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Abstract. We present a new approach for accelerating the execution of XPath
expressions using parameterized materialized XPath views (PXV). While the ap-
proach is generic we show how it can be utilized in an XML extension for rela-
tional database systems. Furthermore we discuss an algorithm for automatically
determining the best PXV candidates to materialize based on a given workload.
We evaluate our approach and show the superiority of our cost based algorithm
for determining PXV candidates over frequent pattern based algorithms.

1 Introduction

With XML as the lingua franca for data exchange and an increasingly popular storage
format for structured data there is a growing demand for natively storing and querying
of XML. Consequently native XML database systems evolve and relational database
systems have been augmented with XML support. Query optimization is a main
challenge for these systems due to the high flexibility and ordered structure of XML
and the complexity of its query languages.

XPath is a crucial component of XML query languages such as XQuery or XSLT
and thus has been an essential part for improving query performance. Work on this topic
ranges from indexing techniques [15, 21, 22], structural join algorithms [3, 12],
containment, equivalence and intersection of XPath expressions [10, 13] to cardinality
estimation [20, 25]. Despite the large amount of work on XPath processing, running
complex queries on large XML data sets is still a challenge. Moreover, several of the
proposed algorithms are not applicable in certain environments like implementations
using a relational database system (RDBS) back-end for storing the XML tree structure.

It was shown that caching techniques [4, 14] and materialized views [1, 18, 23]
could be used to address these performance problems. However we found that the
proposed solutions were not flexible enough to adapt to specific workloads. We
therefore propose to enhance the materialized view approach in two directions. First,
we parameterize the view definition in order to use materialized views for queries
with different comparison values. Second, our views contain extra information to
efficiently use them as a replacement for query fragments which do not start at the
query root.

With the enhanced flexibility of our views a manual selection of the most profit-
able views to materialize for a given workload, database and space constraint is
not feasible. We therefore developed a method to automate this important decision
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process and show how this can be implemented in an XML extension for RDBS
called XMLRDB.

The rest of the paper is organized as follows. Next we discuss related work.
Section 0 details our enhancements to materialized views called PXV. The integration
of PXVs in XMLRDB is described in Section 4. In Section 5 we present our method
for automatically determining the most valuable view candidates to materialize.
Section 6 evaluates experimentally the performance gains obtained by employing
PXVs. Finally Section 7 concludes the paper.

2 Related Work

Grust et al. proposed efficient implementations for XPath [7] and XQuery [8] based
on a RDBS with a generic storage of XML data. The most efficient variant utilized a
specific numbering scheme as well as a special join operator. A general problem of
RDBS usage is that they need many expensive join operations for complex XPath
expressions (see Section 0). This also holds for the related work on XQuery-to-SQL
translation. The optimizations proposed in the present paper can complement these
previous approaches.

A general framework for materialized XPath views is described in [1]. The views
may contain XML fragments, typed data values, references to nodes in the actual data
and full paths. The paper covers the XPath query rewriting process. Our work differs
from this paper in the following points. We enhanced the view concept by
parameterizing comparison values and added information for simplified view
application. Furthermore we propose an algorithm to automatically determine
valuable views to materialize.

[14] creates materialized views on the fly for query caching. The sampled work-
load is parameterized on comparison values. Each view stores its data as an XML
fragment. Only the information which parameter values were used to build the frag-
ment are kept. Therefore if comparison predicates are used in a query which should be
answered by a view, the view must be pruned by a compensation query. Since the
view only contains the result of its defining query g, it is only possible to restrict on
predicates of the last step in g, because the corresponding node is the root node of the
stored XML fragment.

Materialized XML views are used to improve performance of an XML interface of
a RDBS in [18]. Instead of translating each query to SQL and transforming the
relational result to XML it caches frequently accessed data as materialized XML
views. This approach differs greatly from ours, as it is based on relational data
whereas we depend on XML node based storage.

Query rewriting using views has been extensively discussed for RDBS [9]. Later
this problem was studied for semistructured data [6, 17] and recently it was examined
for the XML domain with the specialities of the XML data model and XML query
languages. [11, 23] focus on subsets of XPath for polynomial time algorithms. [16]
covers query rewriting using XQuery based views. In our approach we focus on a
query rewriting to find an identical match (cf. Fig. 1) of the view definition within the
query which can be achieved in O(#;.,,(q)#.ps(qy)) time complexity.

Finding frequent XML query patterns as candidates for caching or materialization
is targeted in [24]. The proposed algorithm FastXMiner finds frequent query patterns
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of a set of XPath queries. Its limitations however are that it does not support predi-
cates and that the root of a query pattern has to be the root of a query. So it cannot
find frequent patterns starting either at the second or a later step of an XPath query or
within predicates. FastXMiner as well as other work on mining frequent query pat-
terns from trees [5] consider only workload data but do not rank the patterns accord-
ing to real or estimated query costs. [14] considers only complete XPath queries from
a given workload as view candidates. For each query a template is created by parame-
terizing all constants. Queries with the same template and templates which contain
each other are grouped together.

3 Parameterized XPath Views

We first define some terms to be used in the sequel. A node is short for XML node
and describes an XML element, attribute or another XML node type. It is part of an
XML document stored in the database and is the smallest unit which can be accessed.
A node reference is a link pointing to a node within the database. Typically a node
reference will be a value which uniquely identifies a node. Modelling an XML docu-
ment as a tree of nodes 1V, E,ry) with V, the set of nodes, E, the edges between the
nodes and r; € V, the document element, we can define an XML fragment as a sub-
tree t{V;E;ry) with 1, € V,; and V,cC V, the descendant nodes of r; and E;C E, the
edges between nodes of V.

We will first describe materialized XPath views as found in the literature. After-
wards we discuss two limitations of them and our solution. Materialized XPath views
contain precomputed query results and can thus be used to quickly answer queries
without the need to query the actual data. A materialized view v can be described by
w(q,, R,) with g, being the query the view represents, and R, the query result. A view v
can be used to answer query ¢ if the result of q can be obtained by executing a so-

called compensation query ¢ on R, that is g=coq,. Following [1] R, may contain XML

fragments, typed data values, node references or a combination thereof. If it contains
XML fragments the compensation query has to be based on the fragment data since
only the result nodes and their descendants can be accessed. When only typed data
values are stored in the view no compensation (besides restricting the value range) is
possible. Storing node references in R, represents the most flexible variant for com-
pensation and postprocessing the results. Here R, can be seen as the set of context
nodes to run a further XPath expression on.

Examining this standard view concept we found two deficiencies which limit the
envisioned flexible applicability of views. To overcome these limitations we propose
two enhancements which will be described in the following: support for
parameterized comparison values and support for inner query fragments.

3.1 Parameterized Views

The standard definition of view queries assumes fixed specification of XPath
expressions. This makes it difficult to efficiently support queries with comparison
predicates like /world/country[ @name="Germany’[/history/entry. For such a query
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we would like to utilize a view of history entries of all countries. It would be possible
to define a view /world/country/history/entry which contains node references and
rewrite the query to use a compensation ancestor::country[ @name="Germany’].
However this postprocessing, especially for queries with more complex predicates,
largely reduces the utility of the materialized view.

To overcome this problem we propose the use of an enhanced view definition
supporting parameterized view queries. The main focus is on equality expressions
since they occur very frequently. For example, in our workloads we observe common
patterns of queries which only differ in a constant value like in

/world/country[ @name="Germany’]/history/entry
and /world/country[ @name="France’ ]/history/entry.

To generalize a view we allow constants within predicates containing only an
equality expression to be replaced by a parameter. So in our example we would define
the view query as /world/country[ @name=3$1 ]/history/entry.

The materialized view contains for each result node reference all parameter as-
signments yielding this node. Since the number of possible assignments per node
could become quite large the constants to be replaced by parameters should be se-
lected carefully.

Parameterizing of constants in view definition queries was also proposed in [14].
Unlike our approach the parameters can only take values from a fixed set taken from
the workload. Furthermore the parameter assignments are only used when materializ-
ing the view. Query rewritings cannot use the parameters to restrict the view result.

3.2 Support for Inner Query Fragments

The standard views are primarily tuned for queries which exhibit a similar query
prefix as the view query. Otherwise the compensation operations, if possible, would
be quite costly. To extend the applicability of materialized views we also want to
utilize a materialization of “inner” query fragments which occur after a certain query
prefix'. This extension is motivated by the observation that different complex queries
often use the same inner fragments for different query prefixes. Hence optimizing the
execution of such fragments by materialized views is likely to be very effective as it
can reduce the number of query steps to be processed. Such a step reduction will
improve query performance especially in systems with a relational backend like ours
(cf. Section 0) where each step results in an extra join operation.

Example Consider the following two queries
/world/country/history/entry[ @year=1990]/text()
/ftown[ @name="Leipzig’]/../history/entry[ @year=1990]/author

Both share the inner fragment history/entry[ @year=1990] which could be material-
ized as //history/entry[ @year=1990]. Using this view would need a possibly costly

' We define as an XPath query fragment each continuous sequence of steps from the query.
Even steps within a predicate can make up a query fragment.



Parameterized XPath Views 129

compensation check for each view entry for both queries. [1] proposes to remedy this
problem by storing full paths® in the view with each node reference, so that no data
has to be accessed for the prefix check. However this will not work in cases like query
two since the full path can only be used to test for ancestor element nodes.

To support materialization of inner fragments views where the definition starts
with ‘// are extended by storing the references of the starting nodes, i.e. the nodes
identified by the first step after “//”. To restrict the number of possible starting node
references the first step should have a name test. In the above example with the view
definition /history/entry[ @year=1990], all history elements within the stored XML
document are starting nodes. The materialized view not only contains references to
the result nodes, i.e. entry elements which have history elements as parent and a year
attribute with value ‘1990’ but also a reference to the history parent for each of these
entry result references. Depending on the view definition a result node may have
several starting nodes.

q  =/A1JA/bi[pii] - [Piad [Prnsi - [D1md /B /By/bylPg 1] - [Pgr] [Pgrsi]--[Pg ] /C1/../C
gy =/bilpri]-[Pinl/B - /By/by[py i]--[Pyg.]
qrw = /AI/-A/Ar/bI[pl,lﬁ]]"[pl,nJ/qu[pq,r+1]"[pq,x]/cl/“/cu-

Fig. 1. XPath query rewriting using PXV with g — source query, g, —query defining view,
g, — rewritten query using view Vg,

The query //town[@name="Leipzig’]/../history/entry[ @year=1990]/author can
now be answered using the materialized view. Its result nodes are selected by the
constraint that starting nodes must be contained in the set defined by
/ftown[ @name="Leipzig’]/../history. So we can now treat the view as a special XPath
step which replaces a fragment within an XPath query. It takes the context nodes from
the previous step, generates the intersection with its starting node references and pro-
duces a new set of context nodes from its result node references.

We can define this process more formally as shown in Fig. 1. A,, B,, C. are com-
plete steps comprised of axis, node test and predicates and b,, b, are complete steps
without predicates. It is depicted that a query fragment ¢, can be replaced by a view v
if g; and ¢, have identical steps whereas g, may have further predicates in its first and
last step. Steps are identical if they either exactly match or the step from the view
definition contains a parameter whereas the other step has a constant. Furthermore the
sequence of predicates may be different between two identical steps if no positional
predicates are involved.

The application of our view concept which we call PXV (parameterized XPath
views) is described in the next two sections. First we show its implementation in an
XML extension for RDBS. This is followed by a proposal to automatically determine
a reasonable set of PXVs based on a given workload.

2 A full path is the sequence of element nodes from the document element to the actual view
result.
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4 Implementation of PXV

We have implemented PXVs in an XML database system named XMLRDB. We
developed this system as an XML extension for RDBS to evaluate schema-
independent and document-centric XML processing. XMLRDB stores XML
documents generically in a RDBS and translates XPath expressions into SQL. This
translation leads to complex SQL statements with a join operation for each XPath step
and subexpression. However, this results in performance problems since even
relational optimizers of commercial DBMS reach their limit with queries containing
many join operations (>10). Hence reducing the number of joins is key to good query
performance. Since most proposed XPath processing algorithms depend on fast
navigations within the XML tree they are not an option for this kind of system where
each navigational step has to be translated and executed as an SQL query. Path
oriented index structures are of limited use as well for XPath expressions with
predicates. Hence we mainly rely on PXVs to materialize hot spots in our query
workload and thus reduce the number of joins. We first briefly introduce XMLRDB
and discuss PXV implementation later on.

NODE ATTR NAMESPACE VMETA

document : int document : int prefix : string viewId sint

dinld : long dinId : long nsURL : string xpath : string

gld rint gld tint vTable : string

parent rint name s int

rightSibling: int value : string —‘

name vint dblvalue : double NAMEMAP

value : string valType :int nameld : int

dblvalue : double name : string VTABLE1

valType s int TEXT viewId rint

nodeType : char document : int DOCMAP startld  :int
dinld : long resultld :int
gld rint docld :int paraml : string
value : string docURL : string

Fig. 2. Relational schema of XMLRDB with PXV tables

4.1 XMLRDB

With XMLRDB we want to evaluate how existing relational database systems without
vendor specific XML extensions can be used for XML data processing. We therefore
developed an XML layer which transforms XML documents and queries into their
relational counterparts and vice versa. The XPath query transformation module em-
ploys multiple stages for query optimization like XPath transformation or query re-
writing using XML index and views which are managed by the XML layer. We use a
generic structure oriented mapping to transform the XML tree structure into prede-
fined relations (see Fig. 2). This kind of mapping was best suited to meet the goals:
(1) independence of application-specific XML schemas, (2) support for all kinds of
XML documents especially document-centric ones and (3) efficient insert, update and
query operations using XML interfaces. In order to support efficient query operations
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we use an improved version of the node labelling scheme DLN introduced in [2]. It
supports efficient evaluation of XPath axes and allows for fast document reconstruc-
tion and insert operations.

SELECT DISTINCT x3.docld, x3.dInId INSERT INTO vtablel

FROM node x1, attr al, node x2, node x3 SELECT DISTINCT x1.gid, al.value, x3.gid

WHERE x1.name="country” AND FROM node x1, attr al, node x2, node x3
al.name="name’ AND WHERE x1.name="country’ AND
al.gid=x1.gid AND al.name="name’ AND
al.value="Germany’ AND al.gid=x1.gid AND
x2.name="history’ AND x2.name="history” AND
x2.parent=x1.gid AND x2.parent=x1.gid AND
x3.name="entry’ AND x3.name="entry’ AND
x3.parent=x2.gid x3.parent=x2.gid

ORDER BY x3.doc,x3.dInld

Fig. 3. Generated SQL for /country[ @name=  Fig. 4. Generated SQL to materialize /country
"Germany’ [/history/entry [@name=$p1 |/history/entry

4.2 Integration of PXVs in XMLRDB

Making XMLRDB PXV-aware we had to implement a PXV management component
and to enhance the XML query processor. The management component stores the
materialized views and their metadata within the relational database and uses them
during query translation. Table vmeta contains the view id, the parameterized XPath
view definition and the materialization table names. While it is possible to materialize
views with the same number of parameters within the same table it is not advisable.
The reason is that views will have different ratios of starting nodes and result nodes.
Thus the sampling algorithms of the relational optimizers to gather statistical data
typically yield a wrong picture of the distribution of a specific view.

When a view has to be materialized by the management component it can reuse the
standard XPath-to-SQL transformation component (XtoS) with only small changes.
For an XPath expression, XtoS creates a single SQL query with join operations for
each step, even for nested predicates. To generate the view data we only have to spec-
ify additional returning node ids from the first step and parameter values. This is illus-
trated in Fig. 3 and Fig. 4. Fig. 3 shows the generated SQL for a standard XPath query
returning node references using the DLN labeling scheme. For enhanced readability
we provide real element and attribute names instead of ids here. Fig. 4 shows how the
same query is translated for view materialization with the constant value replaced by a
parameter. It was generated by the same XtoS component changing only the select
clause to return database-wide unique node ids for starting node, result node and
value assignments for the parameters. Storing further attributes like DLN id or node
value of the result nodes within the view can additionally reduce the number of joins
in queries using this view.
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We extended the XMLRDB query optimizer to utilize PXVs for rewriting XPath
queries. For a given query we first try to apply usable PXVs before considering
XMLRDB-maintained indices’. Normally the algorithms for finding suitable views
for query rewriting exhibit a high complexity [1, 23]. With the PXV concept of
replacing query fragments and the parameterization of the views we can greatly
simplify the search for relevant views to exact matches since the compensation is
given by the remaining part of the original query.

The query rewriting algorithm for PXVs works as follows. Take the first PXV
from the list of available views and try to find a query rewriting according to Fig. 1. If
it was successful this can be repeated for the remaining fragment of the query. Now
repeat these steps for each remaining PXV using the rewritten or, in case no
replacement was possible, the unchanged query. So with each iteration more
fragments may get replaced by PXVs. Potentially a query can have several different
rewritings depending on the order query fragments are replaced by PXVs. In order to
ensure that our algorithm finds a good rewriting the list of available views is ordered
according to the complexity of the view definition (e.g. number of steps, with steps in
predicates counted as well). Thus replacing a small fragment of a query will not
prevent replacing a more rewarding, larger one. Generally the view definitions should
not overlap to a great extent’. The proposed algorithm for automatically generating
PXVs (cf. Section 5) respects this property. Alternatively the view list could be sorted
according to potential savings of using the views determined during view creation (cf.
Section 5.2).

PXV support also required extending the XPath-to-SQL transformation
component. Whenever it encounters a special view step, which was inserted during
the query rewriting phase, it inserts an equijoin with the table containing the
materialized view using the starting node reference attribute. The parameter values
given in the view step are added as selection predicates. The result node reference
attribute is used to add further steps. Fig. 5 shows the SQL generated for the query

/world/country[ @name="Germany’ |/history/entry/@year
which was rewritten using view
Hcountry[ @name=3$p 1 |/history/entry.

The view contains not
only the global id for the  SELECT DISTINCT al.value
result nodes but document id ~ FROM  node x1, node x2, vtablel v1, attr al
and DLN id as well. So we  WHERE xIl.name="world” AND x1.parent IS NULL AND
save an additional join with x2.name="country” AND x2.parent=x1.gid AND
the node table. Compared to vl.startld=x2.gid AND v1.pl="Germany’ AND

al.name="year’ AND al.gid=vl.resld

the SQL expression result-
ORDER BY vl.resDoc,vl1.resDInld

ing from the original query

.W? reduced the number of Fig. 5. Generated SQL for /world/country/view::vI[@pl=
joins from 6 to 4. "Germany’J/@year

3 According to [1] most of these index structures can also be seen as a kind of materialized
views.
* Two view definitions ¢,; and g,, overlap if they share at least one common XPath step.
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5 Automated PXV Creation

While PXVs can be manually created it is a challenging task to find a nearly optimal
set of PXVs for a given workload over a database and a maximum space constraint.
Therefore we have developed a PXV wizard which suggests a ranked list of PXVs for
a given database and workload. Given a constraint on the maximum storage space for
materialized views the wizard automatically determines the most promising PXVs for
improving query performance.

There exist some previous work on mining frequent query patterns in tree-like
structures [5, 24]. However these algorithms consider only the workload data but not
the processing costs of the individual patterns. Hence good materialization candidates
with high savings on accumulated query time may be missed when their pattern is less
frequent than other patterns. Furthermore most of these algorithms are applicable only
for a subset of XPath. We therefore implemented our own algorithm which uses a cost
estimation to find rewarding view candidates. We will first describe the general idea
and discuss later on how we can obtain a good cost estimation in XMLRDB.

5.1 General Approach

The formal notation of the following description is shown in Fig. 6. We assume the
workload to be optimized consists of unique queries which may be weighted according
to their execution frequency. For each query
we generate successively all possible frag-
ments. Since view definitions should exhibit
some complexity in order to be relevant sim-
ple fragments are filtered out. Per query we
now determine the cost saving potential savy,

FOREACH q € workload {
F < fragments(q)
F < removeSimpleFrag(F)
FOREACH f e F {
s «— getSaving(f, q) * weight(q)

for each fragment if it would be materialized.
This involves using a cost model and depends
on the implementation. We will show this for
XMLRDB in the next section.

We use a hash table frags to maintain the
parameterized query fragments (cf. Section
3) together with their parameter values,
query ids and potential savings multiplied by
the query weights. If a fragment already
exists in frags only the query id and poten-
tial saving multiplied by the query weight
are added. Furthermore it is recorded if pa-
rameter values differ. After all queries and
their fragments have been processed we
check each parameter if only the same val-
ues were assigned to it. In this case and if the
corresponding fragment was contained in at
least two queries the parameter is replaced
back by the constant value. Thus we only
keep the required parameters. Now a list

if contains(frags, f)
e < getEntry(frags, f)
addQuery(e, q, s)
else addEntry(frags, f, g, s)
b}
adjustParameters(frags)
filtertMinSupport(frags)
rankedFrag < descSort(frags)
FOREACH e € rankedFrags {
FOREACHq € e {
FOREACH e, € rankedFrag\e {
removeQuery(e,, q)
if queryCount(e,) =0
removeEntry(rankedFrag, e,)
b}
descSort(rankedFrag)
}

Fig. 6. Algorithm to create view
candidate list
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rankedFrag with all entries from frags sorted by their potential savings in descending
order is built.

To obtain a practically reasonable ranking we need to adjust the potential savings in
rankedFrag. At the current stage we may have several top-ranked fragments of the
same costly query. However since they typically will overlap it makes little sense to
materialize all of them. We rather assume heuristically that only one view will be used
for query rewriting. Thus we adjust the potential saving with the following algorithm.
From the top entry in rankedFrag each query id is checked whether it occurs in the
other list entries. For each entry containing such a query id this id is removed and the
potential savings are reduced according to the share the query had. After all entries are
processed rankedFrag is sorted again and the algorithm starts over with the next entry.
In the end, the top listed entries are the best candidates for materialization under the
assumption that in most cases only one view will be used for query rewriting.

The algorithm described so far has the possible limitation that the fragments of the
top view candidates may be helpful for only a single query. Thus materializing such a
candidate could benefit only a relatively small number of queries. To circumvent this
we additionally require that the support of a query fragment f, supp(f), should exceed
a threshold minSupp [5]. Here, supp(f) is simply the number of workload queries
containing f divided by the absolute number of workload queries (0 < supp(f) < 1).
The minSupp filter restriction has to be applied to rankedFrag before the potential
savings are adjusted.

5.2 Determining Savings in XMLRDB

In the previous section we argued that the potential saving of a materialized fragment
for a query depends on the implementation and its cost model. We will now discuss
the approach we use in XMLRDB. From a series of experiments we learned that a
system independent, general relational cost model does not work because different
relational databases may produce highly varying query plans.

Since an external cost model was not an option as explained before, we decided to
utilize the explain facility of the relational database system. We only had to provide
realistic queries to receive suitable cost estimations. Temporarily materializing all
query fragments as views was not an option because of the large fragment number.
Therefore we materialized dummy views with different cardinality and different ratios
between the number of start nodes and result nodes. To calculate the potential saving
savy, for a materialized fragment f and a query g we replace f by a corresponding
dummy view v, The decision which dummy view will be used is based on a
cardinality estimation component. This component maintains statistical data about the
stored XML documents like child count per element type, minimum and maximum
height within the document tree etc. For the fragment to be replaced we can now
retrieve the estimated input and output cardinality and choose an appropriate dummy
view. The query g as well as the rewritten query ¢, are translated to SQL. Using the
explain facility we can calculate the potential saving as savy,=explain(toSQL(q)) —
explain(toSQL(q,,,)).
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6 Evaluation

We evaluated the introduced PXV concept with our prototype XMLRDB in
comparison with the standard configuration which only uses relational index
structures but no special XML access structures. Furthermore we wanted to assess the
quality of our automated PXV creation algorithm. We were especially interested in
the benefit we can gain from using the cost based approach in comparison to a simple
frequent pattern matching approach like [24].

Our test environment consists of a computer with 1 GB of main memory and a 2.4
GHz Pentium IV processor. We used the data set from XMark benchmark [19] with a
scaling factor of 1 resulting in a raw XML document size of ca. 110 MB. It contains
2,8 million text and element nodes and 380,000 XML attributes. In order to create a
reasonable workload we first translated the XMark set of queries which is formulated
in XQuery into XPath as far as possible. Additional, more complex queries were
generated by an XPath creation tool. It traverses the document and generates queries
with multiple and recursive predicates as well as value comparisons. The complete
workload consists of 50 queries with a maximum of 14 steps and a mean of 7 steps.

Fig. 7 and Fig. 8 show the execution times for the whole workload. The given
values only contain the query execution time without materialization of the results.
First (NoPXV) we run all workload queries without using PXVs. For the next run
(PXV_cost) we run our automated PXV creation algorithm (took 6 minutes) and
materialized the first 10 view candidates resulting in approx. 200,000 tuples in view
tables which were created in 113 seconds. We choose the first 10 candidates because
the potential savings of the following candidates were two orders of magnitude lower.
Two additional runs were conducted to evaluate a purely frequency-based view
selection. For these runs we ignored the cost estimations and sorted the view
candidates according to their frequency in the workload queries. Thus we modelled a
pure frequent pattern based approach. For PXV_Pattern_I0 we materialized the top
10 view candidates as we did it for the cost based variant. Since the number of tuples
materialized were only a third in comparison to PXV_cost we materialized further
view candidates until we reached the same number. PXV_Pattern_I4 denotes this
configuration utilizing 14 materialized views.

Fig. 7 shows that the overall execution time improved by an order of magnitude
using our proposed PXV concept. The pattern based candidate selection approach is
5 times slower. Note that adding more materialized views does not need to improve
query time. Looking at the ignored saving values from the candidates we could see
an estimated negative impact. Fig. 8 shows mean and maximum execution time of
single queries within the workload. Here again we can see that the PXVs selected by
our proposed algorithm can decrease the maximum execution time by an order of
magnitude while the PXVs selected by the pattern based approach have no real
impact on maximum execution time. The rewriting of the workload queries took
typically less than a millisecond and is thus negligible compared to the query
execution time.
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Fig. 7. Execution time in seconds for a work- ~ Fig. 8. Maximum and mean execution time in
load of 50 queries with and without PXVs seconds for a workload of 50 queries with and
without PXVs

7 Conclusion

We have introduced parameterized XPath views, PXVs, as a new concept for utilizing
materialized views for efficient XML query processing. With its parameterization it
enables to utilize a view for a broader range of similar queries. The additional
information of starting node references stored within the view simplifies the adoption
in queries without a costly calculation of compensations. We further showed how
PXVs can be implemented in an XML database system like our XMLRDB prototype.
Creating a rewarding set of materialized views is a complex task which is hardly
feasible to do manually. Therefore we discussed an algorithm for automating it.
Unlike other approaches which only take workload data into account for finding
common query patterns we base our solution on a cost model and utilize the idea of
materialized dummy views. With our evaluation we could verify that the PXV
concept can be used to improve execution time of complex XPath queries
considerably. Furthermore we showed that our cost based algorithm to automatically
create PXVs achieves far better results than a pure workload pattern based approach.

Further work may address the view update problem and study the applicability of
proposed solutions for the PXV concept.
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