
 - document extractor is site-specific (e.g., created with Dapper)

Entities

- restrict search to website, e.g., "<query> site:portal.acm.org" searches for <query> within ACM portal
- "interesting" web sites, e.g., ACM portal, Wikipedia, ...

Search strategies

- Input: n input entities
- Output: m queries (for a given search engine)
- Intention: query execution yields corresponding web entities
- Effectiveness
 - find all relevant entities (recall = 100%)
 - find only relevant entities (precision = 100%) \rightarrow object matching
- Efficiency
 - minimize the user-/administrator effort for query generation
 - minimize the number of queries (run-time, accessibility, ...)
- Problem: Automatic or manual strategy definition / query generation?

Search strategies: Lessons learned

- Prototype: Online Citation Service (OCS) 2.0
 - user selects set of DBLP publications
 - OCS searches for corresponding publications in other sources (and summarizes the citation counts per source)
- Sources
 - Google Scholar, MS Libra \rightarrow entity search engine
 - ACM, Citeseer \rightarrow general search engine
- Application of multiple search strategies
 - OCS allows a flexible integration of new strategies

Online Citation Service 2.0

		All	DBLP	GS	ACM	CS	Libra	Title 💻		50 0	ioogle Sc	holar (G	iS)	~
#	Publications	81	81	163	82	28	86	Auth —		50 A	uthor		1	
	∑ Citations			5861	1087	932	1850				uthor+Co4	uthors		
	Ø Citations			72.4	13.4	11.5	22.8	Year	is de la	-2 C	tle Patterr	i annors		
	H-Index			35	20	16	24	GS Citations	(DESC)	к	eyword		- E	
-			<u></u>								,		-	
ŧ	Unmar	'k All	Mark		ark Sel	ected					G	•	C	
~	 A Quant High-Dir Roger V 	itative nensi: <i>Veber</i> ,	Analys onal Sp , <i>Hans</i> -	iis and iaces (\ <i>Jörg</i> Si	Perforn VLDB 1 chek, S	nance 998) Stepher	Study fo 7 <i>Blott</i>	or Similarity-Se	arch Methods in		687	144	147	223
	the A Quanti Spaces	tative /	Analysis	and Pe	rforman	ce Stud	y for Sin	nilarity-Search M	lethods in High-Dim	iensional				
	G A quantit	ative a	nalysis	and per	formanc	e study	for simil	arity-search met	hods in high-dimen	sional	678			
	G -¬A Quai	ntitativ	e Analys	sis and F	Performa	ance St	udy for S	Similarity-Search	Methods in High-D	imensional	3			
	G S. Blott.	A quai	ntitative	analysis	and pe	rforman	ce study	for similarity-se	arch methods in hi	gh-	2			
	G Schek, S	Stepher	n Blott. /	A Quant	itative A	nalysis	and Per	formance Study	for Similarity-Searc	h Methods in	n 2			
	G August 2	4-27).	A quant	itative a	nalysis	and per	formance	e study for simila	arity-search method	s in	1			
	G quantitat	ive ana	ilysis an	id perfor	mance s	study fo	r similari	ty-search metho	ds in high-dimensio	onal spaces	1			
	A Quanti Spaces	tative /	Analysis	and Pe	rforman	ce Stud	y for Sin	nilarity-Search M	lethods in High-Dim	iensional		144		
	C A Quanti Spaces	tative /	Analysis	and Pe	rforman	ce Stud	y for Sin	nilarity-Search N	lethods in High-Dim	iensional			147	
	A Quanti Spaces	tative /	Analysis	and Pe	rforman	ce Stud	y for Sin	nilarity-Search M	lethods in High-Dim	iensional				222
	Stephen Dimensio	Blott: . onal Sp	A Quant baces	itative A	nalysis	and Pe	rformanc	e Study for Sim	ilarity - Search Met	hods in High				1
>	+ Algorithr Edwin M	ns for 1. <i>Kno</i>	Mining rr, Ray.	Distan mond 1	ce-Bas 7. <i>Ng</i>	ed Ou	tliers in	Large Dataset	s (VLDB 1998)		480	62	60	90
	+ MindRea Yoshiha	ader: (ru Ish	Queryin <i>ikawa</i> , .	ig Data Ravish	bases ankar S	Throug Subran	h Multip hanya, (ile Examples (' Christos Falou	VLDB 1998) (sos		386	57	61	125

A survey of approaches to automatic schema matching - Alle 35 Versionen »

E Rahm, PA Bernstein - The VLDB Journal The International Journal on Very Large ..., 2001 - Springer Page 1. The VLDB Journal 10: 334–350 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100057 A survey of approaches to automatic schema matching ... Zitiert durch: 1222 - Ähnliche Artikel - Websuche

[ZITATION] A survey of approaches to automatic schema matching

PA Bernstein, E Rahm - VLDB Journal, 2001 Zitiert durch: 17 - Ähnliche Artikel - Websuche

[ZITATION] A survey of approaches to automatic schema mapping

E Rahm, PA Bernstein - The VLDB Journal, 2001 Zitiert durch: 7 - Ähnliche Artikel - Websuche

[ZITATION] A survey of approaches to semantic schema matching E Rahm, PA Bernstein - The VLDB Journal 10: 334, 2001 Zitiert durch: 6 - Ähnliche Artikel - Websuche

[ZITATION] A survey of approaches to automatic schema mapping" the VLDB Journal E Rahm, PA Bernstein - Vol Zitiert durch: 3 - Ähnliche Artikel - Websuche

[ZITATION] A.(2001). A survey of approaches to automatic schema matching E Rahm, PA Bernstein - The International Journal on Very Large Data Bases (VLDB), 2001 Zitiert durch: 2 - Ähnliche Artikel - Websuche

[ZITATION] A survey of approaches to automatic schema matching. 2001 E Rahm, P Bernstein - VLDB Journal Zitiert durch: 1 - Ähnliche Artikel - Websuche

+ 2 additional 11

Entity search engine: Example (2)

 Publication: Erhard Rahm, Philip A. Bernstein: A survey of approaches to automatic schema matching. The VLDB Journal 10(4): 334-350 (2001)

Search strategy	Query	#Results
title (simple)	a survey of approaches to automatic schema matching	18.2000
title (simple phrase)	"a survey of approaches to automatic schema matching"	1.040
title	intitle:a survey of approaches to automatic schema matching	3.530
title (phrase)	intitle:"a survey of approaches to automatic schema matching"	7
title pattern	intitle:"survey * approaches * * schema"	13
author (1)	author:rahm	2.230
author (2)	author:bernstein author:rahm	44
author (1) + title pattern	author:rahm intitle:"survey * approaches * * schema"	9
author (1) + keyword	author:rahm intitle:survey intitle:schema	9

Lessons learned: Entity search engine

- Search strategies can be generated by answering ...
 - What attributes should be queried for?
 - What attribute value transformation should be applied?
- Domain 1: Computer science
 - small number of authors
 - title contains common words + acronyms
 - heterogeneous venue names
 - \rightarrow good strategies: "author + keyword", "title pattern"
- Domain 2: Chemistry
 - high number of authors
 - title contains string representations of chemical formulas
 - homogenous venue names
 - \rightarrow good strategies: "venue (+year)", "title keywords", "author group"

Entity search: Model

- Query = $p_1(v_1) \land p_2(v_2) \land \ldots \land p_n(v_n)$
- p_i = predicates
 - realized as search form fields and/or "[predicate name]:"
 - p₀ = free text
- v_i = search values for predicates
 - derived from attribute values
 - may be transformed (keyword selection, pattern, reduction, ...)

Query containment

- A ⊆ B: all resulting entities of query A appear in B's search result
- Containment based on
 - predicates
 - attribute values

Search strategy generation by query relaxation

- Example-based query learning
 - input: n DWH entities + m corresponding web entities
 - output: algorithm for query generation
 - intention: algorithm also works for other DWH entities
- Start with fully specified query, e.g., all predicates with exact attribute value
- Relax query by
 - eliminating predicates
 - generalizing / transforming attribute values
- Determine precision and recall
 - for example pages (training data)
 - for test data
- Find optimum (w.r.t. to minimal number of query size)
 - overfitting

General search engine: Example

URL: http://portal.acm.org/citation.cfm?id=767149.767154 Title: A survey of approaches to automatic schema matching

A survey of approaches to automatic schema matching

Full text	Pdf (196 KB)
Source	The VLDB Journal — The International Journal on Very Large Data Bases <u>archive</u> Volume 10, Issue 4 (December 2001) <u>table of contents</u> Pages: 334 - 350 Year of Publication: 2001 ISSN:1066-8888
Authors	Erhard Rahm Universität Leipzig, Institut für Informatik, 04109 Leipzig, Germany; (e-mail: rahm@informatik.uni-leipzig.de) Philip A. Bernstein Microsoft Research, Redmond, WA 98052-6399, USA; (e-mail: philbe@microsoft.com)
Publisher	Springer-Verlag New York, Inc. Secaucus, NJ, USA
Bibliometrics	Downloads (6 Weeks): 14, Downloads (12 Months): 181, Citation Count: 172

Query	#Results
"a survey of approaches to automatic schema matching"	13.200
intitle:"a survey of approaches to automatic schema matching"	63
intitle:"a survey of approaches to automatic schema" inurl:citation.cfm site:portal.acm.org	1
"Erhard Rahm" inurl:citation.cfm site:portal.acm.org	2.530
inanchor:"Erhard Rahm" inurl:citation.cfm site:portal.acm.org	40
intitle:schema inanchor:"Erhard Rahm" inurl:citation.cfm site:portal.acm.org	4
intitle:survey inanchor:"Erhard Rahm" inurl:citation.cfm site:portal.acm.org	1

Lessons learned: General search engine

- Search strategies can be generated by (manually) analyzing web pages
- Website: ACM Digital Library
 - publication title ≈ page title (in some cases: substring)
 - author names with hyperlinks (\rightarrow inanchor:)
 - publication Id (URL parameter) contains venue Id (\rightarrow inurl:)
- Website: Citeseer
 - publication title = page title
 - author names are concatenated (\rightarrow pattern), no hyperlinks
 - publication Id "useless"

Search strategy generation by page analysis

- Example-based query learning
 - input: n DWH entities + m corresponding web pages (entities)
 - output: algorithm for query generation
 - intention: algorithm also works for other DWH entities
- Analyze example pages regarding "searchable" elements
 - content: keywords, phrases (""), pattern ("a * b")
 - structure: URL (site:), linked pages (link:)
 - content + structure: page title (intitle:), anchor text (inanchor:)
- Determine precision and recall
 - for example pages (training data)
 - for test data
- Find optimum (w.r.t. to minimal number of query size)
 - overfitting

Conclusion and future work

- Web data integration can be crucial for data warehouses
- Automatic and efficient querying for web entities
- Two approaches
 - entity search engine \rightarrow query relaxation
 - general search engine \rightarrow page analysis
- Algorithms
 - elaboration (bulk search)
 - implementation
- Evaluation for different scenarios