
Page 1 of 19

Insert-Friendly Hierarchical Numbering Schemes for XML

Timo Böhme1, Selim Mimaroglu2, Elizabeth O’Neil2, Patrick O’Neil2, Erhard Rahm1

1University of Leipzig, Germany {boehme, rahm}@informatik.uni-leipzig.de
2University of Massachusetts Boston, USA {smimarog, eoneil, poneil}@cs.umb.edu

Abstract. Numbering schemes for labeling XML nodes are the key design element to support generic XML

storage and high-efficiency access in relational databases or other reliable stores. In this paper we present a class

of hierarchical numbering schemes that combine two prior published schemes [2, 13] by authors of this paper. No

schema is required for the data, and streaming access is supported. Our schemes support fast query processing

and fast retrieval of document fragments while supporting insertion of new nodes, or sub-trees, at arbitrary

positions within a document, without the need to relabel any old nodes. These insertion capabilities are not

supported in other numbering schemes that have appeared in the literature. We also present a detailed quantitative

analysis to comparatively evaluate the effectiveness and performance of the new numbering schemes.

1 Introduction

Designers of XML database systems are faced with the problem of efficiently representing the tree-like structure of

XML documents to efficiently support both query and update operations. One difficulty encountered is that, in addi-

tion to the tree structure, the document order of XML nodes is meaningful, and both must be represented to support

fast access to document fragments. Early work on generic relational storage of XML data [6] showed that

representing tree structure exclusively by parent-child relationships results in poor performance in determining

ancestor-descendant relationships and performing document reconstruction. The current paper compares two

approaches authors previously published independently, DLN [2] and ORDPATH [13], to solve these problems and

provide fast ancestry-related queries as well as fast document fragment retrieval. The two approaches propose

distinct hierarchical numbering schemes to represent document order and ancestry of XML tree nodes, and provide a

natural primary index for clustering node data shredded to relational form in document order. The feature that

distinguishes these approaches from prior work of a similar nature was that they were the first to be Insert-Friendly,

in the sense that nodes and subtrees can be inserted at any point in a document thus represented and be assigned

appropriate hierarchical numbering without the need to modify any of the node numberings previously assigned.

This capability is important in efficiently representing an XML database that is subject to updates.

Several numbering schemes already existed in the literature [3, 5, 8, 10, 11, 15, 16] prior to the numbering

schemes this paper compares. While all of these schemes capture semantics to accelerate query operations, their

practical use in most cases is restricted to static XML data, because insert operations require a costly renumbering of

existing nodes. Only a few of these prior approaches try to tackle this problem [3, 8, 16], but the approaches in these

papers only reduce the need for renumbering in some cases. This is particularly unfortunate in an XML database that

provides transactional guarantees since such a renumbering has the hidden cost of locking nodes unrelated to the

insert.

In this paper we compare the definitions and key concepts of ORDPATH and DLN, contrast them, and evaluate

their pros and cons. The comparison illustrates the key concepts of advanced hierarchical numbering schemes to

efficiently support both query and insert operations. We also present a detailed quantitative analysis to

comparatively evaluate the effectiveness and performance of the new numbering schemes.

The rest of the paper is organized as follows. In Section 2, we look at related work. Section 3 discusses properties

of simple hierarchical numbering, without considering efficient insertions. Section 4.1 classifies solutions for

enhancements of hierarchical numbering, and Section 4.2 discusses insertion. Section 5 compares variants identified

in the previous section and discusses their application, while Section 6 provides experimental data. Section 7

concludes the paper.

Page 2 of 19

2 Related Work

Several relational mappings for generic storage of XML documents have been proposed. In [6] the tree-like node

structure of XML documents is represented as parent-child relationships, but this approach is inefficient for recon-

structing documents. The approach in [14] encodes the document tree in binary relations, but also has performance

difficulties for reconstructing document fragments. A multidimensional mapping using document id, value and path

surrogate is published in [1], but the approach does not deal with update operations and its path coding restricts the

number of child elements per node.

A key approach to improve query and retrieval performance is the use of semantically meaningful node-ids when

mapping XML data into nodes, either as objects in memory according to the Document Object Model (DOM) or by

storing them in rows in a relational database. Several numbering schemes have been proposed using the relational

approach. One of the first numbering schemes supporting ancestor-descendant relationships was published in [5],

and labeled each tree node with a pair of preorder and postorder position numbers. So for each pair of nodes x and y,

x is an ancestor of y if and only if preorder(x)<preorder(y) and postorder(x)>postorder(y). A similar scheme was

chosen in [15]. While this numbering scheme is easy to compute and can be used for streamed XML data it is highly

inefficient when new nodes are inserted, because each node in preorder traversal coming after the inserted node has

to be updated.

The update problem was addressed by the extended preorder numbering scheme introduced in [11] and adopted

in [3] as durable node numbers. They also use a pair of numbers for each node. The first number captures the total

order of the nodes within the document like the preorder traversal but leaves an interval between the values of two

consecutive nodes. The second number is a range value. As with the preceding scheme the ancestor-descendant

relationship between node x and y can be determined from x is an ancestor of y iff

order(x) < order(y) ≤ order(x) + range(x). With the sparse numbering insert operations will not necessarily trigger

renumbering of following nodes if the difference of the order value of preceding and following node is larger than

the number of inserted nodes. However inserting new subtrees with a substantial number of nodes requires renum-

bering as well.

In [9] a numbering scheme called simple continued fraction (SICF) is proposed. It numbers the nodes from left to

right and top-down. Each node number can be expressed as a sequence of integer values – adding an integer per tree

level – or a fraction. This approach reduces the update scope,1 after a node insertion, to the following siblings and

their descendants. Furthermore SICF fails if a certain tree depth is reached.

Another approach with left to right and top-down numbering is published in [10]. The so-called unique element

identifiers (UID) are based on a tree with a fixed fan-out of k. If a node has less than k children virtual nodes are

inserted. The UID allows the computation of the parent node label (id) and the label of child i. This approach has

two main drawbacks: (1) fixed fan-out is problematic with irregular structured documents, (2) node insertion

requires updates of all right siblings and their descendants.

Some of the UID drawbacks were tackled in [8] with the definition of recursive UIDs (rUID). Here the tree is

partitioned in local areas allowing different fan-outs and reducing updates after insertion of nodes. However it needs

access to the whole tree in order to compute the identifiers, which prevents the streaming of data for insertion.

Theoretical findings for labeling dynamic XML trees are given in [4]. The described schemes determine labels

that are persistent during document updates and contain ancestor information. Furthermore lower bounds for the

maximum label length are presented. However no sibling order of the XML nodes is maintained, so it is not suitable

for general XML document management.

Several solutions for encoding Dewey ids with respect to query processing and lock management are considered

in [7]. The authors of this paper present their own approach which is similar to ORDPATH. As an extension they

propose compression methods which can be used by implementations of this encoding. The quality of the encodings

is measured in terms of initial label length for several documents. Update operations are not considered.

3 [Simple] Hierarchical Numbering

We define a Simple Hierarchical Numbering to be a scheme for hierarchical numbering of nodes of an XML tree

that does not support inserts of new nodes without relabeling. A Hierarchical Numbering (not prefixed by “Simple”)

may or may not provide support for inserts. We define a Hierarchical Numbering to be one that assigns labels to

the nodes of an XML tree by a scheme described as follows. The label of the root node (said to be at level 1) is a

simple binary string, which we define here to have an ordinal value “1”. A Hierarchical Label of a lower-level node

N (at level k in the tree) is made up of a sequence of k Level labels; a level label of level m ≤ k of the node N is a

1 the set of nodes whose numbers (potentially) have to be updated

Page 3 of 19

binary string that specifies the relative position of the level m ancestor node of N with respect to its parent at level

m-1. In the DLN schemes, there is a single 0-bit between successive level labels in a hierarchical label. An initial

XML tree load in document order allows us to represent each binary string level label by a simple ordinal number,

and the hierarchical label of the node N at level k can be represented by a concatenation of k such ordinals,

separated by dots. For example we say that the level 3 node M has label 1.5.9, with three level labels: the initial

level label 1 represents the root of the document tree, the second level label 5 specifies that the level 2 ancestor of

node M is the fifth sibling from the left of children of the root, and the third level label 9 specifies that M is the ninth

sibling from the left of children of its parent node of level 2. In this freshly loaded XML tree, document order of the

nodes corresponds to numerical order of the successive ordinals in a label. We say ‘1.5.9’ < ‘1.5.10’ to indicate that

1.5.9 is lower than 1.5.10 in document order. Note that the inequality ‘1.5.9’ < ‘1.5.10’ is not true in an ASCII form

of this representation, but this ordinal form merely indicates the binary representation of level labels that supports

the appropriate ordering. Indeed, the binary string level values for successive ordinals at the same level will be of

different lengths, and once we describe hierarchical labels for node inserts between existing nodes it will become

clear that the level labels resulting will not always be describable as simple ordinals. Nevertheless, we shall use this

ordinal representation for examples in all simple examples that follow.

document

chapter chapter

section section section

1

1.1 1.2

1.2.11.1.1 1.1.2

Figure 1. Hierarchical Numbering

Figure 1 shows an example of a simple hierarchical numbering scheme using ordinals for level labels and a dot

character as separator. Such a hierarchical numbering scheme looks similar to the Dewey Decimal classification

scheme used in libraries, which inspired the XML hierarchical labeling described in [16] by Tatarinov et al.

Recall that a Simple Hierarchical Numbering is a scheme for labeling an XML tree that does not support inserts of

new nodes without relabeling. Even limited in this way, simple hierarchically numbered labels are superior to other

proposed schemes for efficient XML query evaluation in several ways. Outstanding properties are these.

- From a given node label one can determine the parent label and the label of all ancestor nodes up to the root node

without requiring I/O operations

- The depth of a node within the tree can be determined from its label

- Given two node labels A and B, one can determine from the labels alone if B with regard to A is a parent, child,

ancestor, descendant, preceding node, following node, preceding-sibling, or following-sibling

Thus a number of XML query operation primitives can be evaluated based on labels alone, without the need for

navigating the document tree. Hierarchical numbering permits us to sequentially label document nodes, which is

essential when all nodes of a large document need to be loaded in document order. Furthermore the level label

bitstring encoding ensures that ordinary byte-string comparison follows XML document order. This property allows

adjacent nodes to be clustered in relational storage [9], and allows queries to reconstruct document fragments by

range scans. This gives us another property of our scheme.

- By a range scan through the node label index from a given context node label, we can determine the set of

preceding, following and descendant nodes

- The level labels of our representations are single (variable-length) values

An important feature of simple hierarchical numbering comes into play when new nodes or subtrees must be

inserted. Compared to some other labeling schemes, simple hierarchical numbering restricts the update scope, i.e.

Page 4 of 19

the range of nodes potentially to be relabeled, to the sibling nodes that follow the inserted node and their descen-

dants. Of course there might be a great number of sibling nodes in some cases: the Text Centric XML document in

the XBench Benchmark [17] has nodes for all words of a dictionary as siblings sitting below the root. Thus the

insert-friendly property of our labeling schemes described in Section 4, by which a new node or subtree can be

inserted without any rearrangements of existing nodes at all, has significant value.

4 Insert-friendly Hierarchical Numbering

In [16] Tatarinov et al. proposed two approaches to an insert-friendly improvement on simple hierarchical

numbering with what they called a Dewey order. The first allocates a fixed number of bytes for each level label, e.g.

1.9 would be represented as 0001 0009 (in hexadecimal blocks of four digits) and 1.10 as 0001 000A. One drawback

of this solution is the immense storage overhead, since the largest level label must fit within the range of bytes. To

address this in the second approach, a node label is represented as the concatenation of UTF-8 encoded level labels.

UTF-8 encodes all 31-bit integer values with a variable number of bytes (between one and six bytes) and a binary

(bitstring) comparison of UTF-8 encoded values yields the appropriate numeric order of the values that are

represented. However a minimum of one byte per level label is still inefficiently large for levels with only a few

siblings. Furthermore, neither of these approaches fully supports insertions without relabeling.

In [2,13] authors of this paper proposed two solutions (ORDPATH, DLN) for hierarchical numberings to label

XML nodes providing efficient support for insertions. In this section we classify and compare the ideas from these

two solutions: we discuss the details of the hierarchical labelings that support byte-string comparisons of labels to

determine document order and show how insertions of new nodes can be performed without relabeling existing

nodes.

4.1 Encodings

As explained at the beginning of Section 3, node labels produced by a hierarchical numbering scheme during an

initial document-order load can be represented by concatenated sequences of ordinals, each representing level labels:

for example the label ‘1.5.9’. Our first goal is to explain how the ordinals representing these labels can determine

bitstring level labels so that byte-string comparison of the concatenated sequence of level labels preserves document

node sequence: e.g. ‘1.2.9’ < ‘1.2.10’. This labeling can then be used as a primary index to ensure that B-Tree

indexing clusters the rows in document order. As a second goal, we would like to minimize the number of bits

needed to encode the level labels; however this goal must normally be consonant with the need to accept a

document-order one-pass load of nodes of a tree with arbitrary numbers of nodes at each level, without knowing the

number of nodes in advance. Finally, a third goal is to support insertions without massive relabelings. In the

following subsections we present several encodings from ordinal values to bitstring level labels targeted to the first

two goals; we will explain in Section 4.2 how the third goal is met.

4.1.1 Prefix-specified Level label Encoding (Simple ORDPATH)

Following Section 3, the prefix “Simple” in “Simple ORDPATH” means that no effort is made here to support effi-

cient inserts. According to [12] the distribution of XML element fan-out follows a power law, i.e. most elements

have only a few children. Therefore the probability for small level labels is much higher than for large level labels,

and we can expect a good compression if we use a variable-length encoding for level labels, with smaller and more

probable values mapped to shorter bit sequence codes whereas larger values are mapped to longer ones.

In order to be able to uniquely parse concatenated bitstring level labels ORDPATH uses prefix-free encoding2.

This encoding has to provide the same ordering property as corresponding ordinal level labels to maintain document

order. As discussed above, UTF-8 encoding is one possibility, but we can do better. Table 1 shows a trivial example

of a variable-length encoding of the values 1-6 with the desired property.

2 A prefix-free encoding guarantees that for two different values a and b, the code for a is not a bitstring prefix of the code for b

Page 5 of 19

Ordinal value Bitstring value,

 a prefix-free encoding

1 01

2 10

3 110

4 1110

5 11110

6 111110

Table 1. A trivial prefix code scheme

Since the number of different level labels can become quite large, the ORDPATH scheme doesn't try to maintain a

specific encoding for each ordinal value. Instead ordinal values are partitioned into groups of consecutive values

called prefix groups. All values of each prefix group are encoded into bitstrings with the same number of bits. We

can divide the bitstring-encoded value into a bitstring prefix L that identifies the group and the following bitstring O

that distinguishes the group members. Any sequence of prefix-free codes in binary string order can be used for

group prefixes and the length of O is fixed for each group. Table 2 presents one such ORDPATH encoding.

Bitstring value, simple ORDPATH
Ordinal level

label
 L # of bits in

O

 L with first O bitstring L with last O bitstring

1..2 01 1 01 0 01 1

3..6 10 2 10 00 10 11

7..22 110 4 110 0000 110 1111

23..278 1110 8 1110 00000000 1110 11111111

279..4374 11110 12 11110 000000000000 11110 111111111111

4375..69910 111110 16 111110 000…000 111110 111…111

…

Table 2. A Simple ORDPATH scheme (insertions not supported)

In Table 2, each prefix group has a row. For example, the second row describes a group with prefix L of 10 and

following O bitstrings of 4 bits: 00, 01, 10, and 11. Thus the first such bitstring is 10 00 and the last is 10 11. There

are four bitstrings in all, representing ordinal values 3, 4, 5, and 6.

With this encoding, the label 1.2.1 would be represented as 010 011 010 and label 1.3.1 would become 010 1000

010. Notice that the prefix group is different for the level labels 2 and 3, indicated by the L codes 01 and 10, and the

number of bits that determines the O value changes from 1 to 2. It is shown in [13] that the byte-string comparison

of node labels with level labels encoded in this way preserves document order. (This is so even though the concate-

nated bitstrings of an ORDPATH might end in the middle of a terminal byte, extended with 0-bits.) No separator is

needed between level label bitstrings since the length of each value O is determined by the prefix group, which in

turn is specified by its identifier L, and if the comparison of two ORDPATHs doesn't differentiate between L values

the succeeding O values will be the same length.

This is the form of encoding used in ORDPATH, except that a proper ORDPATH scheme also allows for arbi-

trary negative level labels (as shown in section 4.2.1, Table 6) to support inserts of new children to the left of all

current children of a node, using L values such as 001, 0001, etc. Also, the full ORDPATH scheme reserves the even

ordinals as points for future inserts (described in Section 4.2). However, the simplified ORDPATH scheme given

above is sufficient to label arbitrary XML documents in document-order loads, with one ordinal for each level. It is

important to realize that the prefix-free bitstrings for L can be varied, along with the number of bits in the associated

O bitstrings, so that ordinals at each level will be most efficiently represented according to statistical behavior

expected by the designer. For example, in the dictionary example of [17] where a very large number of word nodes

sit beneath the root, we might use an O bitstring length of 20 for the L bitstring 11110, allowing for a million words,

yet still using short codes for all the moderate fanouts in the document. On the other hand, a fixed ORDPATH

scheme works well across many document types, as shown in Section 6.

Page 6 of 19

4.1.2 Subvalue Encodings (DLN)

Like the ORDPATH scheme, DLN encodes level label ordinals with a varying number of bits. In contrast to

ORDPATH, where a prefix determines the bit-length of a bitstring for each ordinal (and thus for each level label in

an initial document load), DLN divides a level label bitstring into one or more subvalues; the level label bitstring is

thus the concatenation of its subvalue bitstrings. Distinct separator bits are used to separate subvalues of a level label

(1-bits) and to separate level labels of a node label (0-bits). The following example shows the structure of a DLN

label with subvalues having a length of 3 bits each:

001 0 000 1 011 1 101 0 100 1 011 label

L0 | L1 | L2 level labels

S0 | S0 | S1 | S2 | S0 | S1 subvalues

001 | 000 011 101 | 100 011 bitstring level values

By using the 0-bit as a level separator, we ensure that the labels of all children of a node N come before the siblings

following N in a binary comparison, a clear requirement for a preorder numbering scheme. For instance if we use 3

bits to encode all subvalues, with 001 representing 1, we would represent 1.3.3 as 001 0 011 0 011 and 1.3.4 as

001 0 011 0 100 1 000 (note the added subvalue to extend 3, represented as 011, to 4, represented as 100 1 000).

For added flexibility, subvalues of different but predetermined length may be employed. In DLN, the length of a

subvalue is determined by its position within a level label. For instance a length specification of ‘1|4|5’ means the

first subvalue s0 has a length of 1 bit, subvalue s1 has a length of 4 bits and each subvalue s2 and all following

subvalues within the corresponding level label are made up of 5 bits. The length specification of subvalues is a

parameter than can be adjusted to the document needs. Smaller subvalues may be space-efficient for a small number

of children per node, but require many subvalues for a large number of children. Typically, a length specification

applies to all nodes of a document or even all documents of the database. In some cases, it can be advantageous to

use tailored length specifications on a per-document-level basis.

Given this subvalue structure of a DLN label, we explain below how subvalues are used to encode level labels.

Two encodings are differentiated which can be used simultaneously for a given document3: (1) A Streaming

encoding where no advance knowledge of the tree structure is assumed, e.g. when the document arrives as

streaming data to be loaded in document order; (2) A DOM encoding where the number of children at each node is

known in advance, e.g. because the document is available via DOM. DOM encoding is also applicable if the data is

initially loaded in a Streaming encoding, but then reloaded in a DOM encoding for optimally compressed labels. In

general we assume that a DOM encoding is not subject to updates, since this would change the structure of the tree.

However, we still allow for inserts as a safety measure. The ORDPATH approach introduced in Section 4.1.1 does

not assume a known tree structure: it accepts and efficiently loads XML data arriving in document order; it is also

able to accept an arbitrary number of future inserts. Various experiments comparing these approaches appear in

Section 6.

Streaming encoding (DLNStream)

With streaming data the tree structure is not known in advance. Thus we cannot predetermine the required number

of subvalues to handle all sibling nodes. For this case the following algorithm dynamically determines the relevant

bitstring of a level label, using an increasing number of subvalues as the ordinal increases. The first child of a parent

node uses a level label representing ordinal one, and each new sibling is assigned the succeeding level label (i.e., the

level value is incremented.) A new subvalue is appended when the level label to be incremented has left only a

single 0-bit. Table 3 illustrates this format, using subvalues of length 4. As explained above, subvalues of varying

lengths are also possible.

3To be used simultaneously, the DOM and Streaming encodings need to use the same subvalue length specification.

Page 7 of 19

Ordinal Bitstring level labels, DLNStream first bit pattern

1..7 0XXX 0001

8..71 10XX 1 XXXX 1000 1 0000

72..583 110X 1 XXXX 1 XXXX 1100 1 0000 1 0000

584..4679 1110 1 XXXX 1 XXXX 1 XXXX 1110 1 0000 1 0000 1 0000

4680..37447
 1111 1 0XXX 1 XXXX 1 XXXX 1 XXXX …

…

Table 3. DLNStream

In Table 3, level labels 1 to 7 are encoded with a single subvalue, level labels 8 to 71 with two subvalues, etc. With

additional subvalues the number of nodes that can be encoded increases exponentially, a property that is shared by

all other encodings we list here, including ORDPATH. We call this encoding DLNStream.

Although we do not discuss inserts in detail until Section 4.2, some of the details of the bitstring level labels

above are related to supporting inserts after using these labels in the initial load. DLN bitstring level labels must

obey the following rules to make inserts possible.

DLN Rule 1. All level labels must contain at least one 1-bit. Otherwise it would not be possible to insert a sibling of

the node that sits on its left.

DLN Rule 2. For two level labels a and b, where a is a prefix of b, the non-matching right-hand subvalues of b must

contain at least one 1-bit. Otherwise it would be impossible to insert a node between the two nodes identical except

for rightmost level labels a and b.

Note that only inserts, not deletes, need to pay attention to these rules.

Improving DLN bit usage

Looking at the DLNStream bit patterns of Table 3 we note that the number of leading 1-bits determines the number of

subvalues. If the 1-bit separators were removed, the result would be a scheme strongly reminiscent of ORDPATH

encoding. This is true only for an initial load, however, since the correspondence would depart from ORDPATH

after a few ad-hoc inserts; furthermore, we cannot remove the 1-bit separators and still use DLNDOM for the initial

storage of a document and DLNStream for later insertions, as we propose below.

However we can improve compression of DLNStream and still retain the ability to combine it with DLNDOM. In

what we call the DLNStreamOpt scheme, when we add a new subvalue to a level label x to produce a new label, we do

not change the bits of x, but instead simply append the subvalue (itself not all 0s) to x. We follow the same rule as in

DLNStream for the case of a single 0-bit. This is demonstrated in the following table.

Ordinal bitstring level label, DLNStreamOpt First level label last level label

1..7 0XXX 0001 0111

8..22 0111 1 XXXX 0111 1 0001 0111 1 1111

23..86 10XX 1 XXXX 1000 1 0000 1011 1 1111

87..101 1011 1 1111 1 XXXX 1011 1 1111 1 0001 1011 1 1111 1 1111

102..613 110X 1 XXXX 1 XXXX 1100 1 0000 1 0000 1101 1 1111 1 1111

…

Table 4. DLNStreamOpt

Comparing Table 4 to Table 3, we see that starting with two subvalues we can encode more level labels with the

same number of bits (86 values in Table 4 compared with 71 in Table 3). The DLNStreamOpt encoding allows for

inserts between these labels, although with a somewhat more complicated algorithm than with DLNStream.

DOM encoding

The DOM encoding also uses several subvalues of a predetermined length as introduced above. However it most

efficiently uses the combined subvalue bit range under the assumption that the exact number of children for a

specific node is known. The DOM encoding, which we denote DLNDOM, uses as many subvalues as needed to fit all

Page 8 of 19

level labels of the remaining sibling nodes to be encoded within the concatenated bit range. For example, when we

know that a node N has nremain = 199 siblings, we can encode the final level label of its labels using a minimum of 8

bits. If the subvalue length is specified as ‘3|2|3’ we have to concatenate 3 subvalues as shown in Table 5. In

general, we need a combined length of subvalues l(sv) ≥ log2 (1 + nremain) where nremain is the number of remaining

sibling nodes.

 Table 5 illustrates that the number of subvalues can actually decrease for the final sequence of sibling node

encodings. Starting from the node with 6 remaining siblings we can encode all labels with the remaining bits of the

first two subvalues.

Node remaining siblings Bitstring level label, DLNDOM

N 199 000 1 00 1 001

sibling 1 198 000 1 00 1 010

sibling 2 197 000 1 00 1 011

… … …

sibling 191 8 110 1 00 1 000

sibling 192 7 110 1 00 1 001

sibling 193 6 110 1 01

… … …

sibling 199 0 111 1 11

Table 5. Example of DLNDOM numbering of 199 siblings

The bit usage of DLNDOM is always optimized. If a level label contains trailing subvalues with only 0-bits these

subvalues can be removed. This pruning has no implication on the label order nor does it impact creation of sibling

labels since in DLNDOM we know the number of remaining siblings and calculate the needed number of subvalues

accordingly. Figure 2 compares the maximum and average level label length of DLNDOM and DLNStreamOpt (with all

subvalues having 3 bits) for various numbers of sibling nodes.

0

5

10

15

20

25

30

1 10 100 1000 10000

siblings

b
it
s

DLN_StreamOpt max

DLN_StreamOpt avg

DLN_DOM max

DLN_DOM avg

Figure 2: Comparison of DLNDOM and DLNStreamOpt encoding a number of sibling nodes

4.2 Insertion Techniques

Assume that we have already loaded an XML document tree in a relational table (or other store), using one of the

node encodings presented in Section 4.1. In this section we explain how to perform insertions of new nodes at

arbitrary positions within this tree without the need to relabel a potentially large number of following siblings. Note

that the new node inserted may be the root of a subtree. Once this root has been assigned a proper label within the

Page 9 of 19

existing tree, it will be easy to assign labels for all descendents of that root using the corresponding level label

encodings for children of an existing node we have introduced.

There are three types of insertions we need to support:

Type 1 Insertions: inserting the last child of a node to the right of all existing siblings

Type 2 Insertions: inserting a child of a node between two existing siblings

Type 2 Insertions: inserting the first child of a node to the left of all existing siblings

Since all encoding schemes from Section 4.1 except DLNDOM allow for adding successive sibling labels to the right

of all prior sibling values, we can add a node to the right of all siblings (insertion type 1) without problems. Thus,

we need new insertion techniques only to deal with insertion types 2 and 3; we will also introduce a solution for type

1 with DLNDOM.

In all the schemes of this section, inserting new nodes between existing nodes (type 2 insertions) may cause the

length of the new nodes’ encodings to exceed the length of its siblings’ encodings. It is unlikely that this affects

performance significantly, but this is discussed further in Section 6. On the other hand, inserting a very large number

of new nodes can cause the need to “reload” the tree, or at least all descendents of the most affected parent. This

situation is analogous to the need to reload a database table after multiple inserts and deletes have caused the

effectiveness of clustering or secondary indexing to deteriorate.

4.2.1 ORDPATH Insertion

ORDPATH [13] supports Type 3 insertions to the left of all existing siblings by generating codes for ordinals with

decreasing negative values, as shown in Table 6. To put a sibling to the left of 1.3.1, we can label it 1.3.-1, and the

sibling before that can be labeled 1.3.-3, and so on. Note we are using only odd ordinals in these labels; we explain

the reason for this below.

The bitstring codes (one for each ordinal, odd or even) for ORDPATH have the format shown in Table 6 in one

possible ORDPATH scheme.

Bitstring for one ordinal, for ORDPATH Std Ordinal

values L # of bits in O First odd-ordinal code Last odd-ordinal code

…

[-12,-5] 0001 4 0001 000 1 0001 111 1

[-4, -1] 001 2 001 0 1 001 1 1

[0,1] 01 1 01 1 01 1

[2,5] 10 2 10 0 1 10 1 1

[6,21] 110 4 110 000 1 110 111 1

[22, 277] 1110 8 1110 0000000 1 1110 1111111 1

[278,4373] 11110 12 11110 00000000000 1 11110 11111111111 1

[4374,69909] 111110 16 111110 000…000 1 111110 111…111 1

…

Table 6. A practical ORDPATH scheme used in Section 6 as ORDPATH “Std”

We now know how to perform Type 1 and Type 3 insertions of children to the right and left of all existing siblings

in the ORDPATH scheme. For the remaining Type 2 case, we require that odd ordinals can be used in generating

labels of nodes arising from Type 1 insertions (thus in a normal XML tree load) and Type 3 insertions. Given this,

we can insert a new node Y between any two siblings of a parent node X (a Type 2 insertion, known as careting in)

by creating a component with an even ordinal falling between the (odd) ordinals of the two siblings, then following

this even ordinal with a new odd ordinal, usually 1.

As an example, we show how to caret in a sequence of K siblings having parent node with ORDPATH 3.5, the

sequence to fall between sibling nodes 3.5.5 and 3.5.7; we do this by providing the new siblings with an even

ordinal placeholder 6, thus: 3.5.6.1, 3.5.6.3, 3.5.6.5, Here, the value 6 at level 3 (or any even value in any non-

terminal ordinal) represents a caret only; that is, it doesn't count as a full level value that increases the depth of the

node in the tree. Instead, the level 3 values for the inserted nodes above are, respectively: 6.1, 6.3, and 6.5. However

the caret does have the desired effect on ORDPATH order, since binary comparisons give 3.5.5 < 3.5.6.1, 3.5.6.3,

3.5.6.5 < 3.5.7. Using this approach we can caret in an entire subtree with root at 3.5, falling between the sibling

nodes 3.5.5 and 3.5.7, using only one even ordinal between 5 and 7. For example: 3.5.6.1, 3.5.6.1.1, 3.5.6.3,

Page 10 of 19

3.5.6.3.1, 3.5.6.3.3, 3.5.6.3.3.1, 3.5.6.3.3.3, 3.5.6.3.5, 3.5.6.5, 3.5.6.5.1, etc. The siblings of 3.5.5 and 3.5.7 are

underlined in this example, and the other nodes in the document order sequence are descendents of these siblings.

In interpreting ORDPATH labels, the even components (carets) simply don’t count for ancestry: 3.5.6.2.1 is a

child of 3.5, and a grandchild of 3. New insertions can always be careted in between any two existing sibling nodes.

For example, we can insert a node between 3.5.6.1 and 3.5.6.2.1 by using 3.5.6.2.-1.

Multiple levels of carets are normally extremely rare in practice. In order for K carets to exist in an ORDPATH,

there must have been a decision at some point to perform an insert of a multiple node subtree (in text XML, this

might be adding an intermediate section of a book), then there must have been a decision to add another multiple

node subtree within the first (adding a new intermediate paragraph within the new section), and another within that

(adding a new intermediate sentence within that paragraph), and so on, for K successive multiple node subtree

additions to occur, one within another, not at either end. Clearly this is a rarity.

We can consider the last bit of each ORDPATH bitstring encoding to be a delimiter, where 1 and 0 have

meanings opposite to DLN: 1 means we have reached the end of the level label, whereas 0 means there is a

continuation part to define a level label for a careted-in node. In particular, the construction ensures that all node

labels end in an odd ordinal, so a full ORDPATH always has a 1-bit at the end. We 0-fill the rest of the byte at the

end of the ORDPATH bitstring, so that even if we only know the byte-length we can locate the final 1-bit within the

last byte, and thus the end of the binary ORDPATH.

It will be shown in Section 6 that inserts, random or in runs, produce only logarithmic growth in label length.

This can be understood by observing that a first insert between 3.5 and 3.7 yielding a new label 3.6.1 opens up a

whole new address space of possible labels in this neighborhood, 3.6.3, etc., all of roughly the same length.

Surprisingly, an ORDPATH scheme can be devised that has 0 bits in some O parts. This has the advantage of

allowing us to encode level label 1 with the shortest possible bitstring (2 bits), as shown in Table 7. Comparing the

bitmap scheme of Table 7 with that of Table 6, we also see that the length of the O bitstrings increases much faster.

This flexibility of representation for the bitstring length of O associated with bitstring L allows bitstring labels to

optimize length for statistical expectations of sibling numbers, and is an important feature of ORDPATH.

Bitstring encoding for one ordinal, for special ORDPATH scheme ordinals in

group L # of bits in O First odd-ordinal code Last odd-ordinal code

…

[-10,-3] 0001 4 0001 0001 0001 1111

[-2, 0] 001 2 001 01 001 01

[1,1] 01 0 01 01

[2,5] 10 2 10 0 1 10 1 1

[6,21] 110 4 110 000 1 110 111 1

[22, 277] 1110 8 1110 0000000 1 1110 1111111 1

[278,65813] 11110 16 11110 000000000000000 1 11110 111111111111111 1

65813 + 2
32
-1 111110 32 111110 0000000…00000000 1 111110 11111111…1111111 1

…

Table 7. ORDPATH scheme with 2-bit encoding of 1

Note that the singleton L (for ordinal 1) is 01 in Table 7. This value for L cannot be reduced to a single bit and keep

all the normal ORDPATH properties, because the set of L codes need sequences on both sides of this code in binary

lexicographic order to allow arbitrary inserts before the first child of a node. In the scheme of Table 7, the pattern

001 11 is not in use, because it is the immediate neighbor of the special 2-bit pattern and has no even-ordinal code

between as needed for careting in. The former type of ORDPATH scheme, with slightly longer encoding of 1 (3 bits

instead of 2) is more practical for general use.

4.2.2 DLN Subvalues for Careting

The DLN approach [2] to prevent renumbering caused by Type 2 insertions between sibling nodes employs the

subvalue approach from chapter 4.1.2. The general idea is that between two sibling nodes with labels a and b and

consecutive4 level labels, a node can be inserted whose label c is composed of a appended by one or more subvalues,

4 Here, consecutive means that, according to the encoding scheme, if level-value of a is increased by 1 the result is greater or

equal to the level-value of b

Page 11 of 19

separated by 1-bits. For instance between two labels a = 0011 and b = 0100, one can insert a new label

c = 0011 1 0001 which will clearly compare high to a and low to b in left to right bit-by-bit comparison.

Furthermore, c will compare high to any child of a, since a child of a will have the form child(a) = 0011 0 XXXX.

The technique of adding subvalues is also used for Type 1 and Type 3 insertions. Note that this argument shows that

such an intermediate label always exists, but this is not a demonstration that this insertion algorithm supports

logarithmic growth of labels under repeated inserts. We discuss better algorithms below.

DLNStream

The insertion algorithm of DLNStream for a Type 2 insertion differentiates two cases. The first case is given when the

final level value of a (lva) is not a prefix of the final level value of b (lvb), i.e. lva and lvb differ in at least one bit

position. Here the inserted label c is a modified label a where the bitstring x following the differing bit position is

incremented according to the DLNStream algorithm, as follows. Use the successive binary bitstring to x, and also

append a subvalue if x had only one 0-bit5, e.g. a = 0010, b = 0100, c = 0011 1 0000. In the other case lva is a prefix

of lvb. In order to create label c we take label b and decrement the part y of lvb which exceeds lva. This

decrementation of a level value (or bit range) in DLNStream works analogously to incrementing it. If y had only a

single 1-bit before decrementing it we append a subvalue with all bits set to ‘1’ to the decremented level value. We

demonstrate this in the following example: DLNStream decrementation of 0001 results in 0000 1 1111. The same

decrementation algorithm is used for Type 3 insertions (inserting before the first child) in DLNStream. For repeated

Type 3 insertions this reuse of the DLN patterns among the inserted nodes (at a certain position in the original

document) ensures a logarithmically increase of level label length instead of a linear increase, shown experimentally

in Section 6.

DLNDOM

DLNDOM can as well be used for inserting new nodes. However its application is only appropriate if the number n of

sibling nodes which will be inserted after the current node to be inserted is known. Otherwise DLNStream is

preferable. For Type 1 insertions (appending sibling to a node) with DLNDOM we start with the label a of the existing

node. We take the final level value of a (lva) and subtract it from the maximum value possible by the bit range of this

level (all 1-bits). If the result is below n+1 (bit range insufficient to label all nodes to be inserted) another subvalue

is appended. This is repeated until the level values of all nodes to be inserted will fit into the current bit range. After

incrementing the resulting value by 1 we have the final level label of the new node label. Examples for Type 1

insertions in DLNDOM are given in the following table.

label of existing

node

number n of remaining

nodes to be appended

label of appended node

(generated with DLNDOM)

0001 0 0100 10 0001 0 0101

0001 0 0100 11 0001 0 0100 1 0001

0001 0 1111 0 0001 0 1111 1 0001

0001 0 1111 15 0001 0 1111 1 0000 1 0001

Table 8. Labels for appended sibling nodes using DLNDOM

In an analogous way Type 3 insertions are defined. If the level value of the existing node is below n+2 (the smallest

possible value must contain one 1-bit) another subvalue is appended. This is repeated until the level value is large

enough. The label of the newly inserted node gets this level value which is decremented by 1. Table 9 provides

examples.

5 if x has no 0-bit at all we don’t increment it but append a new subvalue with the right most bit set to ‘1’

Page 12 of 19

label of existing

node

number n of remaining nodes

to be inserted (to the left)

label of to the left inserted node

(generated with DLNDOM)

0001 0 0100 2 0001 0 0011

0001 0 0100 3 0001 0 0011 1 1111

0001 0 0001 0 0001 0 0000 1 1111

0001 0 0001 15 0001 0 0000 1 1111 1 1111

Table 9. Labels for nodes inserted before siblings using DLNDOM

For Type 2 insertions between labels a and b DLNDOM again strives for minimal number of subvalues needed to

enable insertion of current node and n remaining siblings. This is accomplished as follows. We start with the first

subvalue of final level value of a (va) and final level value of b (vb). If vb-va < n+1 we repeatedly add the next

subvalues from the corresponding level values to va and vb. If the level values are exhausted subvalues with 0-bits

are added. The level label of the newly inserted node gets va incremented by 1. Examples of insertion Type 2 are

shown in the following table.

Label of existing

left node

label of existing

right node

number n of remaining

nodes to be inserted

label of inserted node

(generated with DLNDOM)

0001 0 0001 0001 0 1000 5 0001 0 0010

0001 0 0001 0001 0 1000 6 0001 0 0001 1 0001

0001 0 0001 0001 0 1000 110 0001 0 0001 1 0001

0001 0 0001 0001 0 1000 111 0001 0 0001 1 0000 1 0001

Table 10. Labels for nodes inserted between siblings (Type 2) using DLNDOM.

5 Comparison of ORDPATH and DLN

Clearly ORDPATH and DLN are very similar. Both use the power of prefix codes to generate unique identifiers

containing knowledge of the path, and by careful coding of original identifiers for an original load, leave space

between any two identifiers for later inserts, even of whole subtrees. This reservation for future inserts costs one bit

per level in overall identifier length. That one bit is handled differently in ORDPATH and DLN. In ORDPATH, it

is expressed in the required oddness of ordinals used in the original load. The least significant bit of such

ORDPATH bitstring codes must be 1. In DLN, level labels are separated by single 0 bits, to allow a 1 bit to mark an

extension for careting in.

5.1 Features of Both ORDPATH and DLN

We have already presented the basic features of the two approaches, providing unique labels that contain level

information allowing determination of ancestry relationships, including new labels for inserted nodes. In addition,

there are more subtle features.

GRDESC(p)

To represent the set of all descendents of p as a range of label values (p, q), it is extremely useful to have a bitstring

q that sits to the right of all label bitstrings of descendents of p but to the left of any label bitstrings of non-

descendents on the right of p. Clearly q cannot be itself a valid node label bitstring, but it can use the bit patterns set

up for future inserts. Following [13] we can call q “GRDESC(p)”, for greater-than-descendents of p. ORDPATH

simply uses the label for p modified by replacing the final (odd) ordinal of p by the even ordinal that must follow it.

For justification, see [13].

In DLNStream or DLNStreamOpt, GRDESC(p) = p || 1, a single 1 bit appended to p. All descendents of p have a 0 bit

next, and all non-descendents to the right of p have higher value among the bits within the length of p, or if the same

bits as p within the length of p, then a 1 followed by not all zeroes.

In the simple hierarchical labeling schemes, there is no GRDESC(p) algorithm of such a simple form. If the

scheme has a highest level lable p1, that can be used: GRDESC(p) = p || p1.

Page 13 of 19

Field Separator

Both ORDPATH and DLN schemes provide a field separator bitstring, an appended bitstring (a certain number of

binary zeroes) that ties off the label bitstring much like a 0-byte ties off an ASCII string. For an example of use,

consider sorting tuples (x, y) where x is one of these labels and y is anything that sorts by its bitstring value, say a

byte. With a field separator bitstring s, the concatenated bitstrings x || s || y will sort properly as (x, y) even though

the x bitstrings are of variable length. Another use of s is to hide additional data at the end of a label without

perturbing its document position. For ORDPATH Std (Table 6), s = 0000 would work as a field separator if the first

prefix in use is 0001. This same field separator s = 0000 would also work for DLN if the first subvalue has 3 bits.

5.2 Specialized ORDPATH Schemes showing ORDPATH-DLN relationship

A particular ORDPATH scheme is based on a set of prefix codes (put in binary string order) and the number of bits

in O for each prefix. By choosing these parameters carefully, we can mimic related schemes. The relationship is

very close for original-load labels, as you can see by how ORDPATH DLN can be set up to mimic Streaming DLN

in the next paragraph. Each full ORDPATH is one bit longer than the corresponding DLN label because of the

difference between DLN level label separators and ORDPATH even/odd ordinals. The details of generating labels

for careted-in nodes are somewhat different, but in both cases work to avoid undue growth in label length, as shown

experimentally in the next section.

ORDPATH DLN

Streaming DLN effectively has prefixes: simply take the bit patterns before the XXX parts in the pattern definitions.

Thus a Streaming DLN scheme maps almost perfectly to a particular ORDPATH scheme, as does the optimized

version, to another ORDPATH scheme. The subvalue separator bits can be dropped, with only one lost feature, that

being the ability to mix these labels with DLNDOM labels in the same document. Consider the DLN scheme of Table

3, which we can call “basic DLN.” We can define “basic DLN ORDPATH” as a particular ORDPATH scheme with

prefixes {0, 10, 110, …} and associated bit lengths of O as {4, 7, 10, …}. Then, as usual with ORDPATH, only odd

ordinals are used in the original load, reducing the effective lengths of O by one, to {3, 6, 9, …} to match the XXX

patterns of Table 3. The final bit of an O corresponds to the level label separator bit of DLN. Because of the equal

number of these ordinal bits, the same number of usable ordinals are generated (for original loads) by both schemes,

in each group, with the same level label length if one DLN separator bit is included. However, other DLN schemes

than “basic DLN” provide better statistical label length properties, so the case called “ORDPATH DLN” in the

following section on experiments is based on the subvalue length sequence 3|2|4|2|3.

ORDPATH UTF-8

As discussed at the start of Section 4, the order-preserving number compression scheme UTF-8 [18] was used in

[16] where it was called the Dewey order. Like DLN, the UTF-8 encoding table has bit patterns with XXX for any

sequence of 0s and 1s. For example, hex values 0000 0080 through 0000 07FF are encoded using the pattern

110XXXXX 10XXXXXX. These will include all the patterns starting with 110, so we are free to move the later 10

back to join the starting 110 and use the ORDPATH prefix 11010 to mimic this encoding. We will get ORDPATHs

of the same length as the corresponding UTF-8 encodings. However, we are giving up one nice property of UTF-8

codes, namely, that “Character boundaries are easily found from anywhere in an octet string.” [18] This property

ensures that if one byte of UTF-8 encoded data is corrupted, the rest of the data can be interpreted. This property is

much more important in general use than within reliable storage systems. If this were deemed important, then UTF-

8 itself should be used. We can view the “ORDPATH UTF-8” experimental results of the next section as standing

for actual UTF-8 encodings using ORDPATH-like use of even and odd ordinals.

6 Comparative Experimental Evaluation

A potential drawback of hierarchical numbering schemes compared to other schemes proposed so far is the

correlation of depth of a node within the tree and the label length. Therefore an important quality measure when

comparing hierarchical numbering schemes is the maximal and average label length for a given document set.

Page 14 of 19

document max depth avg depth max fan-out avg fan-out 90% fan-out #nodes

Nasa 8 5,5 2435 2,8 3 530528

Cities 4 3,6 364 5,0 5 21028

Dictionary 8 3,2 163826 3,9 8 1545406

Novel 4 3,9 75 26,9 75 220

Pop. Places 3 2,9 164045 14,0 13 2952811

Religion 6 4,8 289 25,1 44 48259

Shakespeare 6 4,8 434 5,5 10 179689

Sigmod 6 5,4 89 3,7 4 15263

Treebank 36 7,9 56384 2,3 4 2437667

WFB 7 4,9 260 4,1 9 347868

Courses 5 4,0 2112 4,2 7 66735

Table 11. Depth, fan-out and number of nodes of document collection

We evaluated our schemes using the document set already introduced in [2]. For the readers convenience we repeat

the document characteristics in Table 11. First we measured the label length for the whole document set for an initial

labeling run like if the documents were inserted into a database. Afterwards we tested the increase of label length for

random insertions of nodes with and without deletions. Finally we tested the behavior for insertion of a sequence of

nodes before the first child and after the last child of a parent.

The encodings tested were

- DLN_DOM: DLNDOM with pruning of 0-subvalues

DLN_DOM 2|2|3|2|3: (subvalue lengths s0 = 2, s1=2, s2=3, etc.)

DLN_DOM 3|3|4|3

- DLN_Stream 3|3|4|3

- DLN_StreamOpt 3|3|4|3

- ORDPATH: Std: parameters as shown in Table 6 of Section 4.2.1

- ORDPATH DLN: parameters adjusted to mimic DLNStream 3|2|4|2|3 as discussed in Section 5.

- ORDPATH UTF8: parameters adjusted to mimic UTF8 encoding as discussed in Section 5.

The length of DLN subvalues were choosen based on evaluations on a range of documents with varying

characteristics. For DLNDOM the 2|2|3|2|3 and for DLNStream the 3|3|4|3 encoding turned out to be the best general

settings. Since DLNDOM utilizes the subvalue bit range more efficiently we can use smaller subvalues but encode a

comparable number of siblings as DLNStream with the same number of subvalues. We additionally consider a

DLNDOM 3|3|4|3 version because DLNDOM and DLNStream can only be used together within the same document if they

use the same subvalue configuration. ORDPATH DLN was based on another configuration of DLNStream because

here the subvalue separator bits are dropped (cf. section 5.2) implying a smaller penalty for using multiple

subvalues.

6.1 Label length after initial labeling

These labeling schemes can be used for simple hierarchical numberings, that is, in labeling initial loads of XML

data. Figure 3 shows the resulting maximum label lengths, Figure 4 shows the average label lengths.

Page 15 of 19

0

50

100

150

200

250

300

350

N
as
a

C
iti
es

D
ict
io
na
ry

N
ov
el

Po
p.
 P
la
ce
s

R
el
ig
io
n

S
ha
ke
sp
ea
re

Si
gm
od

Tr
ee
ba
nk

W
F
B

C
ou
rs
es

b
it
s

DLN_DOM 2|2|3|2|3

DLN_DOM 3|3|4|3

DLN_Stream 3|3|4|3

DLN_Stream Opt 3|3|4|3

ORDPATH Std

ORDPATH DLN

ORDPATH UTF-8

Figure 3. Maximum label length after initial labeling.

0

10

20

30

40

50

60

70

80

90

N
as
a

C
iti
es

D
ic
tio
na
ry

N
ov
el

Po
p.
 P
la
ce
s

R
el
ig
io
n

Sh
ak
es
pe
ar
e

S
ig
m
od

Tr
ee
ba
nk

W
FB

C
ou
rs
es

b
it
s

DLN_DOM 2|2|3|2|3

DLN_DOM 3|3|4|3

DLN_Stream 3|3|4|3

DLN_Stream Opt 3|3|4|3

ORDPATH Std

ORDPATH DLN

ORDPATH UTF8

Figure 4. Average label length after initial labeling.

We see that if we ignore the wasteful encoding related to UTF-8, the XML document is more important than the

encoding method in causing longer lengths, but even that effect is only moderate, except for the maximum lengths

seen in the large and deepest Treebank document (maximum depth is 36, see Table 11). DLNDOM saves up to 30%

with a mean of 20% compared to ORDPATH Std, but requires more pre-knowledge. On the other hand DLNStream

produces 3-10% longer labels than ORDPATH Std. The improvement of DLNStreamOpt compared to DLNStream is

relatively small. The maximum label length is improved by 8-10% in four cases; the average label length by only

2%. UTF-8 is clearly outperformed by all encodings.

6.2 Label Length After Random Insertion of Nodes

We now turn to experiments inserting nodes into already-loaded XML data, in particular, the Cities6 document of

about 20,000 nodes. We randomly inserted up to 40 times that number to investigate the growth of label length

6 One reason for choosing the Cities document for these operations is its homogeneous and relatively flat structure which is

typical for a large class of XML documents. This makes it is easy to interpret the increase of label length and to control the

Page 16 of 19

under insert traffic. For insertion a node is randomly chosen and with a probability of 0.9 it will be the adjacent left

sibling of the node to be inserted7. With a probability of 0.1 the chosen node is the parent of the new node which is

inserted with equal probability between, before or after the existing children.

See Figure 5 for data on the maximum lengths and Figure 6 for average lengths. The horizontal axis shows the

expansion factor in number of nodes, logarithmically. The logarithm is appropriate because the addition of length

opens up an exponential number of new labels.

All DLN encodings here use DLNStream for insertion. The DLN_DOM results only start from a document which

was initially labeled with DLNDOM. Since we only add 1 node at a time it is not sensible to use DLNDOM for insertion

here.

0

10

20

30

40

50

60

1 10 100

expansion factor for #nodes (log)

b
it
s

DLN_DOM 2|2|3|2|3

DLN_DOM 3|3|4|3

DLN_Stream 3|3|4|3

DLN_Stream Opt 3|3|4|3

ORDPATH Std

ORDPATH DLN

Figure 5. Increase in Maximum Label Length under Random inserts in Cities document.

document depth. Furthermore the size of the Cities document is well suited to evaluate small and very large insertions

compared to original document size
7 With a certain probability, the insertion is done before all siblings, so that all insert positions among siblings have equal

probability.

Page 17 of 19

0

2

4

6

8

10

12

14

16

18

1 10 100

expansion factor in #nodes (log)

b
it
s

DLN_DOM 2|2|3|2|3

DLN_DOM 3|3|4|3

DLN_Stream 3|3|4|3

DLN_Stream Opt 3|3|4|3

ORDPATH Std

ORDPATH DLN

Figure 6. Increase in Average Label Length under Random inserts in Cities document.

This experiment shows that both ORDPATH and DLN are successful in managing the additional bits used for

careting in so that the label length grows only logarithmically, not linearly. Naïve algorithms can easily “paint

themselves into a corner” and fail in this regard. While ORDPATH has clearly a smaller increase in label length,

both in maximum and average, it is starting from a longer length in some cases.

6.3 Label Length after inserting node sequences

In these experiments, sequences of 50-200 new nodes are inserted before first child or after last child. More

precisely, a random node is selected and its set of siblings is added to at the beginning or end. Here DLNDOM is used

in the DLN_DOM cases.

0

5

10

15

20

25

30

35

40

45

50

1 10 100

expansion factor (log)

b
it
s

DLN_DOM 2|2|3|2|3

DLN_DOM 3|3|4|3

DLN_Stream 3|3|4|3

DLN_Stream Opt 3|3|4|3

ORDPATH Std

ORDPATH DLN

Figure 7. Increase in Maximum Label Length with inserted runs in Cities document

Page 18 of 19

0

5

10

15

20

25

30

1 10 100

expansion factor (log)

b
it
s

DLN_DOM 2|2|3|2|3

DLN_DOM 3|3|4|3

DLN_Stream 3|3|4|3

DLN_Stream Opt 3|3|4|3

ORDPATH Std

ORDPATH DLN

Figure 8. Increase in Average Label Length with inserted runs in Cities document

As in the random inserted nodes experiment, this experiment shows that DLNStream and ORDPATH both can add

nodes at either end without running up beyond logarithmic growth in label length. DLN_DOM gets worse with a

higher number of append operations because they were not considered in earlier append operations and therefore no

bit ranges were reserved.

Parameter tuning

For documents with regular structure it can be advantageous to use a per-level encoding instead of a per-document

encoding (different parameters for each level). For instance for SigmodRecord the DLNDOM encoding has 15%

shorter maximum length and 8% shorter average label length.

7 Conclusions

Hierarchical numbering has a number of positive properties making it an interesting candidate for labeling XML

nodes. However without modifications it exhibits some disadvantages preventing its adoption. In this paper we have

introduced and classified techniques used in different previous work from us that overcomes the drawbacks and

enhances hierarchical numbering with document-order capability. Here the most valuable result is the prevention of

renumbering of existing nodes after insertion of document fragments.

We have discussed possible variants arising from combinations of the proposed enhancements. Furthermore we

compared the variants according to the main quality measure, which in the case of hierarchical numbering is the

label length. We showed that both approaches from out earlier work in [2,13] give similar results. Both show

logarithmic growth in label length with number of nodes, in cases related to random insertions and insertions of runs

of nodes. The ORDPATH approach has advantages when a large number of nodes are inserted. The DLN variant

DLN DOM benefits from document structure information known ahead of insert time. Without such pre-knowledge,

ORDPATH and DLN are very similar over a wide range of conditions seen in practice. Although they both depend

on prefix codes and can be mapped from one to the other for initial-load labels, they are somewhat different in

detailed algorithms for label generation for later inserts.

References

1. Bauer, M. G.; Ramsak, F.; Bayer, R.: Multidimensional Mapping and Indexing of XML. In Proc. of German database

conference BTW 2003, pp. 305-323, 2003

2. Böhme, T. ; Rahm, E.: Supporting Efficient Streaming and Insertion of XML Data in RDBMS. In Proc. of CaiSE’04

Workshops, Volume 3 (DIWeb’04), pp. 70-81, 2004

3. Chien, S.; Tsotras, V. J. ; Zaniolo, C. ; Zhang, D. : Storing and Querying Multiversion XML Documents using Durable

Node Numbers. In Proc. of the Intern. Conf. on WISE, Japan, pp. 270-279, 2001

4. Cohen, E.; Kaplan, H.; Milo, T.: Labeling Dynamic XML Trees. In Proc. of PODS 2002

5. Dietz, P. F.: Maintaining order in a linked list. In Proc. of the 14th Annual ACM Symposium on Theory of Computing,

pp. 122-127, California, 1982

Page 19 of 19

6. Florescu, D.; Kossmann, D.: Storing and Querying XML Data using an RDBMS. In IEEE Data Engineering Bulletin

22(3), 1999

7. Härder, T.; Haustein, M. P.; Mathis, C.; Wagner, M.: Node Labeling Schemes for Dynamic XML Documents

Reconsidered. Appears in Data & Knowledge Engineering, Elsevier, 2006

8. Kha, D. D.; Yoshikawa, M.; Uemura, S.: A Structural Numbering Scheme for XML Data. In Chaudhri, A. B. et al.

(Eds.): EDBT 2002 Workshops, LNCS 2490, pp. 91-108, Springer-Verlag, 2002

9. Kuckelberg, A.; Krieger, R.: Efficient Structure Oriented Storage of XML Documents Using ORDBMS. In Bressan, S.

et al. (Eds.): EEXTT and DIWeb 2002, LNCS 2590, pp. 131-143, Springer-Verlag, 2003

10. Lee, Y. K.; Yoo, S.; Yoon, K.; Berra, P. B.: Index Structures for Structured Documents. Proc. of the 1st ACM

International Conference on Digital Libraries, pp. 91-99, 1996

11. Li, Q.; Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In Proc. of the 27th VLDB Conf.,

Roma, Italy, 2001

12. Mignet, L.; Barbosa, D.; Veltri, P.: The XML Web: a First Study. In Proc. of the 12th Intern. WWW Conference,

Budapest, 2003

13. O’Neil, E.; O’Neil, P.; Pal, S.; Cseri, I.; Schaller, G.; Westbury, N.: ORDPATHs: Insert-Friendly XML Node Labels.

ACM SIGMOD Industrial Track, 2004

14. Schmidt, A.; Kersten, M. L.; Windhouwer, M.; Waas, F.: Efficient Relational Storage and Retrieval of XML

Documents. In WebDB (Selected Papers) 2000, pp. 137-150, 2000

15. Shimura, T.; Yoshikawa, M.; Uemura, S.: Storage and Retrieval of XML Documents using Object-Relational

Databases. In Proc. of the 10th Intern. Conf. on Database and Expert Systems Applications (DEXA'99), LNCS 1677,

Springer-Verlag, pp. 206-217, 1999

16. Tatarinov, I.; Viglas, S. D.; Beyer, K.; Shanmugasundaram, J.; Shekita, E.; Zhang, C.: Storing and Querying Ordered

XML Using a Relational Database System. Proc. of ACM SIGMOD, pp. 204-215, 2002

17. Yao, B. B.; Ozsu, M. T.; Khandelwal, N.: XBench Benchmark and Performance Testing of XML DBMSs. ICDE 2004:

621-633

18. Yergeau, F.: RFC 2279 - UTF-8, a transformation format of ISO 10646, Jan. 1998, available at

http://www.faqs.org/rfcs/rfc3629.html

http://wwwdvs.informatik.uni-kl.de/pubs/papers/HHMW05.DKE.html
http://wwwdvs.informatik.uni-kl.de/pubs/papers/HHMW05.DKE.html
http://www.faqs.org/rfcs/rfc3629.html

