
0018-9162/04/$20.00 © 2004 IEEE4 Computer

R E S E A R C H F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Outperforming LRU
with an Adaptive
Replacement Cache
Algorithm

C aching, a fundamental metaphor in mod-
ern computing, finds wide application in
storage systems,1 databases, Web servers,
middleware, processors, file systems, disk
drives, redundant array of independent

disks controllers, operating systems, and other
applications such as data compression and list
updating.2 In a two-level memory hierarchy, a
cache performs faster than auxiliary storage, but
is more expensive. Cost concerns thus usually limit
cache size to a fraction of the auxiliary memory’s
size.

Both cache and auxiliary memory handle uni-
formly sized items called pages. Requests for pages
go first to the cache. When a page is found in the
cache, a hit occurs; otherwise, a cache miss hap-
pens, and the request goes to the auxiliary memory.
In the latter case, a copy is paged in to the cache.
This practice, called demand paging, rules out
prefetching pages from the auxiliary memory into
the cache. If the cache is full, before the system can
page in a new page, it must page out one of the cur-
rently cached pages. A replacement policy deter-
mines which page is evicted.

A commonly used criterion for evaluating a
replacement policy is its hit ratio—the frequency
with which it finds a page in the cache. Of course,
the replacement policy’s implementation overhead
should not exceed the anticipated time savings.

Discarding the least-recently-used page is the pol-
icy of choice in cache management. Until recently,
attempts to outperform LRU in practice had not
succeeded because of overhead issues and the need
to pretune parameters. The adaptive replacement
cache is a self-tuning, low-overhead algorithm that
responds online to changing access patterns. ARC
continually balances between the recency and fre-
quency features of the workload, demonstrating
that adaptation eliminates the need for the work-
load-specific pretuning that plagued many previous
proposals to improve LRU.

ARC’s online adaptation will likely have benefits
for real-life workloads due to their richness and
variability with time. These workloads can contain
long sequential I/Os or moving hot spots, changing
frequency and scale of temporal locality and fluc-
tuating between stable, repeating access patterns
and patterns with transient clustered references.

Like LRU, ARC is easy to implement, and its run-
ning time per request is essentially independent of
the cache size. A real-life implementation revealed
that ARC has a low space overhead—0.75 percent
of the cache size. Also, unlike LRU, ARC is scan-
resistant in that it allows one-time sequential
requests to pass through without polluting the
cache or flushing pages that have temporal locality.
Likewise, ARC also effectively handles long peri-
ods of low temporal locality. ARC leads to sub-

The self-tuning, low-overhead, scan-resistant adaptive replacement cache
algorithm outperforms the least-recently-used algorithm by dynamically
responding to changing access patterns and continually balancing
between workload recency and frequency features.

Nimrod
Megiddo
Dharmendra
S. Modha
IBM Almaden
Research Center

stantial performance gains in terms of an improved
hit ratio compared with LRU for a wide range of
cache sizes.

ARC INTUITION
ARC maintains two LRU pages lists: L1 and L2.

L1 maintains pages that have been seen only once,
recently, while L2 maintains pages that have been
seen at least twice, recently. The algorithm actually
caches only a fraction of the pages on these lists.
The pages that have been seen twice within a short
time may be thought of as having high frequency or
as having longer term reuse potential. Hence, we
say that L1 captures recency, while L2 captures fre-
quency.

If the cache can hold c pages, we strive to keep
these two lists to roughly the same size, c. Together,
the two lists comprise a cache directory that holds
at most 2c pages. ARC caches a variable number
of most recent pages from both L1 and L2 such that
the total number of cached pages is c. ARC con-
tinually adapts the precise number of pages from
each list that are cached.

To contrast an adaptive approach with a non-
adaptive approach, suppose FRCp provides a fixed-
replacement policy that attempts to keep in cache
the p most recent pages from L1 and the c − p most
recent pages in L2. Thus, ARC behaves like FRCp

except that it can vary p adaptively. We introduce
a learning rule that lets ARC adapt quickly and
effectively to a variable workload.

Many algorithms use recency and frequency as
predictors of the likelihood that pages will be
reused in the future. ARC acts as an adaptive filter
to detect and track temporal locality. If either
recency or frequency becomes more important at
some time, ARC will detect the change and adapt
its investment in each of the two lists accordingly.

ARC works as well as the policy FRCp, even
when that policy uses hindsight to choose the best
fixed p with respect to the particular workload and
the cache size. Surprisingly, ARC, which operates
completely online, delivers performance compara-
ble to several state-of-the-art cache-replacement
policies, even when, with hindsight, these policies
choose the best fixed values for their tuning para-
meters. ARC matches LRU’s ease of implementa-
tion, requiring only two LRU lists.

CACHE REPLACEMENT ALGORITHMS
Laszlo A. Belady’s MIN1,3 is an optimal, offline

policy for replacing the page in the cache that has
the greatest distance to its next occurrence. The
LRU policy always replaces the least-recently-used

page. In use for decades, this policy has
undergone numerous approximations and
improvements. Three of the most important
related algorithms are Clock,4 WS (working
set),5 and WSClock.6 If the request stream is
drawn from the LRU stack depth distribu-
tion, LRU offers the optimal policy.7 Simple
to implement, LRU responds well to devia-
tions from the underlying SDD model. While
SDD captures recency, it does not capture fre-
quency.7

The independent reference model captures the
notion of page reference frequencies. Under IRM,
requests received at different times are stochasti-
cally independent. LFU replaces the least-fre-
quently-used page and is optimal under IRM,7,8 but
it has several drawbacks: LFU’s running time per
request is logarithmic in the cache size, it is obliv-
ious to recent history, and it adapts poorly to vari-
able access patterns by accumulating stale pages
with past high-frequency counts, which may no
longer be useful.

LRU-29 represents significant practical progress,
approximating the original LFU but working adap-
tively. LRU-2 memorizes the times for each cache
page’s two most recent occurrences and replaces
the page with the least second-most-recent occur-
rence. Under IRM, LRU-2 has the maximum
expected hit ratio of any online algorithm, which
knows at most the two most recent references to
each page,9 and it works well on several traces.10

However, LRU-2 suffers from two practical draw-
backs:10 It uses a priority queue, which gives it log-
arithmic complexity, and it must tune the
parameter-correlated information period.

Logarithmic complexity is a severe practical
drawback that 2Q, an improved method with con-
stant complexity, alleviates.10 It resembles LRU-2,
except that it uses a simple LRU list instead of a
priority queue. ARC’s low computational overhead
resembles 2Q’s. The choice of correlated informa-
tion period crucially affects LRU-2’s performance.
No single a priori fixed choice works uniformly
well across various cache sizes and workloads. This
LRU-2 drawback persists even in 2Q.

The low inter-reference recency set’s design11

builds upon 2Q. LIRS maintains a variable size
LRU stack of potentially unbounded size that
serves as a cache directory. From this stack, LIRS
selects a few top pages, depending on two para-
meters that crucially affect its performance: A cer-
tain choice works well for stable IRM workloads,
while other choices work well for SDD workloads.
Due to a certain stack pruning operation, LIRS has

April 2004 5

ARC acts as
an adaptive

filter to detect
and track

temporal locality.

6 Computer

average-case rather than worst-case con-
stant-time overhead, which is a significant
practical drawback.

Frequency-based replacement12 maintains
an LRU list but partitions it into three sec-
tions—new, middle, and old—and moves
pages between them. FBR also maintains fre-
quency counts for individual pages. The idea
of factoring out locality works on the theory
that if the hit page is stored in the new sec-
tion, the reference count would not incre-
ment. On a cache miss, the system replaces
the page in the old section that has the least-

reference count. FBR’s drawbacks include its need
to rescale the reference counts periodically and its
tunable parameters.

The least-recently/frequently-used (LRFU) pol-
icy subsumes LRU and LFU.13 It assigns a value
C(x) = 0 to every page x and, depending on a para-
meter λ > 0, after every cache access, updates C(x)
= 1 + 2−λC(x) if x is referenced and C(x) = 2−λC(x)
otherwise. This approach resembles the exponen-
tial smoothing statistical forecasting method. LRFU
replaces the page with the least C(x) value. As λ
tends to 0, C(x) tends to the number of occurrences
of x and LRFU collapses to LFU. As λ tends to 1,
C(x) emphasizes recency and LRFU collapses to
LRU. The performance depends crucially on λ.13

ALRFU, an adaptive LRFU, adjusts λ dynamically.
LRFU has two drawbacks. First, both LRFU and

ALRFU require a tunable parameter for control-
ling correlated references.13 Second, LRFU’s com-
plexity fluctuates between constant and logarith-
mic. The required calculations make its practical
complexity significantly higher than that of even
LRU-2. For small λ, LRFU can be 50 times slower
than LRU and ARC. This can potentially wipe out
the benefit of a high hit ratio.

The multiqueue replacement policy14 uses m
queues, where for 0 ≤ i ≤ m − 1, the ith queue con-
tains pages that have been seen at least 2i times but
no more than 2i + 1 − 1 times recently. The MQ algo-
rithm also maintains a history buffer. On a hit, the
page frequency increments, the page is placed at
the appropriate queue’s most recently used (MRU)
position, and the page’s expireTime is set to
currentTime + lifeTime, where lifeTime is a tunable
parameter. On each access, the memory checks the
expireTime for the LRU page in each queue and, if
it is less than currentTime, moves the page to the
next lower queue’s MRU position.

To estimate the parameter lifeTime, MQ assumes
that the distribution of temporal distances between
consecutive accesses to a single page has a certain

hill shape. Because ARC makes no such assump-
tion, it will likely be robust under a wider range of
workloads. Also, MQ will adjust to workload evo-
lution when it can detect a measurable change in
peak temporal distance, whereas ARC will track
an evolving workload nimbly because it adapts
continually. While MQ has constant-time over-
head, it still needs to check LRU page time stamps
for m queues on every request and hence has a
higher overhead than LRU, ARC, and 2Q.

In contrast to the LRU-2, 2Q, LIRS, FBR, and
LRFU algorithms—which all require offline selec-
tion of tunable parameters—our ARC replacement
policy functions online and is completely self-tun-
ing. Because ARC maintains no frequency counts,
unlike LFU and FBR, it does not suffer from peri-
odic rescaling requirements. Also, unlike LIRS,
ARC does not require potentially unbounded space
overhead. Finally, ARC, 2Q, LIRS, and FBR have
constant-time implementation complexity while
LFU, LRU-2, and LRFU have logarithmic imple-
mentation complexity.

CACHE AND HISTORY
Let c be the cache size in pages. We introduce a

policy, DBL(2c), that memorizes 2c pages and man-
ages an imaginary cache of size 2c, and also intro-
duce a class II(c) of cache replacement policies.

DBL(2c) maintains two LRU lists: L1 that con-
tains pages that have been seen recently only once
and L2 that contains pages that have been seen
recently at least twice. More precisely, a page resides
in L1 if it has been requested exactly once since the
last time it was removed from L1 ∪ L2, or if it was
requested only once and never removed from L1 ∪
L2. Similarly, a page resides in L2 if it has been
requested more than once since the last time it was
removed from L1 ∪ L2, or was requested more than
once and was never removed from L1 ∪ L2.

The policy functions as follows: If L1 contains
exactly c pages, replace the LRU page in L1; other-
wise, replace the LRU page in L2. Initially, the lists
are empty: L1 = L2 = ∅. If a requested page resides in
L1 ∪ L2, the policy moves it to the MRU position of
L2; otherwise, it moves to the MRU position of L1.
In the latter case, if |L1| = c, then the policy removes
the LRU member of L1 and, if |L1| < c and |L1| + |L2|
= 2c, the policy removes the LRU member of L2.
Thus, the constraints 0 ≤ |L1| + |L2| ≤ 2c and 0 ≤ |L1|
≤ c on the list sizes are maintained throughout.

We propose a class II(c) of policies that track all
the 2c items that would be present in a cache of size
2c managed by DBL(2c), but at most c are actually
kept in cache. Thus, L1 is partitioned into

Because ARC
maintains no

frequency counts,
it does not suffer

from periodic
rescaling

requirements.

• T1, which contains the top or most-recent
pages in L1, and

• B1, which contains the bottom or least-recent
pages in L1.

Similarly, L2 is partitioned into top T2 and bottom
B2, subject to the following conditions:

• If |L1| + |L2| < c, then B1 = B2 = ∅.
• If |L1| + |L2| > c-1, then |T1| + |T2| = c.
• For i = 1, 2, either Ti or Bi is empty or the LRU

page in Ti is more recent than the MRU page
in Bi.

• Throughout, T1 ∪ T2 contains exactly those
pages, which would be cached under a policy
in the class.

The pages in T1 and T2 reside in the cache directory
and in the cache, but the history pages in B1 and B2

reside only in the cache directory, not in the cache.
Once the cache directory has 2c pages, T1 ∪ T2 and
B1 ∪ B2 will both contain exactly c pages thence-
forth. ARC will leverage the extra history informa-
tion in B1 ∪ B2 to effect a continual adaptation. It
can be shown that the policy LRU(c) is in the class
II(c). Conversely, for 0 < c′ < c, the most recent c
pages do not always need to be in DBL(2c′). This
justifies the choice to maintain c history pages.

ADAPTIVE REPLACEMENT CACHE
A fixed replacement cache FRCp(c)—with a tun-

able parameter p, 0 ≤ p ≤ c, in the class II(c)—

attempts to keep in cache the p most recent pages
from L1 and the c − p most recent pages in L2. Use
x to denote the requested page.

• If either |T1| > p or (|T1| = p and x ∈ B2), replace
the LRU page in T1.

• If either |T1| < p or (|T1| = p and x ∈ B1), replace
the LRU page in T2.

Roughly speaking, p is the current target size for
the list T1. ARC behaves like FRCp, except that p
changes adaptively. Figure 1 describes the complete
ARC policy.

Intuitively, a hit in B1 suggests an increase in the
size of T1, and a hit in B2 suggests an increase in
the size of T2. The continual updates of p effect
these increases. The amount of change in p is
important. The learning rates depend on the rela-
tive sizes of B1 and B2. ARC attempts to keep T1

and B2 to roughly the same size and also T2 and B1

to roughly the same size.
On a hit in B1, p increments by max{|B2|/|B1|, 1}

but does not exceed c. Similarly, on a hit in B2, p
decrements by max{|B1|/|B2|, 1}, but it never drops
below zero. When taken together, numerous such
small increments and decrements to p have a pro-
found effect. ARC never stops adapting, so it
always responds to workload changes from IRM to
SDD and vice versa.

Because L1 ∪ L2 = T1 ∪ T2 ∪ B1 ∪ B2 always con-
tain the LRU c pages, LRU cannot experience cache
hits unbeknownst to ARC, but ARC can and often

April 2004 7

ARC(c) I T1 = B1 = T2 = B2 = 0, p = 0. x - requested page.

Case I. x ∈ T1 ∪T2 (a hit in ARC(c) and DBL(2c)): Move x to the top of T2.

Case I I . x ∈ B1 (a miss in ARC(c), a hit in DBL(2c)):
Adapt p = min{ c, p+ max{ |B2|/ | B1|, 1} } . REPLACE(p). Move x to the top of
T2 and place it in the cache.

Case I I I . x ∈ B2 (a miss in ARC(c), a hit in DBL(2c)):
Adapt p = max{ 0, p max{ |B1|/ |B2|, 1} } . REPLACE(p). Move x to the top
of T2 and place it in the cache.

Case IV . x ∈ L1 ∪L2 (a miss in DBL(2c) and ARC(c)):

case (i) |L1| = c:

I f |T1| < c then delete the LRU page of B1 and REPLACE(p).
else delete LRU page of T1 and remove it from the cache.

case (ii) |L1| < c and |L1| + |L2| ≥ c:

if |L1| + |L2| = 2c then delete the LRU page of B2.
REPLACE(p).

Put x at the top of T1 and place it in the cache.

Subroutine REPLACE(p)

if (|T1| ≥ 1) and ((x ∈ B2 and |T1| = p) or (|T1| > p)) then move the LRU page of
T1 to the top of B1 and remove it from the cache.

else move the LRU page in T2 to the top of B2 and remove it from the cache.

NITIALIZE

–

Figure 1. ARC
policy. The adaptive
replacement cache
algorithm maintains
two LRU pages lists:
L1 and L2. L1

maintains pages
that have been seen
only once, recently,
while L2 maintains
pages that have
been seen at least
twice, recently.
ARC’s time overhead
per request remains
independent of
cache size, while its
space overhead only
marginally exceeds
LRU’s.

8 Computer

does experience cache hits unbeknownst to LRU.
If a page is not in L1 ∪ L2, the system places it at

the top of L1. From there, it makes its way to the
LRU position in L1, unless requested once again
prior to being evicted from L1, it never enters L2.

Hence, a long sequence of read-once requests passes
through L1 without flushing out possibly important
pages in L2. In this sense, ARC is scan resistant.
Arguably, when a scan begins, fewer hits occur in
B1 compared to B2. Hence, by the effect of the learn-

Table 1. Comparison between ARC and other algorithms on an online transaction processing workload.

Cache Online hit ratios (%) Offline hit ratios (%)
(512-byte
pages) ARC LRU LFU FBR LIRS MQ LRU-2 2Q LRFU MIN

1,000 38.93 32.83 27.98 36.96 34.80 37.86 39.30 40.48 40.52 53.61
2,000 46.08 42.47 35.21 43.98 42.51 44.10 45.82 46.53 46.11 60.40
5,000 55.25 53.65 44.76 53.53 47.14 54.39 54.78 55.70 56.73 68.27

10,000 61.87 60.70 52.15 62.32 60.35 61.08 62.42 62.58 63.54 73.02
15,000 65.40 64.63 56.22 65.66 63.99 64.81 65.22 65.82 67.06 75.13

Table 2. Comparison between ARC and other algorithms on trace P8.

Cache Online hit ratios (%) Offline hit ratios (%)
(512-byte
pages) ARC LRU MQ 2Q LRU-2 LRFU LIRS

1,024 1.22 0.35 0.35 0.94 1.63 0.69 0.79
2,048 2.43 0.45 0.45 2.27 3.01 2.18 1.71
4,096 5.28 0.73 0.81 5.13 5.50 3.53 3.60
8,192 9.19 2.30 2.82 10.27 9.87 7.58 7.67

16,384 16.48 7.37 9.44 18.78 17.18 14.83 15.26
32,768 27.51 17.18 25.75 31.33 28.86 28.37 27.29
65,536 43.42 36.10 48.26 47.61 45.77 46.72 45.36

131,072 66.35 62.10 69.70 69.45 67.56 66.60 69.65
262,144 89.28 89.26 89.67 88.92 89.59 90.32 89.78
524,288 97.30 96.77 96.83 96.16 97.22 97.38 97.21

Table 3. Comparison between ARC and other algorithms on trace P12.

Cache Online hit ratios (%) Offline hit ratios (%)
(512-byte
pages) ARC LRU MQ 2Q LRU-2 LRFU LIRS

1,024 4.16 4.09 4.08 4.13 4.07 4.09 4.08
2,048 4.89 4.84 4.83 4.89 4.83 4.84 4.83
4,096 5.76 5.61 5.61 5.76 5.81 5.61 5.61
8,192 7.14 6.22 6.23 7.52 7.54 7.29 6.61

16,384 10.12 7.09 7.11 11.05 10.67 11.01 9.29
32,768 15.94 8.93 9.56 16.89 16.36 16.35 15.15
65,536 26.09 14.43 20.82 27.46 25.79 25.35 25.65

131,072 38.68 29.21 35.76 41.09 39.58 39.78 40.37
262,144 53.47 49.11 51.56 53.31 53.43 54.56 53.65
524,288 63.56 60.91 61.35 61.64 63.15 63.13 63.89

ing law, list T2 will grow at the expense of list T1.
This further accentuates ARC’s resistance to scans.

EXPERIMENTAL RESULTS
We compared the performance of various algo-

rithms on various traces. OLTP10,13 contains an
hour’s worth of references to a Codasyl database.
We collected P1 through P14 over several months
from Windows NT workstations,15 obtained
ConCat by concatenating traces P1 through P14,
then merged them using time stamps on each
request to obtain Merge(P). We took DS1, a seven-
day trace, from a commercial database server. All
these traces have a page size of 512 bytes.

We also captured a trace of the Storage Perfor-
mance Council’s SPC1-like synthetic benchmark,
which contains long sequential scans in addition to
random accesses and has a page size of 4 Kbytes.

Finally, we considered three traces—S1, S2, and
S3—that perform disk-read accesses initiated by a
large commercial search engine in response to var-
ious Web search requests over several hours. These
traces have a page size of 4 Kbytes. We obtained the
trace Merge(S) by merging the traces S1 through S3
using time stamps on each request. All hit ratios are
cold starts and are reported in percentages.

Table 1 compares ARC’s hit ratios to the hit ratios
of several algorithms on the OLTP trace. We set the
tunable parameters for FBR and LIRS according to
their original descriptions. We selected the tunable
parameters of LRU-2, 2Q, and LRFU offline for the
best result for each cache size. ARC requires no
user-specified parameters. We tuned MQ online.14

The LFU, FBR, LRU-2, 2Q, LRFU, and MIN para-
meters exactly match those in the LRFU policy.13

ARC outperforms LRU, LFU, FBR, LIRS, and
MQ. Further, it performs as well as LRU-2, 2Q,
LRFU, and MIN with their respective offline best-
parameter values. We found similar results for the
DB2 and Sprite file system traces.13

Tables 2 and 3 compare ARC to LRU, MQ, 2Q,
LRU-2, LRFU, and LIRS on the P8 and P12 traces,
where the tunable parameters for MQ were set
online14 and the tunable parameters of other algo-
rithms were chosen offline to be optimized for each
cache size and workload. ARC outperforms LRU
and performs nearly as well or competitively against
2Q, LRU-2, LRFU, LIRS, and MQ. In general, sim-
ilar results hold for all the traces examined.16

Table 4 compares ARC with LRU for all traces
with a practically relevant cache size. The SPC1-
like trace contains long sequential scans inter-

April 2004 9

Table 4. Comparison of ARC and LRU hit ratios (in percentages) for various workloads.

Workload Cache (pages) Cache (Mbytes) LRU ARC FRCp (Offline)

P1 32,768 16 16.55 28.26 29.39
P2 32,768 16 18.47 27.38 27.61
P3 32,768 16 3.57 17.12 17.60
P4 32,768 16 5.24 11.24 9.11
P5 32,768 16 6.73 14.27 14.29
P6 32,768 16 4.24 23.84 22.62
P7 32,768 16 3.45 13.77 14.01
P8 32,768 16 17.18 27.51 28.92
P9 32,768 16 8.28 19.73 20.28
P10 32,768 16 2.48 9.46 9.63
P11 32,768 16 20.92 26.48 26.57
P12 32,768 16 8.93 15.94 15.97
P13 32,768 16 7.83 16.60 16.81
P14 32,768 16 15.73 20.52 20.55
ConCat 32,768 16 14.38 21.67 21.63
Merge(P) 262,144 128 38.05 39.91 39.40
DS1 2,097,152 1,024 11.65 22.52 18.72
SPC1-like 1,048,576 4,096 9.19 20.00 20.11
S1 524,288 2,048 23.71 33.43 34.00
S2 524,288 2,048 25.91 40.68 40.57
S3 524,288 2,048 25.26 40.44 40.29
Merge(S) 1,048,576 4,096 27.62 40.44 40.18

10 Computer

spersed with random requests. Due to scan resis-
tance, ARC outperforms LRU, sometimes quite
dramatically. ARC, working online, performs
closely to and sometimes better than FRCp with the
best offline fixed choice of the parameter p for all
the traces.

When the adaptation parameter p approaches
zero, ARC emphasizes the L2’s contents; when
parameter p approaches the cache size, ARC
emphasizes L1’s contents. Parameter p fluctuates
and sometimes actually reaches these extremes.
ARC can fluctuate from frequency to recency and
back, all within a single workload.

Figure 2 compares the hit ratios for ARC against
those for LRU for three traces: P6, SPC1-like, and
Merge(S). ARC substantially outperforms LRU on
virtually all traces and for all cache sizes.16

O ur results show that the self-tuning, low-over-
head, scan-resistant ARC cache-replacement
policy outperforms LRU. Thus, using adap-

tation in a cache replacement policy can produce
considerable performance improvements in mod-
ern caches. ■

References
1. R.L. Mattson et al., “Evaluation Techniques for Stor-

age Hierarchies,” IBM Systems J., vol. 9, no. 2, 1970,
pp. 78-117.

2. D.D. Sleator and R.E. Tarjan, “Amortized Efficiency
of List Update and Paging Rules,” Comm. ACM, vol.
28, no. 2, 1985, pp. 202-208.

3. L.A. Belady, “A Study of Replacement Algorithms
for Virtual Storage Computers,” IBM Systems J., vol.
5, no. 2, 1966, pp. 78-101.

4. F.J. Corbato, “A Paging Experiment with the Mul-
tics System,” In Honor of P.M. Morse, MIT Press,
1969, pp. 217-228.

5. P.J. Denning, “Working Sets Past and Present,” IEEE
Trans. Software Eng., vol. 6, no. 1, 1980, pp. 64-84.

6. W.R. Carr and J.L. Hennessy, “WSClock—A Simple
and Effective Algorithm for Virtual Memory Man-
agement,” Proc. 8th Symp. Operating System Prin-
ciples, ACM Press, 1981, pp. 87-95.

7. J.E.G. Coffman and P.J. Denning, Operating Systems
Theory, Prentice Hall, 1973, p. 282.

8. A.V. Aho, P.J. Denning, and J.D. Ullman, “Principles
of Optimal Page Replacement,” J. ACM, vol. 18, no.
1, 1971, pp. 80-93.

9. E.J. O’Neil, P.E. O’Neil, and G. Weikum, “An Opti-

65,536 262,144 1,048,576

 0.5

1

2

4

8

16

32

Cache size (number of 4,096-byte pages)

Hi
t r

at
io

 (p
er

ce
nt

)

SPC1-like

ARC

LRU

1,024 4,096 16,384 65,536 262,144

1

2

4

8

16

32

64

Cache size (number of 512-byte pages)

P6

ARC

LRU

105 106

Cache size (number of 4,096-byte pages)

Merge

ARC

LRU

87

Hi
t r

at
io

 (p
er

ce
nt

)

100

101

Hi
t r

at
io

 (p
er

ce
nt

)

Figure 2. ARC and
LRU hit ratios (in
percentages) versus
cache size (in
pages) in log-log
scale for traces P6,
SPC1-like, and
Merge(S).

mality Proof of the LRU-K Page Replacement Algo-
rithm,” J. ACM, vol. 46, no. 1, 1999, pp. 92-112.

10. T. Johnson and D. Shasha, “2Q: A Low Overhead
High-Performance Buffer Management Replacement
Algorithm,” Proc. VLDB Conf., Morgan Kaufmann,
1994, pp. 297-306.

11. S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-
Reference Recency Set Replacement Policy to
Improve Buffer Cache Performance,” Proc. ACM
Sigmetrics Conf., ACM Press, 2002; http://parapet.
ee.princeton.edu/~sigm2002/papers/p31-jiang.pdf.

12. J.T. Robinson and M.V. Devarakonda, “Data Cache
Management Using Frequency-Based Replacement,”
Proc. ACM SIGMETRICS Conf., ACM Press, 1990,
pp. 134-142.

13. D. Lee et al., “LRFU: A Spectrum of Policies that Sub-
sumes the Least Recently Used and Least Frequently
Used Policies,” IEEE Trans. Computers, vol. 50, no.
12, 2001, pp. 1352-1360.

14. Y. Zhou and J.F. Philbin, “The Multi-Queue Replace-
ment Algorithm for Second-Level Buffer Caches,”
Proc. Usenix Ann. Tech. Conf. (Usenix 2001),
Usenix, 2001, pp. 91-104.

15. W.W. Hsu, A.J. Smith, and H.C. Young, The Auto-
matic Improvement of Locality in Storage Systems,

tech. report, Computer Science Division, Univ. of
California, Berkeley, 2001.

16. N. Megiddo and D.S. Modha, “ARC: A Self-Tuning,
Low Overhead Replacement Cache,” Proc. Usenix
Conf. File and Storage Technologies (FAST 2003),
Usenix, 2003, pp. 115-130.

Nimrod Megiddo is a research staff member at the
IBM Almaden Research Center in San Jose, Calif.
His research interests include optimization, algo-
rithm design and analysis, game theory, and
machine learning. Megiddo received a PhD in math-
ematics from the Hebrew University of Jerusalem.
Contact him at megiddo@almaden.ibm.com.

Dharmendra S. Modha is a research staff member
at the IBM Almaden Research Center in San Jose,
Calif. His research interests include machine learn-
ing, information theory, and algorithms. Modha
received a PhD in electrical and computer engi-
neering from the University of California, San
Diego. He is a senior member of the IEEE. Contact
him at dmodha@almaden.ibm.com.

April 2004 11

