
Supporting Efficient Streaming and Insertion of XML 
Data in RDBMS 

Timo Böhme, Erhard Rahm 

University of Leipzig, Germany 
{boehme, rahm}@informatik.uni-leipzig.de 

http://dbs.uni-leipzig.de 

Abstract. Relational database systems are increasingly used to manage XML 
documents, especially for data-centric XML. In this paper we present a new 
approach to efficiently manage document-centric XML data based on a generic 
relational mapping. Such a generic XML storage is especially useful in data 
integration systems to manage highly diverse XML documents. We focus on 
efficient insert operations, support of streamed data and fast retrieval of 
document fragments. Therefore we introduce a new numbering scheme called 
DLN (Dynamic Level Numbering) and several variants of it. A performance 
evaluation based on a prototypical implementation demonstrates the high 
efficiency of DLN. 

1 Introduction 

Today there is a high demand to manage XML data with relational database systems. 
All relational database vendors have added XML support to their products. Currently, 
two main kinds of mappings for integrating XML data into the relational model are 
supported [1]. The first is a document-centered one, and stores documents as a whole 
which poses restrictions on queryability and intra-document updates. The second is a 
data-centered one and requires a XML DTD or schema to map XML data to 
application-specific tables and attributes. While this approach supports application-
specific SQL operations over the data it loses information such as element sibling 
order and leads to an expensive reconstruction of document fragments. 

Both mappings are not able to efficiently manage large scale document-centric 
XML data1 which can be updated and accessed via standard XML interfaces like 
XPath, XQuery or DOM2. These requirements can be met by a third kind of mapping: 
the structure-centered storage. It does not require a XML DTD or schema and maps 
the tree or graph structure of XML documents generically into predefined relations. 

                                                           
1 In [2] a general technique for translating XML queries to SQL for data-centered storage with 

preserved tree order information is proposed. However the queries cannot be executed effi-
ciently since e.g. ancestor-descendant relationships have to be computed in a recursive way 
and document reconstruction needs several join and sort operations. 

2 Document Object Model: http://www.w3.org/DOM 



        

Such a generic XML storage is especially useful in data integration systems to 
manage highly diverse XML documents. 

Early work on generic relational storage of XML data [3] showed that storing only 
parent child relationships results in poor performance for determining ancestor-
descendant relationships and for document reconstruction. These problems can be 
solved by applying numbering schemes which represent the order of XML nodes and 
keep information about subtree containment. Except for a very recent proposal called 
ORDPATH [13], the known numbering schemes [1,6,7,8,9,10,11] either optimize 
only sequential processing of input data but not updates like inserting new subtrees, or 
are unsuited for streamed XML data, e.g. requiring a DOM  representation.  

We therefore developed a new numbering scheme called DLN (Dynamic Level 
Numbering) for generic (structure-centered) storage of XML data in relational 
databases. The main objectives of DLN include: 

− support for sequential processing of large XML documents (streaming),  

− efficient updates, especially the insertion of complex subtrees, 

− fast reconstruction of documents or document fragments and 

− no manual definitions for data insertion. 
 

The rest of the paper is organized as follows. Next we discuss related work. 
Section 3 introduces the new DLN numbering scheme and some variants. Section 4 
presents a comparison with ORDPATH and a performance evaluation. Finally Section 
5 concludes the paper. 

2 Related Work 

Different relational mappings for generic storage of XML documents are proposed. In 
[3] the tree-like node structure of XML documents is represented as parent-child 
relationships, but this approach is inefficient for reconstructing documents. [4] en-
codes the document tree in binary relations, but also has performance difficulties for 
reconstructing document fragments. A multidimensional mapping using document id, 
value and path surrogate is published in [5]. However the approach does not deal with 
update operations and its path coding restricts the number of child elements per node. 

A key approach to improve query and retrieval performance is the use of semanti-
cally meaningful node-ids when mapping XML data into nodes according to the 
Document Object Model (DOM). Therefore several numbering schemes have been 
proposed. One of the first numbering schemes supporting ancestor-descendant rela-
tionships was published in [6]. It labeled each tree node with a pair of preorder and 
postorder position numbers. So for each pair of nodes x and y, x is an ancestor of y if 
and only if preorder(x)<preorder(y) and postorder(x)>postorder(y). A similar scheme 
was chosen in [7]. While this numbering scheme is easy to compute and can be used 
for streamed XML data it is highly inefficient when new nodes are inserted. Here 
each node in preorder traversal coming after the inserted node has to be updated. 

The update problem has been addressed by the extended preorder numbering 
scheme introduced in [8] and adopted in [9] as durable node numbers. They also use a 



pair of numbers for each node. The first number captures the total order of the nodes 
within the document like the preorder traversal but leaves an interval between the 
values of two consecutive nodes. The second number is a range value. As with the 
preceding scheme the ancestor-descendant relationship between node x and y can be 
determined from x is an ancestor of y iff order(x) < order(y) ≤ order(x) + range(x). 
With the sparse numbering insert operations will not necessarily trigger renumbering 
of following nodes if the difference of the order value of preceding and following 
node is larger than the number of inserted nodes. However inserting new sub trees 
with a substantial number of nodes requires renumbering as well. 

In [1] a numbering scheme called simple continued fraction (SICF) is proposed. It 
numbers the nodes from left to right and top-down. Each node number can be 
expressed as a sequence of integer values – adding an integer per tree level – or a 
fraction. This approach reduces the update scope3 after a node insertion to the right 
siblings and their descendants of the inserted node. However this still can be a large 
number. Furthermore SICF fails if a certain tree depth is reached. 

Another approach with left to right and top-down numbering is published in [10]. 
The so called unique element identifiers (UID) are based on a tree with a fixed fan-out 
of k. If a node has less than k children virtual nodes are inserted. The UID allows the 
computation of the parent node id and the id of child i. This approach has two main 
drawbacks: 1) fixed fan-out is problematic with irregular structured documents, 
2) node insertion requires updates of all right siblings and their descendants. 

Some of the UID drawbacks were tackled in [11] with the definition of recursive 
UIDs (rUID). Here the tree is partitioned in local areas allowing different fan-outs and 
reducing updates after insertion of nodes. However it needs access to the whole tree in 
order to compute the identifiers which prevents the streaming of data to be inserted. 

Theoretical findings for labeling dynamic XML trees are given in [12]. The de-
scribed schemes determine labels which are persistent during document updates and 
contain ancestor information. Furthermore lower bounds for the maximum label 
length are presented. However no sibling order of the XML nodes is maintained and 
therefore it is not suitable for general XML document management. 

A recent paper proposed the so-called ORDPATH numbering scheme [13]. It is 
based on a hierarchical labeling scheme using a prefix-free encoding and supports 
insertion of new nodes without relabeling existing nodes. This is similar to our 
approach however differs conceptually in the construction of the node id and the 
insert semantics. Furthermore our numbering scheme can take advantage of 
information about the number of node siblings to minimize the length of node ids. We 
will compare both schemes in Section 4.  

3 Dynamic Level Numbering Scheme (DLN) 

Based on the study of the previous numbering schemes with their pros and cons and 
the goals stated in Section 1 we developed a new numbering scheme. It aims at 
supporting a wide range of XML documents, especially 

                                                           
3 the set of nodes whose numbers (potentially) have to be updated 



        

− irregular documents having nodes with low fan-out as well as high fan-out and 

− large documents which can only be sequentially inserted. 

Moreover, it should be stable under update operations and support efficient queries. In 
particular, the numbering should 

− explicitly express the total nodes order to allow node clustering for high retrieval 
performance of document fragments using sequential scans, 

− reduce the necessity for renumbering after insert operations, 

− assist in the efficient processing of XPath queries, e.g. containment queries and 

− in order to use this numbering scheme with a conventional RDBMS it should be 
exploitable by the indices and query optimizer of the database system.  

Since simple preorder numbering has the mentioned drawbacks for insert 
operations, order encoding based on decimal classification (DC) like the Dewey 
system looks promising [14]. DC ids are composed of a sequence of numeric values 
separated by a dot. The root node is assigned a single numeric value. Child node ids 
start with the id of the parent node appended by a dot and a numeric value which we 
call the level value. The level value of a left sibling from a node A must be less than 
the level value of A. As illustrated in Fig. 1, this approach restricts the update scope 
after a node insertion to the right sibling nodes and their descendants. Besides this 
property the encoding has further advantages: 1) the parent can be computed from the 
id, 2) the ancestor-descendant relationship can also be determined using only the id 
value and 3) the ids can be sequentially assigned.  

Unfortunately the DC encoding also has some shortcomings: 1) the id length 
depends on the tree depth, 2) a binary or string comparison of the ids may deliver 
wrong results with respect to the total node order, e.g. comparing 1.9 and 1.10 and 
3) inserting a node as a child of a parent with a high fan-out may still result in a large 
number of nodes to be updated. 

In [14] two solutions for the second shortcoming were proposed. The simple 
approach uses a fixed number of digits for each level number. Thus our example may 
be translated to 0001.0009 and 0001.0010 which now delivers a correct result using 
string compare. However this solution restricts the maximum fan-out of a node to a 
fixed value and on the other hand uses too much storage space for child nodes with 

document

chapter chapter chapter

section section section

1

1.1 1.2 1.2 1.3

1.2.1 1.3.11.1.1 1.1.2

 

Fig. 1. Dewey order encoding with update scope after insertion of middle chapter element 



few siblings resulting in long path ids. Therefore the second approach uses UTF-84 
encoding for the level numbers where small values can be represented by single bytes 
and larger values by two or more bytes. This encoding results in smaller path ids and 
permits binary compare operations. 

With the UTF-8 encoding we still need at least one byte per level value. Given that 
most nodes of a XML document have a low fan-out this seems to be a waste of 
storage space. As a consequence of this and the still unsatisfying update behavior we 
developed a new numbering scheme called Dynamic Level Numbering (DLN) which 
is based on DC. 

3.1 Basics of DLN 

DLN contains solutions for the stated problems two and three of DC encoding and has 
an efficient binary representation which tackles problem one. In order to obtain 
comparable ids we took the simple approach with a fixed number of digits for level 
values (fixed length). However we altered this requirement so that only the level 
values of sibling nodes need to have the same lengths. Hence the number of digits per 
level value can be dynamically adjusted according to the number of sibling nodes. In 
the example of  Fig. 2, the siblings at the second level use 1 digit, while the 
descendants of node 1.1 at the third level use 3 digits per level value.  

DLN reduces the renumbering effort after insert operations by the introduction of 
subvalues. The idea is that between two consecutive level values a and b we can have 
further values by adding a suffix to a. Yet the resulting ids need to be larger than all 
ids of children nodes of a. This is accomplished by inserting a special character 
between a and the suffix which is greater than the dot separating the level values. 

The application of subvalues is shown in Fig. 3. Nodes 1.0/1 and 1.2/1 could be 
inserted without renumbering the existing nodes. It is important to note that the 
inserted chapter node must not get level value 0 (or id 1.0). Otherwise we would have 
no possibility to add further nodes via subvalues to the left of it. Subvalues can be 
used recursively. For instance to insert a node between nodes with ids 1.1/1 and 1.1/2 
we can add a further subvalue level and assign 1.1/1/1 to the new node. The only 
disadvantage of subvalues is the increased id length. 

                                                           
4 Unicode Transformation Format-8, defined in RFC 2279 

document

chapter chapter

section section

1

1.1 1.2

1.1.001 1.1.100

chapter

1.3

1.3.1

section  

Fig. 2. DLN with adjusted number of
digits  

document

chapter chapter chapter

section sectionsection

1

1.0/1 1.1 1.2

1.0/1.1 1.2.1 1.2.1/1

section

1.2.2

 

Fig. 3. Subvalues after insertion of left chapter 
subtree and middle section node in 
chapter 1.2 



        

In our early tests we coded DLN ids as strings of variable length. However we 
experienced bad scalability for query execution. It seemed that the query optimizer 
could not take into account metadata about statistical distribution of the string ids for 
its query plan. Consequently we chose to use a binary representation of the ids which 
can be processed efficiently and used by the optimizer. 

For the binary representation of a DLN id the level values are binary coded using 
the same number of binary digits for all sibling nodes as required before. To separate 
the level values and to distinguish between values of the next level and subvalues we 
use only one bit. ‘0’ means the following value belongs to the next hierarchy level 
whereas ‘1’ depicts a subvalue. The binary representation of DLN is assumed in the 
sequel of the paper. 

Before we discuss the properties of our encoding we give some examples to 
demonstrate the transformation into binary representation. If we use 2 bits for the first 
level and 4 bits for the second level we would encode our examples 1.09 as 01 0 1001 
and 1.10 as 01 0 1010. To insert a node between both siblings without renumbering 
we have to use a subvalue resulting in 1.09/01 or in binary notation 01 0 1001 1 0001. 
The length of a subvalue should be identical to the length of the level value. With this 
property we can minimize the metadata needed to calculate the ids of following nodes 
and the parent node id. 

3.2 Properties of DLN 

With our encoding we obtain a preorder numbering when comparing the ids left 
aligned and padded to the right with zeros. This can be easily deduced from the 
following observations: 1) if no subvalue is used sibling order is maintained by 
increasing values using a fixed length for the current level value 2) if a, b, c are 
following sibling nodes with ids ida, idb, idc , respectively, and ida and idc have 
consecutive level values and idb was created using ida and a subvalue then ida<idb 
because they have the same prefix in the length of ida and idb has at least one 1-bit at 
the next position and idb<idc because idc is greater in the length of ida, 3) children 
append at least one 1-bit to its parent id leading to a greater id value, 4) a following 
sibling s has a greater id than all descendants of the current node c because s either 
has an increased level value compared to c and therefore is already greater in the 
length of idc or s uses a subvalue with a prefix identical to the id of c with a following 
separator 1-bit which is greater than the separator 0-bit of the descendants of c. 

The update scope after a node insertion is in the worst case equal to the one of the 
standard DC encoding. However the concept of subvalues largely reduces the need for 
renumbering nodes. Even if no subvalues between two siblings are left because a 
maximum id length is reached renumbering the next sibling with its descendants will 
be sufficient in most cases. Starting at the document root element the number of 
possible subvalues decreases logarithmically if there is a maximum id length. This is 
the intended behavior since renumbering at higher levels should be avoided. 

Beside the total node order DLN supports the computation of ancestor-descendant 
relationships between two nodes using the length l of the id from the node n with the 
smaller id value. If the first l bits are identical n is an ancestor of the other node. The 
parent id of a node n can be computed using l and the length of its level value. 



3.3 DLN and Streamed Data 

The adaptable length of level values can be used to adjust to varying node fan-outs 
and to produce short ids. However determining the optimal length requires a-priori 
knowledge about the sibling number. At insertion time this is the case if the complete 
document tree is available in a DOM-like  representation. Though this does not hold 
for streaming XML data requiring sequential processing.  

With the following algorithm it is possible to sequentially load streaming XML 
data with unknown fan-out and to dynamically adapt the number of bits. It combines 
the bits of multiple subvalues which are added after a certain number of sibling nodes 
have been inserted. When the first child node c of an existing node is processed, a 
minimal number of bits, n, is used for the level value. After the lower n-1 bits for 
siblings of c have been used (2n-1  nodes in total), a subvalue is added for the next 
sibling. Now we set the highest bit of the level number to 1 and use the concatenated 
remaining bits crb of the level value and the subvalue. Again only crb-1 bits are used 
for the next siblings to be inserted and the algorithm repeats recursively. 

Table 1 shows the bit usage and resulting number of sibling node ids in the current 
level for the described algorithm with a 4 bit level value. The ‘X’ in the bit pattern 
denotes the usable bits and the single ‘1’ character is the delimiter bit which separates 
level value and subvalues. 

Table 1. DLN Streaming algorithm: bit usage and resulting number of ids 

# subvalues bit pattern number of ids 
0 0XXX 1..7 
1 10XX 1 XXXX 8..71 
2 110X 1 XXXX 1 XXXX 72..583 
3 1110 1 XXXX 1 XXXX 1 XXXX 584..4679 

 
This algorithm is very space-efficient. It produces short node-ids for irregularly 

structured documents compared to using a fixed number of bits for all nodes 
accommodating the maximal fan-out, and compared to the use of subvalues only if 
level value bits are exhausted. 

With a small modification the algorithm can be enhanced to more efficiently use 
bit ranges. After a new subvalue is added and before the highest 0-bit is set to ‘1’ the 
bit range of the new subvalue can be exploited for the next numbers. For instance 
between 0111 and 1000 1 0000 we have 0111 1 0001 to 0111 1 1111. So with one 
subvalue we can now label 86 sibling nodes instead of 71. 

3.4 Variants of DLN 

With the highly varying structure of XML documents with respect to depth (average, 
maximal) and fan-out and the possible parameters for DLN there is no setting which 
is best for all documents (cf. Section 4). However we can find variants tailored to 
important application cases which are differentiated by 1) streaming vs. DOM and 
2) fixed vs. adjustable number of bits. 



        

The streaming DLN uses the algorithm described in the preceding section. It is the 
most general approach and can be used for all kinds of XML data, especially data 
which can only be read sequentially. Since it has no knowledge about the number of 
siblings it uses a fixed number of bits for all level values and subvalues. With the 
finding in [15] that the distribution of element fan-out follows a power law, i.e. most 
elements have only few children, it might be advantageous to use smaller number of 
bits for level values than for subvalues. 

If the number of siblings  is known in advance (like with data represented in a 
DOM) one can use the DOM variant of DLN which adjusts the number of bits for the 
level value according to the number of siblings. However this simple approach might 
not be the best one. If an element has a large fan-out all children will use a level 
number with the same big number of bits. This has two disadvantages: 1) to calculate 
parent id or range of children ids one needs the length of the id and the number of bits 
used in the last level number, which consumes valuable space for each id, 2) if a node 
has to be inserted using subvalues the subvalues will use the same big number of bits. 

To overcome the disadvantages of the simple DOM DLN we defined two variants. 
The first one, fixed DOM DLN, uses a small fixed number of bits for level values and 
subvalues and adds as many subvalues as needed to reach the necessary number of 
bits. Compared to streaming DLN it can use all bits resulting in shorter ids. Since we 
can calculate the id length and know the number of bits we can save on these values 
resulting in a partly better overall bit usage compared  to simple DOM DLN. 

The second variant, restricted DOM DLN, uses an adjustable number of bits for 
level values but restricts the maximum number of bits. If more bits are needed 
subvalues will be used like with the fixed DOM DLN. To calculate the id length we 
only need to know the length of the last level value and the position of the last 1 bit in 
the last level value or subvalue. Since we restricted the maximum number of bits only 
a few bits are needed. In Section 4.1 we give a quantitative comparison of the 
mentioned DLN variants.  

4 Evaluation  

We first evaluate the DLN variants with respect to the maximal and average id 
lengths for several large XML documents. We also compare the results with the 
ORDPATH numbering scheme. In 4.2, we present DLN performance results for insert 
and retrieval operations.   

4.1 Comparing DLN variants and ORDPATH 

Given the dependence of numbering schemes on the path lengths, an important 
quality measure is the maximal and average id length for a given document set. For 
our evaluation, we use  several document collections from the XML data repository of 
the University of Washington and other publicly available documents. The set 
includes data-centric XML (mostly converted from other formats) and document-
centric XML, e.g. Shakespeare’s works, a novel and religion books. In Table 2 some 
metrics of the documents are given showing the different structural properties. 



Table 2. Depth, fan-out and number of nodes of document collection 

document max depth avg depth max fan-out avg fan-out 90% fan-out #nodes 
Nasa 8 5,5 2435 2,8 3 530528 
Cities 4 3,6 364 5,0 5 21028 
Dictionary 8 3,2 163826 3,9 8 1545406 
Novel 4 3,9 75 26,9 75 220 
Pop. Places 3 2,9 164045 14,0 13 2952811 
Religion 6 4,8 289 25,1 44 48259 
Shakespeare 6 4,8 434 5,5 10 179689 
Sigmod 6 5,4 89 3,7 4 15263 
Treebank 36 7,9 56384 2,3 4 2437667 
WFB 7 4,9 260 4,1 9 347868 
Courses 5 4,0 2112 4,2 7 66735 

In Table 3 we compare the maximum and average length of a node id for the DLN 
variants and the two variants of the ORDPATH numbering scheme [13]. We added 
the last two here since they have some conceptual similarities with DLN. For a better 
overview we chose the fixed streaming DLN with 4 bits as a reference and show for 
the other columns how the id lengths differ from it. For instance, looking at the Nasa 
document we have a maximal id length of 64 bits for streaming DLN with 4 bits, 
while the maximum is reduced by up to 9 bits (to 55 bits) for DOM DLN and by 1 bit 
(to 63 bits) for ORDPATH. We used the enhanced algorithm for streaming DLN as 
described in Section 3.3. 

Table 3. Maximum (with dark gray background) and average id length 

 Streaming DLN DOM DLN 
 fixed number of bits less bits for level 

number (LN) 
simple fixed restr. 

ORDPATH 

doc 4 bit 3 bit 5 bit LN: 3 bit 
SV: 4 bit 

LN: 4 bit 
SV: 5 bit 

 4 bit max 
4 bit 

A B 

Nasa 64 45,3 -1 -1,0 7 -0,9 2 -2,2 5 -0,1 -8 -3,0 0 -6,6 -9 -9,6 0 -3,0 -1 -6,1 
Cities 39 31,1 4 -0,1 2 -0,3 1 -1,3 4 -0,8 -1 3,1 -5 -4,2 -5 -4,0 5 -0,6 7 0,1 
Dict. 69 39,2 2 4,0 8 0,6 -1 0,1 1 -1,0 -13 -0,3 -5 -4,3 -12 -4,5 9 6,2 -6 -4,6 
Novel 24 22,6 3 -1,6 5 3,8 6 -1,7 1 0,8 6 6,2 0 0,4 -2 -1,6 3 0,7 -1 -3,5 
Pop. Plac. 44 39,6 3 3,4 -3 -1,7 2 -0,2 0 -0,6 -5 -0,9 -10 -6,3 -9 -5,3 7 5,2 -1 -3,9 
Religion 54 33,7 -3 0,4 -1 2,1 -1 2,0 -1 1,8 -8 3,8 -10 1,3 -10 1,1 -7 -1,1 0 1,8 
Shakesp. 44 31,8 3 -0,2 3 0,4 5 1,4 4 1,2 -2 3,0 -5 -3,7 -4 -4,4 1 -0,3 5 -0,7 
Sigmod 44 34,3 3 0,6 9 5,2 9 1,3 3 1,7 0 3,5 0 -0,4 -2 -3,1 2 1,2 7 1,0 
Treebank 199 59,6 -20 -1,4 34 4,1 -21 -3,8 -2 -1,2 -64 -9,4 -5 -6,6 -71 -16,8 -3 2,0 -57 -13,6 
WFB 49 35,8 2 0,4 4 -0,7 0 0,8 4 0,6 -3 2,7 0 -1,3 -4 -2,0 3 0,1 5 -0,5 
Courses 44 34,3 3 2,4 3 -0,2 0 1,5 -2 -1,5 -3 2,0 -5 -5,2 -7 -5,8 -2 -1,4 0 -2,1 

Except for the Treebank data, the streaming DLN with 4 bits has good overall 
values especially compared to the 3 bits and 5 bits variants. Since the Treebank 
document is very deep and has a small fan-out the streaming DLN with a smaller 
number of bits per level value are better suited. The values for  DOM DLN include 
the bits needed to calculate the id length which is why simple DOM DLN has not 
smaller values in every case. Generally the restricted DOM has the smallest values in 



        

nearly every case. The ORDPATH values are similar to the streaming DLN variants. 
Especially type B performs well in nearly all cases. However they cannot take 
advantage from knowledge about the number of siblings like the DOM DLN. In the 
case of the average node id length the streaming DLN with 4 bits again shows good 
overall values. Only the DOM DLN variants are superior, especially the restricted 
one. 

4.2 DLN performance for database operations  

In order to evaluate the processing performance of DLN we executed several database 
operations influenced by the numbering scheme. All tasks run on an Intel Pentium III 
800 processor with 512 MB main memory under Windows 2000 and the database 
system MySQL 4.0. We implemented a DLN prototype in Java which exports a 
proprietary API for data access and manipulation as well as a subset of XPath. Before 
we present the results we describe the database schema used in our DLN prototype. 

4.2.1 Database Schema using the DLN Scheme 
The XML to relational mapping scheme we chose is partly based on the DOM. In Fig. 
4 the corresponding relational database schema is shown. Each node of the document 
tree from this model is stored as a data set in a node table. We use a separate table for 
attributes as well as for large text chunks. For increased query performance and 
reduced storage size the element and attribute names are indexed in a separate table. 
The parent and rightSibling attributes are used for fast evaluation of the child and 
sibling axes. 

4.2.2 Results 
We selected three areas of interest for evaluating the DLN performance: 1) load-
ing/inserting streamed data, 2) querying for documents or document fragments and 
3) queries using the descendant axes. 

Table 4 shows the insertion performance for bulkloading different kinds of 
documents and three insertion modes (deactivated indices, all indices activated except 
the fulltext index, all indices activated). Since XML data can have a highly varying 
element per kilobyte ratio and we store every element in a single row it won’t be 
informative to give a MB/s value. Instead we measure insertion performance in nodes 
(elements, attributes and text nodes) per second. The selected documents capture data-

NODE

document : int
nodeId : long
refId : int
parent : int
rightSibling : int
name : int
value : string
valType : char
nodeType : char

ATTR

document : int
nodeId : long
name : int
value : string

TEXT

document : int
nodeId : long
value : string

NAMEMAP

nameId : int
name : string  

Fig. 4. Relational schema for XML mapping with DLN 



centric XML (Cities, Sigmod) as well as document-centric XML (Bible, XMach-1). 
The XMach-1 data is a set of 10.000 documents from the XML database benchmark 
XMach-1 [16]. One can see that even for a large number of documents the insertion 
performance scales well. As one would expect the number of nodes inserted per 
second drops with a lower nodes per kilobyte ratio. The exception of XMach-1 is a 
result from better memory handling with smaller file sizes and already running 
applications. The performance from the insertion with all indices activated can also be 
expected when an XML fragment is inserted into an existing document since no extra 
effort for renumbering is needed.  

Table 4. Insertion and reconstruction performance 

Insertion (nodes per second) document #nodes n/kB 
w/o idx w/o txtidx with txtidx 

Reconstruction 
(nodes per second) 

XMach-1 2,2*106 11 2.500 - - - 
Cities 3,5*104 44 2.380 1.729 1.699 10.310 
Sigmod 3,8*104 38 2.180 1.579 1.522 9.860 
Bible 2,5*104 8 1.899 1.405 1.152 8.525 

 
Retrieving documents or fragments with shredded data is normally time consuming 

because a large number of join and sort operations are needed. However with a 
preorder numbering scheme it can be reduced to a simple range query. Therefore we 
have good performance as shown in the reconstruction column of Table 4. 

Queries using the descendant axes like a//b can be optimized as range queries 
using the node id of a and the maximum child id of a. The latter one can be calculated 
with a user defined function. We evaluated these queries on multiple documents and 
found that in most cases queries using the descendant axes are faster than queries with 
a complete path expression. For instance with the Sigmod document the query 
//issue[.//author='Michael Stonebraker']]/volume took 40 ms whereas 
/SigmodRecord/issue[articles/article/authors[author='Michael Stonebraker']]/volume  
took 451 ms to complete (both queries needed 190 ms to build the XML result). 

5 Conclusion 

We have developed a new numbering scheme, called DLN, for generic structure-
centered storage of XML data in relational database systems. The numbering scheme 
allows insert operations without the need for renumbering existing nodes. 
Furthermore it can be used for streamed data and benefits from additional structure 
information in order to reduce the id length. 

We have shown parameterized variants of DLN which can be used to select an 
optimal numbering for a specific document structure. The performance evaluation of 
our prototypical DLN implementation demonstrated that inserting, retrieving and 
querying of XML data are efficiently supported by the numbering scheme. 

Our numbering scheme constitutes an important building block for efficient 
generic XML data management in relational database systems. In future work we will 



        

address open issues such as efficient relational access to the generically stored XML 
data and synchronized updates in multi-user environments.  

References 

1. Kuckelberg, A.; Krieger, R.: Efficient Structure Oriented Storage of XML Documents 
Using ORDBMS. In Bressan, S. et al. (Eds.): EEXTT and DIWeb 2002, LNCS 2590, pp. 
131-143, Springer-Verlag, 2003 

2. Shanmugasundaram, J.; Shekita, E. J.; Kiernan, J.; Krishnamurthy, R.; Viglas, S.; Naugh-
ton, J. F.; Tatarinov, I.: A General Techniques for Querying XML Documents using a Re-
lational Database System. In SIGMOD Record 30(3), pp. 20-26,  2001 

3. Florescu, D.; Kossmann, D.: Storing and Querying XML Data using an RDBMS. In IEEE 
Data Engineering Bulletin 22(3), 1999 

4. Schmidt, A.; Kersten, M. L.; Windhouwer, M.; Waas, F.: Efficient Relational Storage and 
Retrieval of XML Documents. In WebDB (Selected Papers) 2000, pp. 137-150, 2000 

5. Bauer, M. G.; Ramsak, F.; Bayer, R.: Multidimensional Mapping and Indexing of XML. In 
Proc. of German database conference BTW 2003, pp. 305-323, 2003 

6. Dietz, P. F.: Maintaining order in a linked list. In Proc. of the 14th Annual ACM Sympo-
sium on Theory of Computing, pp. 122-127, California, 1982 

7. Shimura, T.; Yoshikawa, M.; Uemura, S.: Storage and Retrieval of XML Documents using 
Object-Relational Databases. In Proc. of the 10th Intern. Conf. on Database and Expert 
Systems Applications (DEXA'99), LNCS 1677, Springer-Verlag, pp. 206-217, 1999 

8. Li, Q.; Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In 
Proc. of  the 27th VLDB Conf., Roma, Italy, 2001 

9. Chien, S.; Tsotras, V. J. ; Zaniolo, C. ; Zhang, D. : Storing and Querying Multiversion 
XML Documents using Durable Node Numbers. In Proc. of the Intern. Conf. on WISE, 
Japan, pp. 270-279, 2001 

10. Lee, Y. K.; Yoo, S.; Yoon, K.; Berra, P. B.: Index Structures for Structured Documents. 
Proc. of the 1st ACM International Conference on Digital Libraries, pp. 91-99, 1996 

11. Kha, D. D.; Yoshikawa, M.; Uemura, S.: A Structural Numbering Scheme for XML Data. 
In Chaudhri, A. B. et al. (Eds.): EDBT 2002 Workshops, LNCS 2490, pp. 91-108, 
Springer-Verlag, 2002 

12. Cohen, E.; Kaplan, H.; Milo, T.: Labeling Dynamic XML Trees. In Proc. of PODS 2002 
13. O’Neil, E.; O’Neil, P.; Pal, S.; Cseri, I.; Schaller, G.; Westbury, N.: ORDPATHs: Insert-

Friendly XML Node Labels. ACM SIGMOD Industrial Track, 2004 
14. Tatarinov, I.; Viglas, S.; Beyer, K. S.; Shanmugasundaram, J.; Shekita, E. J.; Zhang, C.: 

Storing and querying ordered XML using a relational database system. In Proc. of SIG-
MOD Conf., pp. 204-215, 2002 

15. Mignet, L.; Barbosa, D.; Veltri, P.: The XML Web: a First Study. In Proc. of the 12th 
Intern. WWW Conference, Budapest, 2003 

16. Böhme, T.; Rahm, E.: XMach-1: A Benchmark for XML Data Management. In Proc. of 
German database conference BTW 2001, pp. 264-273, Springer-Verlag, Berlin, 2001 


