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SUMMARY

Parallel processing is a key to high performance in very large data warehouse applications that execute
complex analytical queries on huge amounts of data. Although parallel database systems (PDBSs) have
been studied extensively in the past decades, the specifics of load balancing in parallel data warehouses
have not been addressed in detail.

In this study, we investigate how the load balancing potential of a Shared Disk (SD) architecture can be
utilized for data warehouse applications. We propose an integrated scheduling strategy that simultaneously
considers both processors and disks, regarding not only the total workload on each resource but also
the distribution of load over time. We evaluate the performance of the new method in a comprehensive
simulation study and compare it to several other approaches. The analysis incorporates skew aspects
and considers typical data warehouse features such as star schemas with large fact tables and bitmap
indices. Copyright c© 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For the successful deployment of data warehouses, acceptable response times must be ensured for the
prevalent workload of complex analytical queries. Along with complementary measures such as new
query operators [1], specialized index structures [2,3], intelligent data allocation [4], and materialized
views [5,6], parallel database systems (PDBSs) are employed to satisfy the high performance
requirements [7]. For efficient parallel processing, successful load balancing is a prerequisite, and
many algorithms have been proposed for PDBSs in general. But we are not aware of load balancing
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studies for data warehouse environments which exhibit characteristic features such as star schemas,
star queries and bitmap indices.

This paper presents a novel approach to dynamic load balancing in parallel data warehouses based on
the simultaneous consideration of multiple resources, specifically CPUs and disks. These are frequent
bottlenecks in the voluminous scan/aggregation queries that are characteristic of data warehouses.
Disk scheduling is particularly important here as the performance of CPUs develops much faster than
that of disks. A balanced utilization of both resources depends not only on the location (on which CPU)
but also on the timing of load units such as subqueries. We thus propose performing both decisions in
an integrated manner based on the resource requirements of queued subqueries as well as the current
system state.

To this end, we exploit the flexibility of the Shared Disk (SD) architecture [8] in which each
processing node can execute any subquery. For scan workloads in particular, the distribution of
processor load does not depend on the data allocation, allowing us to perform query scheduling with
shared job queues accessed by all nodes. Disk contention, however, is harder to control than CPU
contention because the total amount of load per disk is predetermined by the data allocation and cannot
be shifted at runtime as for processors.

In a detailed simulation study, we compare the new integrated strategy to several simpler methods
for dynamic query scheduling. They are evaluated for a data warehouse application based on the
APB-1 benchmark comprising a star schema with a huge fact table supported by bitmap indices,
both declustered across many disks to support parallel processing. Our experiments involve large
scan/aggregation queries in which each fact table fragment must often be processed together with a
number of associated bitmap fragments residing on different disk devices. This can lead to increased
disk contention and thus creates a challenging scheduling problem. We particularly consider the
treatment of skew effects which are critical for performance but have been neglected in most previous
load balancing studies. As a first step in the field of dynamic load balancing for data warehouses,
our performance study focuses on parallel processing of large queries in single-user mode, but the
scheduling approaches can also be applied in multi-user mode.

Our paper is structured as follows. In Section 2, we review some related work from the literature.
Section 3 outlines our general load balancing paradigm, whereas our specific scheduling heuristics are
defined in Section 4. Section 5 describes the simulation system and the approaches to deal with skew.
Section 6 presents the performance evaluation of the scheduling strategies for different data warehouse
configurations. We conclude in Section 7.

2. RELATED WORK

We are not aware of any load balancing studies for parallel data warehouses. For general PDBSs, load
balancing problems have been widely researched, for a variety of workloads and architectures [9–14].
Many of these approaches are of minor relevance for data warehousing because they rely on a costly
redistribution of data—e.g. for hash joins or external sorting—that is usually too costly for a large
fact table. Furthermore, most previous studies have been limited to balancing CPU load, sometimes
including main memory [15,16] or network restrictions [17]. Even so, the need for highly dynamic
scheduling has been emphasized [16, 18–20]. Conversely, load distribution on disks has largely been
considered in isolation from CPU-side processing. Most of these studies have focused either on data
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partitioning and allocation [13, 21–26] or on limiting disk contention through reduced parallelism [14].
Integrated load balancing of processors and disks considering the timing of potentially conflicting
operations—as proposed in this paper—has not been addressed.

The SD architecture has been advocated due to its superior load balancing potential [11,14,27,28]
especially for read-only workloads as in data warehouses, where common objections regarding the
performance of concurrency and coherency control [29,30] can be ruled out. It also offers greater
freedom in data allocation, e.g. for index structures [24]. But the research on how to exploit this
potential is still incomplete. SD is also supported by several commercial PDBSs such as IBM DB2
Universal Database for OS/390 and z/OS [31], Oracle9i Database [32], and Sybase Adaptive Server
IQ Multiplex [33]. Like other products addressing the data warehouse market—e.g. IBM Informix
Extended Parallel Server [34], IBM Red Brick Warehouse [35], Microsoft SQL Server 2000 [36]
and NCR Teradata [37]—they support star schemas and bitmap indices‡ as well as adequate data
fragmentation and parallel processing. However, the vendors do not describe specific scheduling
methods in the available documentation. Dynamic treatment of disk contention is limited to restricting
the number of tasks concurrently reading from the same disk, similar to the Partition strategy used in
our study (cf. Section 4.1). No special ordering of subqueries to avoid disk contention is mentioned,
leading us to believe that such elaborate scheduling methods are not yet supported in current products.

3. DYNAMIC LOAD BALANCING FOR PARALLEL SCAN PROCESSING

This section presents our basic approach to dynamic load balancing, which is not restricted to
data warehouse environments. We presume a horizontal partitioning of relational tables into disjoint
fragments. If bitmap indices or similar access structures exist, they must be partitioned analogously
so that each table fragment with its corresponding bitmap fragments can form an independent unit
of processing. We focus on the optimization of scan queries and exploit the flexibility of the SD
architecture that allows every processor to access any fragment regardless of its storage location.

For efficient parallel processing, database workloads must be distributed across the system as evenly
as possible. For the extensive scan loads we consider in our study, this is true even within single
queries (intra-query parallelism). As mentioned in the introduction, the two performance-critical types
of resources are the processing nodes and the disks. (Main memory and network connections are not
typically bottlenecks for the scan operations in question.) But the balance of CPU and disk load,
respectively, depends on different conditions: CPU utilization is largely determined by which processor
is assigned which fragments of the data. A balanced disk load, however, hinges on when the data
residing on each device are processed because their location cannot be changed at runtime. As a
consequence, we aim for a load balancing strategy that can view both resources in an integrated manner.

When a new query enters the system, it is randomly assigned a coordinator node that controls its
execution and distributes the workload in the system. For the scan queries we consider, we provide two
different load granules based on the aforementioned horizontal fragmentation of tables: each subquery
can comprise either a fragment or a partition of the relevant table, where a partition is defined as the

‡In SQL Server and Teradata, bitmap indices are used internally but cannot be defined by the user or DBA.
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Figure 1. Partitionwise versus fragmentwise processing. Fragments provide a better load balance but require a
larger number of subqueries (more arrows) and also incur disk contention.

union of all table fragments residing on the same disk (Figure 1). If the table is logically fragmented
and its fragmentation attributes are also referenced in the query’s selection predicate, some fragments
may be excluded from processing because they are known to contain no hit rows. Subqueries will
be generated only for relevant fragments or partitions, respectively. With either granule, we obtain
independent subqueries that are uniform in structure and can be processed isolated from each other
in arbitrary order, each on any one processing node. This gives us great flexibility in the subsequent
scheduling step.

As fragments are much smaller than partitions, they permit a more even load distribution, especially
in case of skew (Figure 1). Larger granules like partitions, however, require less communication
between the coordinator and the other processing nodes and also reduce the overhead of scheduling
itself. Furthermore, they minimize inter-subquery contention on the disks as no two nodes will process
the same table partition, although subqueries may still interfere with each other when accessing bitmap
indices (if present).

3.1. Scheduling

Presuming the voluminous queries we examine to work in full parallelism on all available processing
nodes, we are left with the task of allocating subqueries to processors and timing their execution.
We consider this scheduling step particularly important as it finalizes the actual load distribution in the
system.

Based on the load granule, the query coordinator maintains a list of subqueries that are assigned
to processors following the given ordering policy and processed locally as described below.
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Each processor may obtain several subqueries up to a given limit t , and processing nodes are addressed
in a round-robin manner, providing an equal number of subqueries per node (±1). If there are more
subqueries than can be assigned to the nodes, as is usually the case for larger queries, the remainder
are kept in a central queue. When a processor finishes a subquery and reports the local result to
the coordinator, it is assigned new work from the queue until all subqueries are done. Finally, the
coordinator returns the overall query result to the user.

This simple, highly dynamic approach already provides a good balance of processor load. A node
that has been assigned a long-running subquery will automatically obtain less load as execution
progresses, thus nearly equalizing CPU load. Since no two subqueries address the same fragment,
we may also achieve low disk contention by having different processors work on disjoint subsets of
data. Specifically, tasks intensely addressing the same disk(s) should not be executed at the same time;
consequently, they should be kept apart in the subquery queue. The specific ordering heuristics used in
our study are detailed in Section 4.

3.2. Local processing of subqueries

When a node is assigned a fragment-sized subquery, it processes any required bitmap fragments and
the respective table fragment simultaneously, minimizing memory consumption. Prefetching is used to
read multiple pages into the buffer with each disk I/O. Furthermore, parallel I/O is employed for bitmap
pages read from different disks. For the scan/aggregation queries we assume, the measures contained
in the selected tuples are aggregated locally to avoid a shipping of large datasets, and the partial results
are returned to the coordinator node at subquery termination. For partition-sized load granules, a node
will process sequentially (i.e. in logical order) all the relevant fragments within its partition, simply
skipping the irrelevant ones. Aggregates will be returned only for the entire partition to minimize
communication costs. Multiple subqueries on the same processor coexist without any need for intra-
node coordination. The maximum number of concurrent tasks per node, t , should correspond roughly
to the performance ratio of CPUs to disks to achieve a good resource utilization (cf. Section 6.1).

4. SCHEDULING ORDER OF QUERY EXECUTION

As mentioned in the previous section, we regard the scheduling of subquery execution as the most
important aspect of load balancing in our processing model as it determines the actual load distribution
for both processors and disks. Based on the general scheme outlined above, the following subsections
present scheduling policies based on either static (Section 4.1) or dynamic (Section 4.2) ordering of
subqueries. Section 4.3 summarizes the final strategies compared in our simulation study.

4.1. Statically ordered scheduling

Our simpler heuristics employ a static ordering of subqueries. Note that even under these strategies,
our scheduling scheme as such is still dynamic since the allocation of load units to processing nodes is
determined at runtime based on the progress of execution.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1169–1190
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4.1.1. By partition number

Subqueries are dispatched in a round-robin fashion with respect to the relevant table partitions, where
each partition corresponds to one disk as defined in Section 3. Ideally, this means that no more than one
subquery should work on a partition at any given time, unless there are more concurrent subqueries than
partitions. In practice, subqueries do not necessarily finish in the same order in which they are started,
so that disk load may still become skewed over time with fragment-sized load units. For partitionwise
scheduling, of course, each table partition is guaranteed to be accessed by only one processor. With
both granules, bitmap access (if required) can cause each subquery to read from multiple disks, so that
a certain degree of access conflict may be inevitable. Still, we expect this strategy to achieve very low
disk contention in all cases.

4.1.2. By fragment number

This heuristic applies only to fragment-sized load granules. It assigns subqueries in the logical order
of the fragments they refer to. In the default case with a round-robin allocation of fragments to disks
(cf. Section 5.3), this is equivalent to scheduling by partition number as long as a query references
a consecutive set of fragments. Otherwise, the two will be similar but not identical. For different
allocation schemes, the correlation of fragment numbers to partition numbers may be lost completely.
This strategy was used in [4] and is included here as a baseline reference.

4.1.3. By size

This policy starts the largest subqueries first, using the expected number of referenced disk pages as
a measure. (See Section 4.2 for its calculation.) It implements an LPT (longest processing time first)
scheme that has been proven to provide good load balancing for many scheduling problems [38]. It does
not consider disk allocation in any way but may be expected to optimize the balance of processor load
which primarily depends on the total amount of data processed per node.

4.2. Dynamically ordered scheduling

The static ordering policies described so far tend to optimize the balance of either CPU or disk load.
Implementing an integrated load balancing requires a more elaborate, dynamic ordering that reckons
with both criteria: in order to distribute disk load over time and reduce contention, we estimate for
every subquery its expected access volume on each disk and then try to execute concurrently those
tasks that have minimum overlap in disk access. To simultaneously balance CPU load, we additionally
consider the sizes of subqueries similar to the previous section.

4.2.1. Disk access conflicts

Before we can present our integrated scheduling method, we have to detail the calculation of disk
access conflicts it incorporates. For simplicity of presentation, we will assume a load granule of single
fragments, but all further considerations equally apply to partition-sized subqueries. Similarly, we will
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refer to tables with supporting bitmap indices as used in our data warehouse application, although all
concepts can be easily transferred to other data structures.

One way to consider the current disk utilization is to constantly measure the actual load of all
disks and periodically propagate it to the coordinator node. These statistics may be quickly outdated
especially if the update interval is higher than the execution time of individual subqueries. To avoid
these problems, we construct our own image of disk utilization based on estimated access profiles of
single subqueries, the sum of which can be updated instantaneously in every scheduling step. First, we
model the expected number of pages referenced per disk for each given subquery. For the relevant table
fragment, this number is calculated from the subquery’s estimated selectivity using an approximation
of Yao’s formula [39,40]. We further take into account the associated bitmap fragments as far as they
are required for the query. The result is a load vector

ps = (ps
1, p

s
2, . . . , p

s
D)

where ps
d denotes the expected number of pages accessed on disk d by subquery s§. But since

the degree of contention between subqueries at a given point in time does not depend on their
total sizes, we are more interested in the distribution of load across the disks than in its absolute
magnitude. Assuming that the execution time of s is approximately proportional to the total amount
of data processed, we normalize the load vectors based on the total size of a subquery that computes
straightforward as

p̂s =
D∑

d=1

ps
d

(This value is also used for the scheduling-by-size heuristic above.) We divide each subquery’s load
vector by p̂s to obtain its intensity vector

is = (is1, i
s
2, . . . , i

s
D)

which is now normalized to a total of 1, so that each coefficient isd denotes the percentage of its load
that subquery s puts on disk d .

We now define similar coefficients for a set of subqueries executed concurrently. The intensity vector
of a subquery set S is given by the itemwise sum of the single vectors, re-normalized to 1 by division
with the number of subqueries, |S|:

IS =
∑

s∈S

is/|S| with IS
d =

∑

s∈S

tsd/|S|

Analogous to single subqueries, it once again denotes the percentagewise load distribution across all
disks, but this time for the entire subquery set. Note that we added the intensity vectors rather than
the original load vectors of the subqueries because we are interested in the current load distribution
(per time unit), so we would not want to weight subqueries by their sheer sizes at this point.

§For our star schema application, ps will typically contain one large value representing the fact table fragment and several
smaller ones for the required bitmap fragments; the remaining items will be 0.
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Figure 2. Example of conflict calculation. Three queued subqueries (q1, q2, q3) are evaluated for
concurrent execution with three running subqueries (r1, r2, r3); q1 has the lowest rate of conflict and
is selected. The shape of the load vectors is typical of our application (one peak for a large table

fragment, plus several small bitmap fragments).

Finally, we can define the disk access conflict between a single subquery s (to be scheduled) and a
set of subqueries S (to be processed concurrently) as

Cs,S =
D∑

d=1

c
s,S
d with c

s,S
d = isd · IS

d

This means that we first calculate the conflict of s and S per disk by multiplying their intensities
locally, then add the results to obtain the total conflict rate. This total will have a value between zero
(no conflict, i.e. s and S use disjoint disks) and one (maximum conflict, if s and S use the same single
disk). The calculation of conflicts between concurrent subqueries is illustrated in Figure 2 using a
five-disk example; each table fragment is assumed to have three associated bitmap fragments.

4.2.2. Integrated scheduling

Based on this notation, we can now identify in every scheduling step the subqueries that show minimum
conflict with the set of subqueries currently running, R, enabling us to balance disk load over the
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Table I. Scheduling strategies used in simulation experiments.

Notation Load granule Ordering

Partition partition static, by partition number
Logical fragment static, by fragment number

Size fragment static, by size
Integrated fragment dynamic, by conflict and size

duration of the query. To simultaneously address the distribution of CPU load, we also consider the
size of a subquery as in the static ordering by size from the previous section. Specifically, we want
long-running subqueries to have priority over—i.e. to be executed earlier than—shorter ones even if
they incur a somewhat higher degree of disk contention. With Q denoting the set of queued subqueries,
the final resulting policy can be phrased as

‘select q ∈ Q so that Cq,R/p̂q is minimized’.

Since the intensity vector for the current disk load, IR , will change with every subquery starting or
finishing execution, it is now clear that the order of subqueries must indeed be determined dynamically.
In Figure 2, subquery q1 has minimal conflict with the subqueries already running, mainly because the
table fragment it uses is on a different disk than those accessed by r1 through r3. It will thus be executed
next unless it is significantly smaller than q2 and q3.

4.2.3. Variants

Numerous extensions to this strategy were evaluated in our study, but are omitted here for lack of space.
These include the consideration of conflicts with other queued subqueries (to reduce contention in the
future), different weightings of conflict against size (including the conflict criterion alone), as well as
a second normalization of load vectors to compensate for a skewed overall load for the entire query.

4.3. Proposed strategies

Load granules and scheduling policies may, in principle, be combined arbitrarily, with the exception
that partitionwise scheduling cannot sensibly be based on fragment numbers, as each partition contains
several fragments. In the remainder of this paper, we will consider the four scheduling strategies listed
in Table I with the indicated notations. We have, in fact, experimented on many more strategies, but
will report in detail only on the more relevant ones.

5. SIMULATION SYSTEM AND SETUP

Our proposed strategies were implemented in a comprehensive simulation system for parallel data
warehouses that has been used successfully in previous studies [4], extended with the query processing
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Table II. System parameters used in simulations.

Parameter Value Parameter Value

Processing nodes Buffer manager
total number (P ) general 20 page size 8 KB

speed-up 2–50 buffer size fact table 5000 pages
CPU speed 100 MIPS bitmaps 5000 pages
subqueries per node (t) varied other 5000 pages

prefetch size 8 pages
No. of instructions

per query initiate/plan 100 000 Disk devices
terminate 10 000 total number (D) general 100

per subquery initiate/plan 10 000 speed-up 20–100
terminate 10 000 average seek time 8 ms

per I/O read overhead 1500 average settle time per access 4 ms
+ per page 400 + controller delay + per page 0.5 ms

per bitmap page uncompressed 5000
compressed 20 000 Network

per table row extract 100 connection speed 100 Mbit/s
aggregate 100 message size small 128 B

per message send 1000 + # bytes large 1 page (8 KB)
receive 1000 + # bytes

methods detailed above. The following subsections describe the architecture and parameters of the
simulated DBMS (Section 5.1), our sample database schema (Section 5.2), the modeling and treatment
of skew effects (Section 5.3), and the query workload used in our subsequent experiments (Section 5.4).

5.1. System architecture and parameters

For this study, we simulate a generic SD PDBS and use the parameters given in Table II. The system
realistically reflects resource contention by modeling CPUs and disks as servers. CPU overhead is
reckoned for (sub-)query start-up, planning and termination; I/O initiation; page access; scanning of
bitmaps; extraction and aggregation of fact rows; as well as communication overhead. Seek times in the
disk modules depend on the location (track number) of the desired data within a disk. Each processor
has an associated buffer module maintaining separate LRU queues for different page types (fact table,
bitmap indices, permanent allocation). The network incurs communication delays proportional to
message sizes but models no contention, so as to avoid specific network topologies unduly influencing
experimental results.

5.2. Sample database schema and fragmentation

The data warehouse scenario in which we evaluate our load balancing methods models a relational
star schema for a sales analysis environment (Figure 3) that was derived from the specification of
the Application Processing Benchmark (APB-1) [41]. The denormalized dimension tables Product,
Customer, Channel and Time each define a hierarchy (such as product divisions, lines, families,
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RefProduct
RefCustomer

RefTime
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PRODUCT
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line
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group
class
code

SALES CUSTOMER
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CHANNEL

channel

TIME

year
quarter
month~ 2.4 billion facts

45,000

49

4,500

24

Cost

3,025
1,500

375
75
24 499

8

2

Figure 3. Sample star schema.

and so on). The fact table Sales comprises several measure attributes (turnover, cost etc.) and a
foreign key to each dimension. With a density factor of 1%, it contains a tuple for 1/100 of all value
combinations. A typical two-dimensional star query on this schema might, for instance, aggregate the
turnover of a retailer over a single month (denoted by QRetailerMonth) which can be expressed in SQL as

SELECT SUM(DollarSales)
FROM Sales S, Customer C
WHERE C.Retailer = RETAILER
AND S.RefTime = MONTH
AND C.RefCustomer = C.Store

We incorporate common bitmap join indices [2] to avoid costly full scans of the fact table. We employ
standard bitmaps for the low-cardinality dimensions Time and Channel, but use hierarchically encoded
bitmaps [42] for the more voluminous dimensions Product and Customer to save disk space and I/O.
With these indices, queries like the above can avoid explicit join processing between fact table and
dimension table(s) in favor of a simple selection using the respective precomputed bitmap(s).

We follow a horizontal, multi-dimensional and hierarchical fragmentation strategy for star schemas
(MDHF) that we proposed and evaluated in [4]. Specifically, we choose a two-dimensional
fragmentation based on Time.Month and Product.Family. Each resulting fact table fragment combines
all rows referring to one particular product family within one particular month, creating n = 375×24 =
9000 fragments, according to the respective level cardinalities (cf. Figure 3). This can significantly
reduce work for queries referencing one or both of the fragmentation dimensions by clustering hit rows
and confining disk access to relevant fragments. It also supports both processing and I/O parallelism
and scales well.

As demanded in Section 3, the fragmentation of bitmaps exactly follows that of the fact table, so that
each fact table fragment can be matched with its associated bitmap fragments for parallel processing.

5.3. Skew effects and data allocation

One focus of our study is on skew effects, as these can pose a serious problem to effective load
balancing. Specifically, the sizes of table fragments—and thus, of load units—can vary significantly,
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potentially causing severe load imbalance. Apart from some skew inherent in the dimension hierarchies
(for instance, 45 000 Product Codes cannot be split evenly into 3025 Classes), there is also attribute
value skew [43] with respect to dimension values. With different products, customers, etc. occurring in
the fact table at varying frequencies, single fact table fragments will deviate from the average density of
1% defined in Section 5.2. We represent such density skew by zipf-like frequency distributions on the
bottom hierarchy levels of all dimensions, permuted across their respective domains so that neighboring
attribute values need not have similar frequencies. These distributions are normalized to guarantee a
constant total fact table size, which is essential to the interpretability of our simulation results.

To alleviate such skew effects, we compare two different methods of allocating table and bitmap
fragments to disks. In addition to the round-robin pattern employed in [4], we also test an alternative
method designed to create evenly sized disk partitions. Specifically, we employ a greedy data
placement algorithm originally proposed in [25] for the declustering of files in parallel disk systems.
This method allocates fact table fragments in decreasing order of size onto the least occupied disk
at each time to keep disk partitions balanced. In both cases, the fragments of each bitmap are stored
according to the allocation order of the associated fact table fragments: for a fact table fragment located
on disk i, the k associated bitmap fragments are stored on disks i MOD D, . . . , (i+k−1) MOD D (where
D denotes the number of disks), supporting parallel bitmap access.

Note, however, that a smart allocation scheme is merely a complement, not a replacement for
intelligent scheduling techniques, as equal partition sizes are not sufficient to achieve a balanced system
load at runtime.

5.4. Query workload and processing

A query generator module creates data structures representing queries and passes them to the
processing module for execution. As our study regards single-user mode for the time being, queries
are executed strictly sequentially. Focusing on fact table access, we assume simple aggregation queries
similar to the example in Section 5.2 that do not require joins to the dimension tables. All queries
within a single experiment are of the same type (e.g. QDivision) but with random parameters (e.g. the
specific division selected). Note, though, that different simulation runs will use the same sequence of
queries, facilitating a fair comparison of results. The exact queries will be introduced in Section 6 as
they are used.

In processing queries, we follow the algorithms detailed in Sections 3 and 4. In particular, we use
the scheduling policies proposed in Section 4.3 with their corresponding notations.

6. SIMULATION EXPERIMENTS

We now discuss the results of several simulation series. Our first goal is to determine a sensible degree
of intra-query parallelism, as this is a fundamental parameter to choose for all further experiments
(Section 6.1). After that, we study in detail the performance of our scheduling schemes, especially
the dependency between different types of queries and the ordering policies best suited for them
(Section 6.2). In addition, we present speed-up experiments to test the stability of our load balancing
approach in general and of our scheduling methods in particular for varying system configurations
(Section 6.3).
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6.1. Intra-query parallelism

Our first goal is to determine the degree of intra-query parallelism in which to process star queries.
While it is straightforward to employ all processing nodes due to single-user mode (cf. Section 3), we
have yet to select the number of concurrent subqueries per node, t , which must be large enough to
fully utilize the resources. We test this issue on a skew-free database using the round-robin allocation
method in order to get a good impression of resource utilization under ideal conditions, not distorted by
any allocation or scheduling anomalies. For the same reason, we use long-running queries rather than
shorter ones. Our scheduling policy is Logical, which performs reasonably well under these conditions
(cf. Section 6.2).

In this and all further experiments, we distinguish disk-bound from CPU-bound queries, which often
show quite different behavior depending on the utilization of both resources. For our application,
the ‘boundness’ of a query depends on its selectivity within the fact table fragments it reads as
this determines the amount of CPU work performed per I/O. In this simulation series, we use the
CPU-intensive queries QFullScan and QYear which have a 100% selectivity within the fact table
fragments they access (although QYear selects only half of the fragments). We contrast them with
QChannel and QStore, which are I/O-bound because (i) they select only some of the tuples in each
fragment, causing less CPU work per I/O, and (ii) they perform their selection by means of the bitmap
indices, which are also cheap to process on the CPU side. QStore is more strongly disk-focused with a
selectivity of just 1/4500 and access to 13 (encoded) bitmaps, whereas QChannel selects 1/49 of the data
and reads just one (standard) bitmap. These selectivities are based on the hierarchy level cardinalities
as shown in Figure 3.

The results seen in Figure 4 show that a good value of t is in the range 4–6, depending on the query
type. QFullScan and QYear can fully load each processor with just four subqueries, which apparently
suffices to avoid idle cycles during I/O of single subqueries. QChannel and QStore, however, need more
concurrent subqueries in order to keep all disks busy at all times. Not accidentally, the optimum is
reached at t = 5, which corresponds to our ratio of 100 disks to 20 (single-CPU) processing nodes.
Thus, the total number of subqueries equals the number of disks.

A higher-than-optimal value of t does not seem to cause any delays due to excessive contention.
As a consequence, we can simply use t = 5 for all further experiments. We refrain from using even
higher values, however, as these would reduce flexibility in scheduling by binding subqueries to specific
processors earlier than necessary.

6.2. Scheduling strategies

As discussed in Section 4, we expect the optimal scheduling strategy to depend in part on the type
of query to be processed, because our various policies tend to optimize the utilization of different
resources. Consequently, we conduct simulations for both disk-bound and CPU-bound queries.
Furthermore, we identify borderline cases where queries can shift from one category to the other.
All queries are tested for our four scheduling strategies under varying degrees of skew, for both round-
robin and greedy allocation. In these experiments, we model density skew on the two fragmentation
dimensions, Time and Product, to create differently sized fragments. Under the zipf-like distributions
we employ, the skew parameter may range from zero, denoting the absence of skew, to values around
one, signifying very heavy skew. Note that we apply the same degree of skew to both dimensions,
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Figure 4. Subqueries per note (various queries—round-robin allocation).

leading to an even stronger combined skew effect. In contrast, the skew in fragment sizes is not as
extreme as on single attribute values, as each fragment comprises a range of values especially for the
Product dimension.

6.2.1. Disk-bound queries

In Figure 5, we show simulation results for the two disk-bound queries introduced above, QChannel and
QStore. The first observation is that for round-robin allocation, response times increase sharply with
density skew up to a factor of 4.6 (QChannel). This comes as no surprise as this allocation strategy
is unable to balance disk partitions when fragment sizes differ. As a consequence, the largest fact
table partition will determine the duration of processing with little chance to remedy the situation by
intelligent scheduling. The greedy allocation scheme, however, creates balanced disk partitions that
can be processed in constant time irrespective of skew, if a proper scheduling method is selected.
Even under less successful scheduling schemes, overall response times are about 50% lower than for
round-robin.

With greedy allocation, Partition achieves the best response times as would be expected for disk-
bound workloads, because disks are optimally loaded at nearly 100%. This strategy also minimizes the
inevitable disk contention caused by concurrent access to both fact table and bitmap fragments.

Integrated performs equally well as Partition for the QChannel query with only 1% deviation; it
is only slightly worse on QStore with at most 15% response time increase¶. Apparently, the conflict

¶An exception occurs for the QStore query with hierarchy skew only (i.e. zero density skew) under round-robin allocation.
Here, the Integrated method is trapped by several larger fragments allocated to a small number of disks and having exactly equal
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Figure 5. Disk-bound queries.

analysis it performs is similarly effective to avoid disk contention as a strict separation of partitions,
despite the addition of a second criterion.

The other strategies are less successful here as they do not respect disk allocation to the same degree.
The worst case is Logical, which processes fragments in their logical order that is unrelated to their disk
location under the greedy scheme, more than doubling the response time. Size mimics partitionwise
scheduling to some extent because it processes fragments in the same size-based order in which they
were allocated, leading to minimal disk contention at least for the crucial 100 largest fragments. Still, it

sizes and conflict ratings. This anomaly disappears with even the slightest degree of density skew and would thus not exist in a
real database.
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Figure 6. CPU-bound queries.

cannot contend with the near-optimal Partition, with differences of up to 25% (QChannel) and 35%
(QStore), respectively.

6.2.2. CPU-bound queries

Figure 6 presents simulation results for CPU-bound queries. Rather than the unlikely full scan used
for calibration in Section 6.1, we now consider somewhat smaller queries QDivision and QQuarter
that are more likely to respond to skew effects. This is because they perform a selection on the
skewed fragmentation dimensions Product and Time, respectively. Thus, they process only a subset
of fragments but access all tuples within the selected ones.

With CPU-bound queries, the processing nodes must be utilized as much as possible for good
response times. This is best achieved by Size as it balances the sheer amount of data processed per node,
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Figure 7. Shift from CPU- to disk-bound (query Quarter—greedy allocation).

which is the essential objective in this case. Partition performs worst (up to 58% for QDivision and 46%
for QQuarter) because it does not permit more than one processor to access the same disk even when
the disks are underloaded. The other two strategies achieve good success; Integrated approximates
Size most closely with no more than 10% deviation, demonstrating good performance for CPU-bound
workloads as well.

Note that, in contrast to the previous section, response times increase with skew even under greedy
allocation. The reason is that although the greedy scheme balances partition sizes for the database as
a whole, this may be impossible for single product divisions or calendar quarters because the largest
fragment within such a subset can be so huge that it requires a disproportionate amount of time for
processing. In our sample database, the largest fragment of all comprises as much as 1/90 of all data
under extreme skew‖. Clearly, it represents an even higher share of the respective quarter or division, so
that reading it dominates the response time. This can be corrected by data allocation only to a limited
extent.

Furthermore, increasing skew changes the ranking of scheduling methods in favor of Partition.
This is most pronounced in QQuarter, where Partition becomes by far the best strategy for extreme
skew, now offsetting Size by 46%. That is because the aforementioned suboptimal allocation due to
skewed fragment sizes causes the query to become locally disk-bound, i.e. a single disk (or possibly a
small subset of disks) becomes the bottleneck even though the query as a whole is CPU-bound!

This situation is analyzed in detail in Figure 7, which shows the response time development for the
‘smallest’ and the ‘largest’ query of the QQuarter type, respectively. More precisely, we consider the
processing of the least densely and most densely populated quarters for each given degree of skew.
For small queries, we observe two conflicting tendencies. First, response times tend to decrease as

‖This is because we have 9000 fragments of 1% average density. The largest fragment can achieve 100% density so that it
contains 100 × 1/9000 = 1/90 of the entire database.
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stronger skew produces greater differences between quarters, so that the smallest quarter is smaller
with high skew than with low skew. Second, response times increase due to the growing imbalance in
fragment sizes. From a skew degree of about 0.4, the second effect dominates the first, but the queries
remain CPU-bound for the entire range as indicated by the superior performance of Size in contrast to
Partition (10–45% over the full range).

For large quarters, response times increase monotonously as both the size of the respective quarter
and the fragment imbalance increase with growing skew. It is only these queries that shift from
CPU-bound to locally disk-bound so that Partition wins out by 43% for high skew.

6.2.3. Discussion

The results show that there is no single scheduling scheme that is absolutely optimal for all situations.
For (globally or locally) disk-bound queries, minimal response times are normally achieved under the
Partition heuristic, whereas CPU-bound workloads are best processed using Size. The correct choice
of the truly best strategy then depends on the ‘boundness’ of a query, as determined by its selectivity
and utilization of bitmap indices, the data allocation, the degree of skew, the number and relative
performance of disks and CPUs, as well as page and tuples size and more. A cost-based query optimizer
of a PDBS might make a sensible decision by comparing the total (estimated) processing cost on the
CPU and disk side, respectively, although locally disk-bound queries may be hard to detect.

Alternatively, our dynamic scheduling scheme based on the Integrated heuristic was able to adapt to
different types of queries and thus performed near-optimally in most experiments. Using this strategy
thus promises to be more robust for complex workloads and avoids the need to select among different
scheduling approaches based on error-prone cost estimates. Especially in a multi-user environment, we
expect such an adaptive method to react more gracefully to the inevitable fluctuations in system load.
In contrast, the correct selection of a simple method (Partition or Size) will become very difficult
against a continually changing background load, especially when the latter alternates between CPU-
bound and disk-bound states. This aspect, however, needs to be investigated in future studies.

6.3. Speed-up behavior

In this simulation series, we test the scalability of our query processing and scheduling strategies.
We simulate two different star queries on several hardware configurations shown in Table III.
The number of disks, D, is varied from 20 to 100; the number of processors, P , ranges from 1/10 to
1/2 of the number of disks, resulting in 2–50 processors. With the number of subqueries per processing
node set to t = 5 as determined in Section 6.1, this leads to a total of 10–250 concurrent subqueries.
For each configuration, we run the queries QQuarter and QRetailerMonth under a medium skew degree of
0.4 and against skewless data, respectively. Results are shown in Figure 8.

Since QQuarter is a CPU-bound query, we test its speed-up in relation to the number of processors
rather than the number of disks. For the same reason, we use Size as the scheduling strategy, according
to the results obtained in Section 6.2. In addition, we try the Integrated policy that we proposed for
both CPU- and disk-bound workloads. The results, however, are equivalent for both methods.

Processed against skewless data, QQuarter exhibits linear speed-up. The graphs drop only when the
disks of the system become bottlenecks and speed-up with respect to processors is no longer achievable.
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Table III. Hardware parameters for
speed-up experiments.
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Figure 8. Speed-up behavior of queries QQuarter and QRetailerMonth.
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This occurs at the last points of each curve, which were obtained with a disk-to-processor ratio of only
2:1.

With skew (dashed graph), the curves decline somewhat earlier because response times are
dominated by the work to be done on the largest fragment as discussed before. This leads to increasing
load imbalances and sub-optimal response times as the load per single resource (processor or disk)
decreases.

To test the speed-up for disk-bound queries, we use QRetailerMonth rather than QChannel and QStore as
above. This is because the latter do not respond to skew to the same extent, as they perform no selection
on a skewed dimension. In contrast to QQuarter, QRetailerMonth is scheduled using Partition as well as
Integrated. Speed-up is evaluated in relation to the number of disks.

Our results are similar to the previous case. For both policies, speed-up is again near-linear with
skewless data but limited by the largest fragment in case of skew. The effect is even stronger this
time as skew is more pronounced on lower hierarchy levels (months) than on higher ones (quarters;
cf. Section 6.2).

Overall, our load balancing method scales very well for all relevant scheduling policies; limitations
due to skewed fragment sizes are not caused by scheduling and must be treated at the time of data
allocation.

7. CONCLUSIONS

In this paper, we have investigated load balancing strategies for the parallel processing of star schema
fact tables with associated bitmap indices. We found that simple scheduling heuristics—most notably,
Partition and Size—can be very effective; they are also easy to implement. But the selection of the
appropriate method depends on the load properties of the query (CPU- or disk-bound) which can be
difficult to determine in some cases, especially under skew conditions. As an alternative, we proposed a
more complex, dynamically ordered scheduling approach (Integrated) that yields only slightly poorer
performance but naturally adapts to different query types. Although our study was conducted on a
SD architecture, most of the results can be transferred to other environments, in particular, Shared
Everything systems. For Shared Nothing, our methods could be adapted to manage multiple disks
attached to a single processing node. In this case, disk-sensitive heuristics such as Partition can
be deployed locally to achieve an even disk utilization with low contention between subqueries.
Still, Shared Nothing systems will remain inferior for CPU-bound workloads as they do not support
strategies like Size or Integrated.

Our scheduling methods can be applied not only to star schemas but to arbitrary data sets, provided
that the latter are horizontally partitioned into independent fragments. Among others, this may include
tables with tree-based indices (instead of bitmaps) as well as materialized views. A strategy similar to
Integrated has been successfully applied to object-relational joins [44], where it was used to manage
concurrent access to intermediate results stored on disk. Operators without disk access (e.g. in-memory
joins) are outside the scope of our algorithms, but the CPU load they cause is implicitly considered in
our strategies as it hinders the execution of disk-based operations.

As mentioned in Section 6.2.3, the extension of our findings to multi-user mode is not trivial.
In particular, the simple heuristics Partition and Size may no longer be sufficient as the processing
of one query depends on the system load state caused by others executed concurrently. In our future
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work on this subject, we thus expect our integrated strategy to gain importance, although its stability
in these cases is yet to be ascertained.
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25. Scheuermann P, Weikum G, Zabback P. Data partitioning and load balancing in parallel disk systems. VLDB Journal 1998;
7(1):48–66.

26. Wu K-L, Yu PS, Chung J-Y, Teng JZ. A performance study of workfile disk management for concurrent mergesorts
in a multiprocessor database system. Proceedings of the 21st VLDB Conference, Zurich, 1995. Morgan Kaufmann: San
Francisco, CA, 1995.

27. Rahm E. Parallel query processing in shared disk database systems. Proceedings of the 5th HPTS Workshop, Asilomar,
1993.

28. Reuter A. Load control and load balancing in a shared database management system. Proceedings 2nd ICDE Conference,
Los Angeles, CA, 1986. IEEE Computer Society Press: Washington, DC, 1986.

29. Mohan C, Narang I. Recovery and coherency-control protocols for fast intersystem page transfer and fine-granularity
locking in a shared disks transaction environment. Proceedings of the 17th VLDB Conference, Barcelona, 1991. Morgan
Kaufmann: San Francisco, CA, 1991.

30. Rahm E. Empirical evaluation of concurrency and coherency control protocols for database sharing systems. ACM Trans.
Database Systems 1993; 18(2):333–377.

31. International Business Machines Corp. IBM DB2 Universal Database for OS/390 and z/OS Administration Guide Version 7.
Part No. SC26-9931-02, October, 2002. IBM Corp.: White Plains, NY, 2002.

32. Oracle Corp. Oracle9i Data Warehousing Guide. Part No. A96520-01, March. Oracle Corp.: Redwood Shores, CA, 2002.
33. Sybase, Inc. Sybase Adaptive Server IQ 12.4.3 Administration and Performance Guide. Document ID 38152-01-1243-01,

May, 2001. Sybase Corp.: Dublin, CA, 2001.
34. International Business Machines Corp. Performance Guide for IBM Informix Extended Parallel Server Version 8.40. Part

No. 000-9083, August, 2002. IBM Corp.: White Plains, NY, 2002.
35. International Business Machines Corp. IBM Red Brick Warehouse Version 6.20 Query Performance Guide. Part No. 000-

9045, August, 2002. IBM Corp.: White Plains, NY, 2002.
36. Berenson H, Delaney K. Microsoft SQL Server Query Processor Internals and Architecture. White Paper, Microsoft Corp.

Microsoft Corp.: Redwood, WA, 2000.
37. NCR Corp. Teradata RDBMS Performance Optimization V2R4.1. Part No. B035-1097-061A, October, 2001. NCR Corp.:

Dayton, OH, 2001.
38. Graham RL. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics 1969; 17(3):416–429.
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