
On Matching Large Life Science Ontologies in Parallel

Anika Groß1,2, Michael Hartung1,2, Toralf Kirsten2,3, Erhard Rahm1,2

1 Department of Computer Science, University of Leipzig

2 Interdisciplinary Centre for Bioinformatics, University of Leipzig
3 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

{gross, hartung, rahm}@informatik.uni-leipzig.de

tkirsten@izbi.uni-leipzig.de

Abstract. Matching life science ontologies to determine ontology mappings has

recently become an active field of research. The large size of existing ontolo-

gies and the application of complex match strategies for obtaining high quality

mappings makes ontology matching a resource- and time-intensive process. To

improve performance we investigate different approaches for parallel matching

on multiple compute nodes. In particular, we consider inter-matcher and intra-

matcher parallelism as well as the parallel execution of element- and structure-

level matching. We implemented a distributed infrastructure for parallel ontol-

ogy matching and evaluate different approaches for parallel matching of large

life science ontologies in the field of anatomy and molecular biology.

 Keywords: ontology matching, matching performance, parallel matching

1 Introduction

Ontologies and their applications have become increasingly important especially in

the life sciences [19, 5]. Typically they are utilized to semantically annotate molecu-

lar-biological objects such as proteins or pathways. For instance, the popular Gene

Ontology (GO) [10] is the primary ontology for annotating proteins with information

on the functions and processes they are involved in. Other life science ontologies,

e.g., in the Open Biomedical Ontologies Foundry (OBO) [31] contain information

about anatomical structures for different species (e.g., human, mouse, fly) or diseases.

The increasing number and availability of different life science ontologies enables

new types of analysis, experiments and applications.

Recently, the development and maintenance of ontology mappings interconnecting

different (multiple) related ontologies have gained importance, e.g., to integrate het-

erogeneous information sources (e.g., [15]), to merge ontologies [18], or to support

analysis such as the comparison of expression patterns [2]. Since the manual creation

of such ontology mappings is time-consuming or even infeasible their semi-automatic

generation called ontology matching [24, 9] has become an active research field espe-

cially for life science ontologies (e.g., [22, 4, 17, 26]).

Effective ontology matching, i.e. the computation of high quality mappings, typi-

cally entails the combined execution of several matchers to determine the similarity

between ontology elements based on metadata or instance data (see [24, 9]). For large

ontologies these matchers are often very time-consuming and memory-intensive. This

is because metadata-based matchers, e.g., comparing the names of ontology concepts,

typically evaluate the Cartesian product of all element pairs leading to a quadratic

complexity w.r.t. ontology size. The performance requirements are further multiplied

by the number of different matchers or when applying ontology matching on multiple

ontology versions [12, 32]. Ontology matching is also memory-intensive for large

ontologies because matching is typically performed on memory representations

(graph structures) of the ontologies and requires the maintenance of several similarity

values for every element pair from the Cartesian product.

The results of previous OAEI contests [20] on matching anatomical ontologies

have shown that systems need execution times of up to several hours. This is despite

the fact that the considered ontologies are only of medium size of around 3,000 ele-

ments (Mouse Anatomy Ontology [13] with ~2,800 elements was matched against the

anatomy part of the NCI Thesaurus [30] with ~3,300 concepts). The Cartesian prod-

uct thus has about 9·10
6
 element pairs to be evaluated. Larger ontologies lead to even

higher resource requirements. For instance, matching the two sub ontologies Molecu-

lar Functions and Biological Processes of GO with 10,000 and 20,000 ontology con-

cepts results in approx. 2·10
8
 pairs to compare, i.e., 22 times more than in the OAEI

match problem. The memory requirements just for the similarity values are in the

order of several GB.

These examples illustrate that it is valuable to have a match system providing high-

performance ontology matching especially for interactive (online) applications where

fast response times are required or when multiple match configurations have to be

evaluated. While improving ontology matching performance has received some atten-

tion recently (see Related Work section), to the best of our knowledge the parallel

execution of ontology matching on multiple compute nodes has not been studied so

far. However, the broad availability of multi-core systems and multiple computing

machines makes parallel ontology matching very attractive. Partitioning a large match

problem into smaller parallel match tasks also helps to reduce the memory require-

ments per task. We therefore study strategies for parallel ontology matching and make

the following contributions in this paper:

• We propose different strategies for parallel ontology matching, in particular

inter- and intra-matcher parallelization. While the former approach executes

independent matchers in parallel, the latter performs an internal paralleliza-

tion of matchers based on a partitioning of the ontologies to be matched.

Both strategies can be combined for additional performance improvements.

• We show how different kinds of matchers (element-level, structure-level, in-

stance-based matchers) can be parallelized.

• We implemented a distributed infrastructure for parallel ontology matching

and evaluate different approaches for parallel matching of large life science

ontologies in the field of anatomy and molecular biology. The results show

the effectiveness and scalability for single matchers and complete match

strategies.

The rest of the paper is organized as follows. In Section 2 we introduce our ontol-

ogy model and provide background information on ontology matching. Section 3

discusses inter- and intra-matcher parallelization and outlines how different matchers

can be executed in parallel. The infrastructure for parallel ontology matching is pre-

sented in Section 4. We evaluate our approaches in Section 5 and discuss related work

in Section 6. Finally, we summarize and outline possibilities for future work.

2 Preliminaries

We first introduce our ontology model. We then discuss the ontology matching prob-

lem and common match approaches.

2.1 Ontology Model

An ontology O = (C, R) consists of concepts C which are interconnected by directed

relationships in R. A special concept called root has no relationships to any parent.

The directed relationships can be of different type. The most common relationship

type in ontologies is ‘is_a’ describing an inheritance between two concepts. Further-

more the ‘part_of’ relationship type is used to model part-whole relationships be-

tween concepts. Life science ontologies use further semantic relationship types, e.g.

‘regulates’. We allow several parents and therefore several root paths per concept.

The structural information (context) of concepts is used by structure-based match

approaches to determine the concept similarity.

Furthermore, a concept cєC of an ontology is defined by a set of single- or multi-

valued attributes. For instance, the concept name is a single-valued attribute that is

frequently used for ontology matching. Some ontologies (e.g., GO) support multi-

valued synonym attributes containing alternate names for a concept. Usually there is

also an identification attribute or accession number cacc. These concept identifiers are

used for annotating biological objects (proteins, genes, etc.) [11] and can be useful for

instance-based ontology matching.

2.2 Ontology Matching

Ontology matching is the process of determining a set of semantic correspondences

(ontology mapping) between concepts of two related ontologies O1 and O2. The corre-

spondences are determined by matcher algorithms determining the similarity

sim(c1,c2)є[0…1] between concepts c1єO1 and c2єO2. Matchers can roughly be classi-

fied into metadata- or schema-based and instance-based approaches [24]. Metadata-

based matchers do not utilize instance data but focus on ontology information and

optionally some background information such as dictionaries. Metadata-based match-

ers can be further classified into element-level and structure-level matchers. Element-

level matchers utilize information from concept attributes, such as determining the

similarity of concept names and synonyms, e.g., based on some string similarity such

as ExactMatch, n-Gram or EditDistance. Element-level matchers are almost always

used and combined with other approaches. Structure-level matchers consider the

ontology structure for matching, e.g., to determine the context similarity of concepts.

Typical matchers evaluate the children, leaves, siblings and ancestors of concepts. In

contrast, instance-based matchers do not depend on the ontology metadata but utilize

existing associations between ontology concepts and instances and consider two con-

cepts as similar if they share similar instances. One way to determine instance similar-

ity is to measure the degree of instance overlap between concepts, e.g., based on a

Dice or Jaccard measure. The complexity of matchers is usually quadratic by compar-

ing all concepts of the first ontology with all concepts of the second ontology (evalua-

tion of the Cartesian product).

A single matcher is typically not sufficient for high match quality so that one has to

combine several matchers within a so-called match strategy or workflow. Match pro-

totypes such as COMA++ therefore provide many matchers and support their flexible

combination [1, 6, 7]. The matchers may be sequentially executed so that the results

of a first matcher are refined by the following matchers. Alternatively, the matchers

are independently executed and combined. Match workflows may use different meth-

ods to combine match results of individual matchers, e.g., by performing a union or

intersection or by aggregating individual similarity values. The final match result is

typically restricted to correspondences for which the similarity values exceed a prede-

termined threshold. In the next section, we discuss how such match strategies as well

as single matchers can be parallelized.

3 Parallelization Strategies

In this section, we discuss possibilities of parallelizing ontology matching workflows

consisting of several matchers that are either sequentially or independently executed.

We assume that a computing environment of multiple locally interconnected multi-

core computing nodes is available for matching.

A straight-forward approach to parallel ontology matching is inter-matcher paral-

lelism, i.e., to process independently executable matchers in parallel on different cores

or computing nodes. In addition, we want to support intra-matcher parallelism, i.e.,

the internal parallelization of individual matchers. Furthermore, we can combine both

kinds of parallelism. In the following, we discuss these parallelization strategies in

more detail. For intra-matcher parallelism (Section 3.2) we focus on the parallel simi-

larity evaluation of the Cartesian product of concept pairs according to a partitioning

of the input ontologies. In particular we will describe how we can parallelize element-

level, structure-level and instance-based matchers.

3.1 Inter-matcher Parallelization

Inter-matcher parallelization enables the parallel execution of independently

executable matchers to utilize multiple processors for faster match processing. The

example match workflow in Figure 1a utilizes inter-matcher parallelization for n

matchers (M1, …, Mn). The match results can be combined by different aggregation

and selection strategies to achieve the final result. Ideally, the inter-matcher paralleli-

zation improves the execution time by a factor n if the matchers are of similar com-

plexity. This kind of parallelism is easy to support and can utilize multiple cores of a

M1

O2

O1

M3

...
Match

Result

M2

Figure 1b: Combination of inter-matcher

parallelization and sequential matching

Figure 2: Intra-matcher parallelization

...

...Ontology

Partitioning

M11

M1k

O2

O1

∪

...

Ontology

Partitioning

Match Task

Generation M1

Match Task

Generation Mn

Match

Result

...

Mn1

Mnk

∪

...

single computing node or multiple nodes. However, inter-matcher parallelization is

limited by the number of independently executable matchers. Furthermore, matchers

of different complexity may have largely different execution times limiting the

achievable speedup (the slowest matcher determines overall execution time). More-

over, the memory requirements for matching are not reduced since matchers evaluate

the complete ontologies.

The degree of parallelism is also limited for sequential matcher execution (e.g., if a

structure-level matcher depends on a previously executed element-level matcher) or

when the number of available processors is smaller than the number of independently

executable matchers. As illustrated in Figure 1b, in such cases inter-matcher parallel-

ism can be applied for a subset of matchers. The shown example assumes that only

two cores can be utilized and that the most complex matcher M3 is assigned to one

core while M1 and M2 are executed sequentially on the other core.

3.2 Intra-matcher Parallelization

Intra-matcher parallelization deals with the internal decomposition of individual

matchers or matcher parts (e.g., tokenization of concept names) into several match

tasks that can be executed in parallel. We focus on a general approach to support

intra-matcher parallelism based on partitioning the input data (the ontologies). Such a

partitioning is very flexible and scalable and can be used to generate many match

tasks of limited complexity. Furthermore, intra-matcher parallelism can be applied for

sequential as well as independently executable matchers, i.e., it can also be combined

with inter-matcher parallelism.

Figure 2 illustrates intra-matcher parallelization for n matchers that are executed in

parallel (i.e., in combination with inter-matcher parallelism). For each matcher the

input ontologies are first partitioned followed by the generation of multiple match

tasks Mi1, …, Mik (i = 1, …, n). These match tasks are executed in parallel, the union

...

M1

O2

O1

Mn

...
Match

Result

Figure 1a: Inter-matcher

parallelization

of the match task results gives the complete match result. In the example, all match

tasks of the n matchers can be concurrently executed on the available compute nodes

to achieve a maximal reduction of the execution time. Note that the match tasks only

match partitions of the two ontologies and have thus reduced memory and processing

requirements compared to a complete matcher. Hence, intra-matcher parallelization is

especially promising for matching large ontologies.

Before we discuss how we can parallelize element-level, structure-level and in-

stance-based matchers we first outline our approach for ontology partitioning. In this

initial study of parallel ontology matching we focus on a simple but yet flexible size-

based approach that enables the parallel matching of the Cartesian product of the

concepts from the two input ontologies O1 and O2. To generate match tasks of similar

complexity we partition both ontologies into partitions of equal size (number of con-

cepts); the partition size is a parameter that can be chosen according to the size of

input ontologies and the complexity of the utilized matcher. Each task matches one O1

partition with one O2 partition so that we generate p1 · p2 match tasks for p1 (p2)

equally sized partitions of O1 (O2). For instance, if we partition two ontologies of

10,000 concepts into 10 partitions each, we generate 10·10=100 match tasks. As we

will discuss in Section 4, generated match tasks are managed in job queues from

where they are scheduled for parallel execution.

This size-based ontology partitioning has significant advantages besides its sim-

plicity: (1) it is scalable to large ontologies by choosing manageable partition sizes

and thus enables unproblematic processing and reduced memory requirements per

match task, (2) it supports good load balancing because of equally sized partitions and

match tasks, (3) it helps optimizing performance without sacrificing match quality

since the full Cartesian product is evaluated, and (4) it can be utilized for element-

level, structure-level and instance-based matchers as we will discuss in the following.

3.2.1 Parallelization of Element-level Matchers
To parallelize element-level matching approaches based on the introduced size-based

partitioning is relatively easy. This is because element-level matchers compare ontol-

ogy concepts with each other by utilizing metadata from the concepts themselves, i.e.,

their attribute values such as the name or synonyms. By partitioning the ontologies

into subsets of concepts we retain the information needed for matching the concepts.

Hence, element-level matchers can easily be applied to ontology partitions.

Figure 3 shows a running example for matching two ontology parts c1, …, c3 є O1

and d1, …, d5 є O2. As shown, concept c1 has two children c2 and c3. The concept d3 of

O2 is assumed to have two parent concepts d1, d4 (multiple inheritance). Some con-

cepts have associated instances that will be considered later for instance-based match-

ing. We assume that the concepts should be matched with each other by a string-based

name matcher. The name matcher evaluates the string similarity (e.g., TriGram) for all

(3·5=15) concept pairs. The result set (shown on the right of Figure 3) contains six

correspondences with similarities ranging from 0.5 to 0.9; all other concept pairs are

assumed to have similarity 0, i.e., they do not match.

Figure 3: Element-level matching on Name attribute

0.50.6

Acc: c1

Name: c1.name

Acc: c3

Name: c3.name

Acc: d1

Name: d1.name

Acc: d2

Name: d2.name

Acc: d3

Name: d3.name

Acc: d4

Name: d4.name

Acc: d5

Name: d5.name

0.7 0.9
0.9

0.7

0.9c3 – d3

0.7c3 – d2

0.7c2 – d3

0.9c2 – d2

0.5c1 – d4

0.6c1 – d1

simName(c,d)corr(c,d)

0.9c3 – d3

0.7c3 – d2

0.7c2 – d3

0.9c2 – d2

0.5c1 – d4

0.6c1 – d1

simName(c,d)corr(c,d)

instance1

instance2

Acc: c2

Name: c2.name

instance1

instance2

instance3

instance4

instance3

3.2.2 Parallelization of Structure-level Matchers
Structure-level matchers are more difficult to parallelize than element-level matchers

since they utilize information from the structural context or neighborhood of concepts

(e.g., children, parents, siblings) or even the whole ontology. Hence, an ontology

partition consisting of a certain number of concepts does generally not provide all

information needed for structure matching. Even more difficult is the parallelization

of iterative structural matchers such as Similarity Flooding [21] that start with initial

element-level similarities and iteratively propagate these along the concept relation-

ships across the whole ontologies. For such matchers parallelization is inherently

difficult and has likely to be restricted to the initial element-level matching.

We therefore focus on structural matchers that utilize information from a restricted

neighborhood (local context) of concepts. To limit the resource and memory require-

ments we do not want the match tasks to work on the whole ontologies but to restrict

them to input partitions of restricted size similar to parallel element-level matching.

This can be achieved by extending the concept-level information, within special mul-

ti-valued context attributes, by information from the local context that is needed for

structure-level matching. The values for these context attributes, e.g., Child, Parents,

NamePath, are determined in a preprocessing step by traversing the input ontologies

once (linear effort) to collect the necessary context information about children, par-

ents, etc. Concepts with these additional context attributes can then be partitioned as

for element-level matching. Each match task performs structure matching for a pair of

partitions utilizing information from the context attributes.

Figure 4 illustrates the context attribute approach for a Children matcher for our

running example of Figure 3. The matcher determines the similarity between two

concepts by calculating the average element (e.g., name) similarity between their

children, i.e. it takes the sum of the name similarities between any two children and

divides by the total number of child pairs. Note that this is only one possibility to

compute the children similarity, used for illustration. For the example of Figure 4, we

obtain that c1 is more similar to d1 than to d4 as c1 and d2 share more similar children

(using the similarity values of Figure 3). To execute this matcher we use a multi-

valued Child context attribute for each (non-leaf) concept and populate it during the

preprocessing step, in our case with the name values of child concepts. A child match

task matches each concept c of an O1 partition with each concepts d of an O2 partition

Figure 4: Attribute-based child matching

Acc: c1

Child: c2.name

Child: c3.name

Acc: c2

Child: …

Acc: c3

Child: …

Acc: d1

Child: d2.name

Child: d3.name

Acc: d2

Child: …

Acc: d3

Child: …

Acc: d4

Child: d3.name

Child: d5.name

Acc: d5

Child: …

0.8 0.4

(0.7 + 0 + 0 + 0.9) / (2·2) = 0.4c1 – d4

(0.9 + 0.7 + 0.7 + 0.9) / (2·2) = 0.8c1 – d1

simChildren(c,d)corr(c,d)

(0.7 + 0 + 0 + 0.9) / (2·2) = 0.4c1 – d4

(0.9 + 0.7 + 0.7 + 0.9) / (2·2) = 0.8c1 – d1

simChildren(c,d)corr(c,d)

Figure 5: Attribute-based instance-based matching

Acc: c1

Instance: instance1

Instance: instance2

Instance: instance3

Acc: c2

Instance: …

Acc: c3

Instance: …

Acc: d1

Instance: instance1

Instance: instance2

Acc: d2

Instance: …

Acc: d3

Instance: …

Acc: d4

Instance: instance3

Instance: instance4

Acc: d5

Instance: …

0.8 0.4

2·1 / (3+2) = 0.4c1 – d4

2·2 / (3+2) = 0.8c1 – d1

simDice(c,d)corr(c,d)

2·1 / (3+2) = 0.4c1 – d4

2·2 / (3+2) = 0.8c1 – d1

simDice(c,d)corr(c,d)

by merely comparing all Child-attributes of c with all Child-attributes of concept d

w.r.t. their string (name) similarity and dividing it by number of possible child pairs:

simChildren(c,d) = ∑i,jsimName(c.childi, d.childj) / (|c.child|·|d.child|).

The context attribute approach can similarly be applied for other local context

matchers such as Parents, Siblings or NamePath. For instance, to realize the Name-

Path matcher we determine a concept’s predecessors in a root path and store their

concatenated names in a multi-valued NamePath context attribute during preprocess-

ing. Matching is then similar to name element-matching but uses the NamePath at-

tribute and its structural information about the names of the predecessor concepts. In

previous evaluations [7], NamePath was shown to be one of the most effective single

matchers so that it is valuable to have a parallel implementation of it.

3.2.3 Parallelization of Instance-based Matchers

Finally, we discuss how instance-based matching approaches can be parallelized. One

common approach evaluates the instances associated to ontology concepts and con-

siders two concepts as similar if they largely share similar instances [17]. Since in-

stances are directly associated to concepts, we can determine the concept similarity

using concept-specific information. This allows us to apply a similar parallelization

strategy as for local-context structure matching and element-level matching.

As illustrated in Figure 5 instances are mapped to a multi-valued attribute Instance

during preprocessing. For example, Instance may contain the accessions of biological

objects associated to a GO concept. Size-based partitioning is applied to the input

ontologies and the associated instances. A Dice-based measuring of the instance over-

lap similarity [17] would count the common Instance attribute values Ncd of two con-

cepts cєO1, dєO2, and compute the similarity simDice(c,d) = 2·Ncd / (Nc+Nd) where Nc

(Nd) is the number of instances of concept c (d). In our example (Figure 5) the match

result contains two correspondences with a higher similarity for concepts c1-d1 shar-

ing more common instances than c1-d4.

4 Infrastructure for Parallel Ontology Matching

To execute ontology matching workflows in parallel we have implemented a distrib-

uted and service-based infrastructure illustrated in Figure 6. It consists of several

services including a central workflow service, a data service, and multiple match

services that are implemented in Java. These services run on different loosely coupled

servers or workstations. While the workflow service coordinates the execution of the

complete match workflow, match services compute the ontology mapping for two

ontologies or ontology partitions. The data service manages all ontology and instance

data forming the input of a match workflow and stores the final ontology mapping as

result. The data service implements the repository schema proposed in [16] to effi-

ciently store ontology and mapping versions.

Match applications (e.g., matching tools such as COMA++ [1]) use the workflow

service to centrally access the match infrastructure. We assume that these applications

configure a concrete match workflow, i.e., they specify the ontologies and instance

data (or versions of both) as input data as well as utilized matchers and steps to pre-

process the matcher input and to post-process match results (e.g., ontology partition-

ing and mapping manipulations including union and majority as well as filtering).

Within this specification the match and manipulation steps are interconnected such

that the workflow defines which matchers can be executed in parallel (inter-matcher

parallelization) or in sequential order. The workflow service takes this configuration

as input and processes the specified match workflow.

The workflow service performs ontology preprocessing if necessary, in particular

for determining the values of context attributes for structure-level matching (see Sec-

Match Service
n

Match Thread n,1

Match Thread n,..

Match Thread n,m

Workflow Service

Data Service

Repositories storing ontology,
instance, and mapping versions

Match
 Jo

b �


Match

 R
esu

lt

Source
Data

Match
Result

�

Match Service
i

Match Thread i,1

Match Thread i,..

Match Thread i,l

Match Service
1

Match Thread 1,1

Match Thread 1,..

Match Thread 1,k

Job
Generator

...

Process

Controller

�

M
a

tc
h
e

r
L
ib

M
a
tc

h
e

r
L

ib
M

a
tc

h
e
r

L
ib

Match Job �

 Match Result

External Applications User Interfaces ...

Process
Configuration

Match
Result

M
atch Job �


M

atch Result

Job
Queue

Figure 6: Distributed infrastructure for matching ontologies in parallel

tion 3.2). The workflow service executes the matchers in the workflow in the speci-

fied order for sequential matchers or in parallel. For this purpose, it maintains a job

queue for each matcher. For intra-matcher parallelism the workflow service generates

all match tasks and stores them in the matcher-specific job queue. Without intra-

matcher parallelization the job queues consist of only a single match(er) job. The

workflow service sends the queued match jobs to available match services as long as

there are unprocessed jobs available. The match services execute the jobs and send

their results back to the workflow service which unifies the partial match results. For

efficiency reasons, the match jobs are restricted by a similarity threshold so that they

only return concept correspondences exceeding the minimal similarity.

The match services run on dedicated nodes to fully exploit their compute power.

Each match service contains several concurrently working match threads executing

the match jobs (one thread per job at a time). The number of match threads per service

can vary according to the number of available cores on the node. Hence, the infra-

structure can cope with heterogeneously configured computing environments, i.e.,

servers and workstations with different number of cores and speed can be used for the

proposed infrastructure. The match threads obtain their input data (ontology parti-

tions) from the match job and execute the specified matcher implementation from a

comprehensive matcher library.

5 Evaluation

We used the ontology matching infrastructure to evaluate the proposed parallelization

strategies. We first describe the evaluation setup, in particular the considered ontolo-

gies and matchers. In Section 5.2 we show results for parallel matching on a single

multi-core node. We then analyze the scalability of parallel ontology matching on

multiple compute nodes.

5.1 Evaluation Setup

We use up to four nodes for running match services each consisting of four cores, i.e.,

we utilize up to 16 cores. Each node has an Intel(R) Xeon(R) W3520 4x2.66GHz

CPU, 4GB memory and runs a 64-bit Debian GNU/Linux OS with a 64-bit JVM. We

use 3GB main memory (heap size) per node. The workflow and data services run on

additional nodes.

In our experiments we consider a medium-scale as well as a large-scale match

problem. For the medium-scale problem we match the AdultMouseAnatomy (MA)

(2,737 concepts) with the anatomical part of the NCI Thesaurus (NCIT) (3,289 con-

cepts) as in the OAEI 2009 contest. The large-scale match problem computes an on-

tology mapping between the two GO sub ontologies Molecular Functions (MF) and

Biological Processes (BP) consisting of 9,395 and 17,104 concepts, respectively (ver-

sions of June 2009). For intra-matcher parallelism we use different partition sizes for

the two match problems. For the medium-scale problem we set the maximum parti-

tion size to 500 concepts resulting in 6 (7) partitions for MA (NCIT) and thus 42

Figure 7: Intra-matcher paralleliza-

tion on 1 node: medium-scale problem

Figure 8: Intra-matcher paralleliza-

tion on 1 node: large-scale problem

match tasks. For the large-scale match problem the max. partition size is set to 1,500.

Hence, MF (BP) is split into 7 (12) partitions which results in 84 match tasks.

In this first evaluation analysis we focus on element-level and structure-level

matchers. We applied three different single matchers namely NameSynonym (NS),

Children (CH) and NamePath (NP). NS determines the maximal TriGram similarity

for the name (label) and multi-valued synonym attribute values between concepts. CH

and NP use TriGram similarity on the context attributes Child and NamePath, respec-

tively (see Section 3.2.2). NamePath is restricted to at most three ancestor levels

including ‘is_a’ and ‘part_of’ paths. These matchers are evaluated individually as

well as within combined match strategies. In this study we focus on evaluating the

efficiency (execution times) and not the matching effectiveness (e.g., precision, re-

call). This is because our parallel match approaches only target efficiency but do not

affect quality since we always evaluate the Cartesian product, e.g. when using size-

based partitioning (as described in Section 3.2).

5.2 Individual Matcher Parallelization on a Multi-core Node

We first analyze intra-matcher parallelization of individual matchers (NS, CH, NP) on

a single multi-core node. Figures 7 and 8 show the execution time and speedup results

for parallelizing the three matchers for up to eight parallel match threads for the me-

dium-scale and large-scale match problems, respectively. We observe that execution

times can be significantly improved by increasing the degree of parallelism for all

matchers and both match problems. The NP matcher with its long concatenated name

strings is by far the most expensive matcher with about four times longer execution

times than CH; for the large-scale problem it takes more than 6 hours without paral-

lelism. For the medium-scale match problem NS and CH take about the same time

while NS takes much more time for the large-scale problem. This is because GO has

many synonyms per concept so that for every concept pair about 11 (instead of 3 in

the medium-scale problem) comparisons have to be computed.

For all matchers we achieve excellent speedup values of up to 3.6-4.2 for the me-

dium-scale problem and even 4.5-5 for the large-scale problem. For up to four threads

(= number of cores) we achieve almost linear speedup (up to 3.5). Increasing the

number of threads brings further improvements (especially for the large-scale prob-

Figure 9: Parallelization strate-

gies for medium-scale problem
Figure 10: Intra-matcher parallelization

strategies for large scale problem

lem) but at a reduced level. This is likely because the additional threads can utilize the

cores when other match threads are waiting for new tasks to process.

5.3 Parallel Ontology Matching on Multiple Nodes

We now evaluate parallelization strategies using up to four compute nodes (16 cores)

running up to four threads per node. In this experiment we combine the three individ-

ual matchers NP, CH and NS according to the following parallelization strategies: no

parallelization (NoPar), inter-matcher parallelization (Inter), intra-matcher paralleli-

zation (Intra) as well as the combination of both intra- and inter-matcher paralleliza-

tion (Intra&Inter).

Figure 9 shows the execution time results for these strategies on the medium-scale

match problem. NoPar is the base case that does not benefit from multiple threads and

cores. The other parallelization strategies lead to a performance improvement using

more than one core. However, there are differences. Inter benefits only to a small

degree since we do not apply intra-matcher but only inter-matcher parallelism. Since

we apply three matchers we can only improve execution times for up to three

cores/threads, i.e., multiple cores are not utilized for our match strategy. The total

execution time is limited by the slowest matcher (NP). In contrast, Intra and In-

tra&Inter are very effective and achieve matching times of under 100 s. The com-

bined Intra&Inter parallelization is slightly better than only using Intra and achieves

a speedup of up to 10.6 (vs. 8.6). This is because Intra executes the three matchers

sequentially resulting in some execution delays between matchers that are avoided for

the combined approach.

Figure 10 shows the execution time and speedup results for the two parallelization

strategies Intra and Intra&Inter for the large-scale match problem. Due to the large

ontology sizes we omit the cases without intra-matcher parallelism and partitioning

(NoPar, Inter). The sequential match time for the three matchers is 11h. Using 16

cores Intra and Intra&Inter reduce the overall execution time to 55 and 50 min and

achieve thus an impressive speedup of 11.9 and 12.5, respectively. So, the speedup

could be increased compared to the medium-scale match case, similar to the paralleli-

zation on a single node. This shows Intra and Intra&Inter are especially valuable for

parallel matching of large ontologies.

6 Related Work

Matching life science ontologies has attracted considerable interest, particularly the

matching of anatomy ontologies [22, 33] and molecular biological ontologies [4, 17,

26]. Typically, these studies aim at improving the quality of match results while effi-

ciency aspects found only little attention. The performance of matching large schemas

and ontologies in general is considered an open issue [3, 29]. In the past different

algorithmic optimizations and fragmentation techniques for improving ontology as

well as schema matching performance have been proposed.

Some approaches aim at reducing the search space compared to the Cartesian

product for improved performance. Several divide-and-conquer approaches have been

proposed where only parts of the input ontologies are matched against each other.

[25,7] propose a fragment-based schema matching approach for COMA++ [1] where

only similar fragments / sub-schemas need to be matched with each other. [14] parti-

tion entities of the input ontologies into sets of clusters and construct blocks which are

matched based on pre-calculated anchors. The authors assess that the anchor pre-

calculation consumes a main part of the overall runtime. The Anchor-Flood algorithm

proposed in [28] also uses anchors (pairs of look-alike concepts) to gradually explore

neighboring concepts in order to match only between ontology segments. In [27]

nodes are clustered based on a linguistic label similarity and performance can be im-

proved through minimization of the search space.

[23] propose a rule-based optimization technique to rewrite match strategies for

improved performance. In particular, newly added filter operators allow a reduction of

a matcher output and can thus speedup subsequently executed matchers. QOM [8]

uses heuristics to reduce the number of candidate mappings to avoid the complete

pair-wise comparison. These candidate mappings are classified into promising and

less promising pairs by exploiting the ontological structures.

All these optimizations rely on algorithmic optimizations or partitioning/ fragmen-

tation strategies to reduce the number of comparisons for improved performance.

However, these approaches often lead to reduced match quality because relevant

correspondences can be missed. Furthermore, the applicability of the approaches is

dependent on the considered ontologies and match techniques. In contrast our paral-

lelization strategies are orthogonal and general techniques to improve the perform-

ance of matchers and match strategies. They are especially valuable for large-scale

match problems. We have shown their usefulness for evaluating the Cartesian product

but they should also be usable in combination with other performance optimizations

such as reduced search spaces.

7 Conclusion and Future Work

We propose general strategies for parallel ontology matching on multiple compute

nodes, namely inter- and intra-matcher parallelization and their combination. They

allow us to execute whole matchers in parallel and to parallelize matchers internally

using data partitioning. For intra-matcher parallelism we propose a size-based parti-

tioning enabling good load balancing, scalability and limited memory consumption

without reducing the quality of match results. We described how element-level, struc-

ture-level, instance-based matchers can be parallelized and use multi-valued context

attributes for structural matching. We implemented a distributed infrastructure that

enables parallel ontology matching and evaluated our approach for large life science

ontology match problems. The results show the efficiency and scalability for single

matchers as well as combined match strategies, especially for large match problems

and for the combination of inter- and intra-matcher parallelism.

There are several opportunities for future work. Parallel ontology matching can be

investigated for additional matchers. Furthermore, parallelization can be combined

with algorithmic performance optimizations and advanced fragmentation strategies

proposed in previous work. Moreover, parallel ontology matching may be extended to

larger configurations such as cloud infrastructures.

Acknowledgments. This work is supported by the German Research Foundation

(DFG), grant RA 497/18-1 (“Evolution of Ontologies and Mappings”).

References

1. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with

COMA++. In: Proc. of ACM SIGMOD Intl. Conference on Management of Data, pp.

906-908 (2005)

2. Bastian, F., Parmentier, G., Roux, J. et al.: Bgee: Integrating and Comparing Heterogene-

ous Transcriptome Data Among Species. In: Bairoch, A., Cohen-Boulakia, S., Froide-

vaux, C. (eds.) DILS 2008. LNCS (LNBI), vol. 5109, pp. 124-131. Springer Heidelberg

(2008)

3. Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial Strength Schema Mat-

ching. ACM SIGMOD Record 33(4), 38-43 (2004)

4. Bodenreider, O., Burgun, A.: Linking the Gene Ontology to other biological ontologies.

In: Proc. of 8th ISMB Meeting on Bio-Ontologies, pp. 17-18 (2005)

5. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions. Brief-

ings in Bioinformatics 7(3), 256-274 (2006)

6. Do, H.H., Rahm, E.: COMA – A System for Flexible Combination of Schema Matching

Approaches. In: Proc. of the 28th Intl. Conference on Very Large Databases (VLDB), pp.

610-621 (2002)

7. Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information

Systems 32(6), 857-885 (2007)

8. Ehrig, M., Staab, S.: QOM – Quick Ontology Mapping. In: Proc. of the 3rd Intl. Semantic

Web Conference (ISWC), pp. 683-697 (2004)

9. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, 2007

10. The Gene Ontology Consortium: The Gene Ontology project in 2008. Nucleic Acids

Research 36(Database issue), D440-D444 (2008)

11. Gross, A., Hartung, M., Kirsten, T., Rahm, E.: Estimating the Quality of Ontology-Based

Annotations by Considering Evolutionary Changes. In: Paton, N.W., Missier, P., Hedeler,

C. (eds.) DILS 2009. LNCS (LNBI), vol. 5647, pp. 71-87. Springer Heidelberg (2009)

12. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the Evolution of Life Science Ontologies

and Mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008.

LNCS (LNBI), vol. 5109, pp. 11-27. Springer Heidelberg (2008)

13. Hayamizu, T.F., Mangan, M., Corradi, J.P. Kadin, J.A., Ringwald, M.: The Adult Mouse

Anatomical Dictionary: a tool for annotating and integrating data. Genome Biology 6(3),

R29 (2005)

14. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach.

Data & Knowledge Engineering 67(1), 140-160 (2008)

15. Jakoniene, V., Lambrix, P.: Ontology-based integration for bioinformatics. In: Proc.

VLDB Workshop on Ontologies-based techniques for Databases and Information Sys-

tems (ODBIS), pp. 55-58 (2005)

16. Kirsten, T., Hartung, M., Gross, A., Rahm, E.: Efficient Management of Biomedical

Ontology Versions. In: Meersman, R., Herrero, P., Dillon, T.S. (eds.): On the Move to

Meaningful Internet Systems Workshops. Proceedings. LNCS, vol. 4544, pp. 172-187.

Springer (2007)

17. Kirsten, T., Thor, A., Rahm, E.: Instance-based matching of large life science ontologies.

In: Cohen-Boulakia, S., Tannen, V. (eds.) DILS 2007. LNCS (LNBI), vol. 5109, pp. 11-

27. Springer Heidelberg (2008)

18. Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in bioinformatics. In:

Proc. of the 8th Pacific Symposium on Biocomputing, pp. 589-600 (2003)

19. Lambrix, P., Tan, H., Jakoniene, V., Strömbäck, L.: Biological Ontologies. In: Semantic

Web: Revolutionizing Knowledge Discovery in the Life Sciences, pp. 85-99 (2007)

20. Ontology Alignment Evaluation Initiative: http://20.ontologymatching.org/

21. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Match-

ing Algorithm and Its Application to Schema Matching. In: Proc. of the 18th Intl. Confer-

ence on Data Engineering (ICDE), pp. 117-128 (2002)

22. Mork, P., Bernstein, P.A.: Adapting a Generic Match Algorithm to Align Ontologies of

Human Anatomy. In: Proc. of the 20th Intl. Conference on Data Engineering (ICDE), pp.

787-790 (2004)

23. Peukert, E., Berthold, H., Rahm, E.: Rewrite Techniques for performance Optimization of

Schema Matching Processes. In: Proc. 13th Intl. Conference on Extending Database

Technology (EDBT), pp. 453-464 (2010)

24. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB

Journal 10(4), 334-350 (2001)

25. Rahm, E., Do, H.H., Massmann, S.: Matching large XML schemas. ACM SIGMOD

Record 33(4), 26-31 (2004)

26. Rance, B., Gibrat, J.F., Froidevaux, C.: An Adaptive Combination of Matchers: Applica-

tion to the Mapping of Biological Ontologies for Genome Annotation. In: Paton, N.W.,

Missier, P., Hedeler, C. (eds.) DILS 2009. LNCS (LNBI), vol. 5647, pp. 113-126. Sprin-

ger Heidelberg (2009)

27. Saleem, K., Bellahsene, Z., Hunt, E.: PORSCHE: Performance ORiented SCHEma medi-

ation. Information Systems 33(7-8), 637-657 (2008)

28. Seddiqui, H., Aono, M.: An efficient and scalable algorithm for segmented alignment of

ontologies of arbitrary size. Web Semantics: Science, Services and Agents on the World

Wide Web 7(4), 344-356 (2009)

29. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: Proc. of On the Move

to Meaningful Internet Systems (OTM), pp. 1164-1182 (2008)

30. Sioutos, N., de Coronado, S., Haber, M.W. et al.: NCI Thesaurus: A semantic model

integrating cancer-related clinical and molecular information. Journal of Biomedical In-

formatics 40(1), 30-43 (2007)

31. Smith, B., Ashburner, M., Rosse, C. et al.: The OBO Foundry: coordinated evolution of

ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251-

1255 (2007)

32. Thor, A., Hartung, M., Gross, A., Kirsten, T., Rahm, E.: An evolution-based approach for

assessing ontology mappings - A case study in the life sciences. In: Proc. Conference of

the Business, Technology and Web (BTW), pp. 277-286 (2009)

33. Zhang, S., Bodenreider, O.: Aligning Representations of Anatomy using Lexical and

Structural Methods. In: Proc. of AMIA Annual Symposium, pp. 753-757 (2003)

