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Abstract. Matching life science ontologies to determine ontology mappings has 

recently become an active field of research. The large size of existing ontolo-

gies and the application of complex match strategies for obtaining high quality 

mappings makes ontology matching a resource- and time-intensive process. To 

improve performance we investigate different approaches for parallel matching 

on multiple compute nodes. In particular, we consider inter-matcher and intra-

matcher parallelism as well as the parallel execution of element- and structure-

level matching. We implemented a distributed infrastructure for parallel ontol-

ogy matching and evaluate different approaches for parallel matching of large 

life science ontologies in the field of anatomy and molecular biology. 
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1   Introduction 

Ontologies and their applications have become increasingly important especially in 

the life sciences [19, 5]. Typically they are utilized to semantically annotate molecu-

lar-biological objects such as proteins or pathways. For instance, the popular Gene 

Ontology (GO) [10] is the primary ontology for annotating proteins with information 

on the functions and processes they are involved in. Other life science ontologies, 

e.g., in the Open Biomedical Ontologies Foundry (OBO) [31] contain information 

about anatomical structures for different species (e.g., human, mouse, fly) or diseases. 

The increasing number and availability of different life science ontologies enables 

new types of analysis, experiments and applications.  

Recently, the development and maintenance of ontology mappings interconnecting 

different (multiple) related ontologies have gained importance, e.g., to integrate het-

erogeneous information sources (e.g., [15]), to merge ontologies [18], or to support 

analysis such as the comparison of expression patterns [2]. Since the manual creation 

of such ontology mappings is time-consuming or even infeasible their semi-automatic 

generation called ontology matching [24, 9] has become an active research field espe-

cially for life science ontologies (e.g., [22, 4, 17, 26]). 

Effective ontology matching, i.e. the computation of high quality mappings, typi-

cally entails the combined execution of several matchers to determine the similarity 

between ontology elements based on metadata or instance data (see [24, 9]). For large 



ontologies these matchers are often very time-consuming and memory-intensive. This 

is because metadata-based matchers, e.g., comparing the names of ontology concepts, 

typically evaluate the Cartesian product of all element pairs leading to a quadratic 

complexity w.r.t. ontology size. The performance requirements are further multiplied 

by the number of different matchers or when applying ontology matching on multiple 

ontology versions [12, 32]. Ontology matching is also memory-intensive for large 

ontologies because matching is typically performed on memory representations 

(graph structures) of the ontologies and requires the maintenance of several similarity 

values for every element pair from the Cartesian product. 

The results of previous OAEI contests [20] on matching anatomical ontologies 

have shown that systems need execution times of up to several hours. This is despite 

the fact that the considered ontologies are only of medium size of around 3,000 ele-

ments (Mouse Anatomy Ontology [13] with ~2,800 elements was matched against the 

anatomy part of the NCI Thesaurus [30] with ~3,300 concepts). The Cartesian prod-

uct thus has about 9·10
6
 element pairs to be evaluated. Larger ontologies lead to even 

higher resource requirements. For instance, matching the two sub ontologies Molecu-

lar Functions and Biological Processes of GO with 10,000 and 20,000 ontology con-

cepts results in approx. 2·10
8
 pairs to compare, i.e., 22 times more than in the OAEI 

match problem. The memory requirements just for the similarity values are in the 

order of several GB. 

These examples illustrate that it is valuable to have a match system providing high-

performance ontology matching especially for interactive (online) applications where 

fast response times are required or when multiple match configurations have to be 

evaluated. While improving ontology matching performance has received some atten-

tion recently (see Related Work section), to the best of our knowledge the parallel 

execution of ontology matching on multiple compute nodes has not been studied so 

far. However, the broad availability of multi-core systems and multiple computing 

machines makes parallel ontology matching very attractive. Partitioning a large match 

problem into smaller parallel match tasks also helps to reduce the memory require-

ments per task. We therefore study strategies for parallel ontology matching and make 

the following contributions in this paper: 

• We propose different strategies for parallel ontology matching, in particular 

inter- and intra-matcher parallelization. While the former approach executes 

independent matchers in parallel, the latter performs an internal paralleliza-

tion of matchers based on a partitioning of the ontologies to be matched. 

Both strategies can be combined for additional performance improvements.  

• We show how different kinds of matchers (element-level, structure-level, in-

stance-based matchers) can be parallelized. 

• We implemented a distributed infrastructure for parallel ontology matching 

and evaluate different approaches for parallel matching of large life science 

ontologies in the field of anatomy and molecular biology. The results show 

the effectiveness and scalability for single matchers and complete match 

strategies. 

The rest of the paper is organized as follows. In Section 2 we introduce our ontol-

ogy model and provide background information on ontology matching. Section 3 



discusses inter- and intra-matcher parallelization and outlines how different matchers 

can be executed in parallel. The infrastructure for parallel ontology matching is pre-

sented in Section 4. We evaluate our approaches in Section 5 and discuss related work 

in Section 6. Finally, we summarize and outline possibilities for future work. 

2   Preliminaries 

We first introduce our ontology model. We then discuss the ontology matching prob-

lem and common match approaches.  

2.1 Ontology Model 

An ontology O = (C, R) consists of concepts C which are interconnected by directed 

relationships in R. A special concept called root has no relationships to any parent. 

The directed relationships can be of different type. The most common relationship 

type in ontologies is ‘is_a’ describing an inheritance between two concepts. Further-

more the ‘part_of’ relationship type is used to model part-whole relationships be-

tween concepts. Life science ontologies use further semantic relationship types, e.g. 

‘regulates’. We allow several parents and therefore several root paths per concept. 

The structural information (context) of concepts is used by structure-based match 

approaches to determine the concept similarity. 

Furthermore, a concept cєC of an ontology is defined by a set of single- or multi-

valued attributes. For instance, the concept name is a single-valued attribute that is 

frequently used for ontology matching. Some ontologies (e.g., GO) support multi-

valued synonym attributes containing alternate names for a concept. Usually there is 

also an identification attribute or accession number cacc. These concept identifiers are 

used for annotating biological objects (proteins, genes, etc.) [11] and can be useful for 

instance-based ontology matching.  

2.2 Ontology Matching 

Ontology matching is the process of determining a set of semantic correspondences 

(ontology mapping) between concepts of two related ontologies O1 and O2. The corre-

spondences are determined by matcher algorithms determining the similarity 

sim(c1,c2)є[0…1] between concepts c1єO1 and c2єO2. Matchers can roughly be classi-

fied into metadata- or schema-based and instance-based approaches [24]. Metadata-

based matchers do not utilize instance data but focus on ontology information and 

optionally some background information such as dictionaries. Metadata-based match-

ers can be further classified into element-level and structure-level matchers. Element-

level matchers utilize information from concept attributes, such as determining the 

similarity of concept names and synonyms, e.g., based on some string similarity such 

as ExactMatch, n-Gram or EditDistance. Element-level matchers are almost always 

used and combined with other approaches. Structure-level matchers consider the 

ontology structure for matching, e.g., to determine the context similarity of concepts. 



Typical matchers evaluate the children, leaves, siblings and ancestors of concepts. In 

contrast, instance-based matchers do not depend on the ontology metadata but utilize 

existing associations between ontology concepts and instances and consider two con-

cepts as similar if they share similar instances. One way to determine instance similar-

ity is to measure the degree of instance overlap between concepts, e.g., based on a 

Dice or Jaccard measure. The complexity of matchers is usually quadratic by compar-

ing all concepts of the first ontology with all concepts of the second ontology (evalua-

tion of the Cartesian product). 

A single matcher is typically not sufficient for high match quality so that one has to 

combine several matchers within a so-called match strategy or workflow. Match pro-

totypes such as COMA++ therefore provide many matchers and support their flexible 

combination [1, 6, 7]. The matchers may be sequentially executed so that the results 

of a first matcher are refined by the following matchers. Alternatively, the matchers 

are independently executed and combined. Match workflows may use different meth-

ods to combine match results of individual matchers, e.g., by performing a union or 

intersection or by aggregating individual similarity values. The final match result is 

typically restricted to correspondences for which the similarity values exceed a prede-

termined threshold. In the next section, we discuss how such match strategies as well 

as single matchers can be parallelized. 

3   Parallelization Strategies 

In this section, we discuss possibilities of parallelizing ontology matching workflows 

consisting of several matchers that are either sequentially or independently executed. 

We assume that a computing environment of multiple locally interconnected multi-

core computing nodes is available for matching. 

A straight-forward approach to parallel ontology matching is inter-matcher paral-

lelism, i.e., to process independently executable matchers in parallel on different cores 

or computing nodes. In addition, we want to support intra-matcher parallelism, i.e., 

the internal parallelization of individual matchers. Furthermore, we can combine both 

kinds of parallelism. In the following, we discuss these parallelization strategies in 

more detail. For intra-matcher parallelism (Section 3.2) we focus on the parallel simi-

larity evaluation of the Cartesian product of concept pairs according to a partitioning 

of the input ontologies. In particular we will describe how we can parallelize element-

level, structure-level and instance-based matchers. 

3.1 Inter-matcher Parallelization 

Inter-matcher parallelization enables the parallel execution of independently 

executable matchers to utilize multiple processors for faster match processing. The 

example match workflow in Figure 1a utilizes inter-matcher parallelization for n 

matchers (M1, …, Mn). The match results can be combined by different aggregation 

and selection strategies to achieve the final result. Ideally, the inter-matcher paralleli-

zation improves the execution time by a factor n if the matchers are of similar com-

plexity. This kind of parallelism is easy to support and can utilize multiple cores of a 
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Figure 2: Intra-matcher parallelization 
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single computing node or multiple nodes. However, inter-matcher parallelization is 

limited by the number of independently executable matchers. Furthermore, matchers 

of different complexity may have largely different execution times limiting the 

achievable speedup (the slowest matcher determines overall execution time). More-

over, the memory requirements for matching are not reduced since matchers evaluate 

the complete ontologies.  

The degree of parallelism is also limited for sequential matcher execution (e.g., if a 

structure-level matcher depends on a previously executed element-level matcher) or 

when the number of available processors is smaller than the number of independently 

executable matchers. As illustrated in Figure 1b, in such cases inter-matcher parallel-

ism can be applied for a subset of matchers. The shown example assumes that only 

two cores can be utilized and that the most complex matcher M3 is assigned to one 

core while M1 and M2 are executed sequentially on the other core. 

3.2 Intra-matcher Parallelization 

Intra-matcher parallelization deals with the internal decomposition of individual 

matchers or matcher parts (e.g., tokenization of concept names) into several match 

tasks that can be executed in parallel. We focus on a general approach to support 

intra-matcher parallelism based on partitioning the input data (the ontologies). Such a 

partitioning is very flexible and scalable and can be used to generate many match 

tasks of limited complexity. Furthermore, intra-matcher parallelism can be applied for 

sequential as well as independently executable matchers, i.e., it can also be combined 

with inter-matcher parallelism.  

Figure 2 illustrates intra-matcher parallelization for n matchers that are executed in 

parallel (i.e., in combination with inter-matcher parallelism). For each matcher the 

input ontologies are first partitioned followed by the generation of multiple match 

tasks Mi1, …, Mik (i = 1, …, n). These match tasks are executed in parallel, the union 
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Figure 1a: Inter-matcher 

parallelization 



of the match task results gives the complete match result. In the example, all match 

tasks of the n matchers can be concurrently executed on the available compute nodes 

to achieve a maximal reduction of the execution time. Note that the match tasks only 

match partitions of the two ontologies and have thus reduced memory and processing 

requirements compared to a complete matcher. Hence, intra-matcher parallelization is 

especially promising for matching large ontologies. 

Before we discuss how we can parallelize element-level, structure-level and in-

stance-based matchers we first outline our approach for ontology partitioning. In this 

initial study of parallel ontology matching we focus on a simple but yet flexible size-

based approach that enables the parallel matching of the Cartesian product of the 

concepts from the two input ontologies O1 and O2. To generate match tasks of similar 

complexity we partition both ontologies into partitions of equal size (number of con-

cepts); the partition size is a parameter that can be chosen according to the size of 

input ontologies and the complexity of the utilized matcher. Each task matches one O1 

partition with one O2 partition so that we generate p1 · p2 match tasks for p1 (p2) 

equally sized partitions of O1 (O2). For instance, if we partition two ontologies of 

10,000 concepts into 10 partitions each, we generate 10·10=100 match tasks. As we 

will discuss in Section 4, generated match tasks are managed in job queues from 

where they are scheduled for parallel execution.  

This size-based ontology partitioning has significant advantages besides its sim-

plicity: (1) it is scalable to large ontologies by choosing manageable partition sizes 

and thus enables unproblematic processing and reduced memory requirements per 

match task, (2) it supports good load balancing because of equally sized partitions and 

match tasks, (3) it helps optimizing performance without sacrificing match quality 

since the full Cartesian product is evaluated, and (4) it can be utilized for element-

level, structure-level and instance-based matchers as we will discuss in the following. 

3.2.1   Parallelization of Element-level Matchers 
To parallelize element-level matching approaches based on the introduced size-based 

partitioning is relatively easy. This is because element-level matchers compare ontol-

ogy concepts with each other by utilizing metadata from the concepts themselves, i.e., 

their attribute values such as the name or synonyms. By partitioning the ontologies 

into subsets of concepts we retain the information needed for matching the concepts. 

Hence, element-level matchers can easily be applied to ontology partitions.  

Figure 3 shows a running example for matching two ontology parts c1, …, c3 є O1 

and d1, …, d5 є O2. As shown, concept c1 has two children c2 and c3. The concept d3 of 

O2 is assumed to have two parent concepts d1, d4 (multiple inheritance). Some con-

cepts have associated instances that will be considered later for instance-based match-

ing. We assume that the concepts should be matched with each other by a string-based 

name matcher. The name matcher evaluates the string similarity (e.g., TriGram) for all 

(3·5=15) concept pairs. The result set (shown on the right of Figure 3) contains six 

correspondences with similarities ranging from 0.5 to 0.9; all other concept pairs are 

assumed to have similarity 0, i.e., they do not match. 



Figure 3: Element-level matching on Name attribute 
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3.2.2   Parallelization of Structure-level Matchers 
Structure-level matchers are more difficult to parallelize than element-level matchers 

since they utilize information from the structural context or neighborhood of concepts 

(e.g., children, parents, siblings) or even the whole ontology. Hence, an ontology 

partition consisting of a certain number of concepts does generally not provide all 

information needed for structure matching. Even more difficult is the parallelization 

of iterative structural matchers such as Similarity Flooding [21] that start with initial 

element-level similarities and iteratively propagate these along the concept relation-

ships across the whole ontologies. For such matchers parallelization is inherently 

difficult and has likely to be restricted to the initial element-level matching.  

We therefore focus on structural matchers that utilize information from a restricted 

neighborhood (local context) of concepts. To limit the resource and memory require-

ments we do not want the match tasks to work on the whole ontologies but to restrict 

them to input partitions of restricted size similar to parallel element-level matching. 

This can be achieved by extending the concept-level information, within special mul-

ti-valued context attributes, by information from the local context that is needed for 

structure-level matching. The values for these context attributes, e.g., Child, Parents, 

NamePath, are determined in a preprocessing step by traversing the input ontologies 

once (linear effort) to collect the necessary context information about children, par-

ents, etc. Concepts with these additional context attributes can then be partitioned as 

for element-level matching. Each match task performs structure matching for a pair of 

partitions utilizing information from the context attributes. 

Figure 4 illustrates the context attribute approach for a Children matcher for our 

running example of Figure 3. The matcher determines the similarity between two 

concepts by calculating the average element (e.g., name) similarity between their 

children, i.e. it takes the sum of the name similarities between any two children and 

divides by the total number of child pairs. Note that this is only one possibility to 

compute the children similarity, used for illustration. For the example of Figure 4, we 

obtain that c1 is more similar to d1 than to d4 as c1 and d2 share more similar children 

(using the similarity values of Figure 3). To execute this matcher we use a multi-

valued Child context attribute for each (non-leaf) concept and populate it during the 

preprocessing step, in our case with the name values of child concepts. A child match 

task matches each concept c of an O1 partition with each concepts d of an O2 partition 



Figure 4: Attribute-based child matching 
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Figure 5: Attribute-based instance-based matching 
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by merely comparing all Child-attributes of c with all Child-attributes of concept d 

w.r.t. their string (name) similarity and dividing it by number of possible child pairs: 

simChildren(c,d) = ∑i,jsimName(c.childi, d.childj) / (|c.child|·|d.child|). 

The context attribute approach can similarly be applied for other local context 

matchers such as Parents, Siblings or NamePath. For instance, to realize the Name-

Path matcher we determine a concept’s predecessors in a root path and store their 

concatenated names in a multi-valued NamePath context attribute during preprocess-

ing. Matching is then similar to name element-matching but uses the NamePath at-

tribute and its structural information about the names of the predecessor concepts. In 

previous evaluations [7], NamePath was shown to be one of the most effective single 

matchers so that it is valuable to have a parallel implementation of it. 

3.2.3   Parallelization of Instance-based Matchers 

Finally, we discuss how instance-based matching approaches can be parallelized. One 

common approach evaluates the instances associated to ontology concepts and con-

siders two concepts as similar if they largely share similar instances [17]. Since in-

stances are directly associated to concepts, we can determine the concept similarity 

using concept-specific information. This allows us to apply a similar parallelization 

strategy as for local-context structure matching and element-level matching.  

As illustrated in Figure 5 instances are mapped to a multi-valued attribute Instance 

during preprocessing. For example, Instance may contain the accessions of biological 

objects associated to a GO concept. Size-based partitioning is applied to the input 

ontologies and the associated instances. A Dice-based measuring of the instance over-

lap similarity [17] would count the common Instance attribute values Ncd of two con-

cepts cєO1, dєO2, and compute the similarity simDice(c,d) = 2·Ncd / (Nc+Nd) where Nc 

(Nd) is the number of instances of concept c (d). In our example (Figure 5) the match 

result contains two correspondences with a higher similarity for concepts c1-d1 shar-

ing more common instances than c1-d4. 



4   Infrastructure for Parallel Ontology Matching 

To execute ontology matching workflows in parallel we have implemented a distrib-

uted and service-based infrastructure illustrated in Figure 6. It consists of several 

services including a central workflow service, a data service, and multiple match 

services that are implemented in Java. These services run on different loosely coupled 

servers or workstations. While the workflow service coordinates the execution of the 

complete match workflow, match services compute the ontology mapping for two 

ontologies or ontology partitions. The data service manages all ontology and instance 

data forming the input of a match workflow and stores the final ontology mapping as 

result. The data service implements the repository schema proposed in [16] to effi-

ciently store ontology and mapping versions. 

Match applications (e.g., matching tools such as COMA++ [1]) use the workflow 

service to centrally access the match infrastructure. We assume that these applications 

configure a concrete match workflow, i.e., they specify the ontologies and instance 

data (or versions of both) as input data as well as utilized matchers and steps to pre-

process the matcher input and to post-process match results (e.g., ontology partition-

ing and mapping manipulations including union and majority as well as filtering). 

Within this specification the match and manipulation steps are interconnected such 

that the workflow defines which matchers can be executed in parallel (inter-matcher 

parallelization) or in sequential order. The workflow service takes this configuration 

as input and processes the specified match workflow.  

The workflow service performs ontology preprocessing if necessary, in particular 

for determining the values of context attributes for structure-level matching (see Sec-
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Figure 6: Distributed infrastructure for matching ontologies in parallel 



tion 3.2). The workflow service executes the matchers in the workflow in the speci-

fied order for sequential matchers or in parallel. For this purpose, it maintains a job 

queue for each matcher. For intra-matcher parallelism the workflow service generates 

all match tasks and stores them in the matcher-specific job queue. Without intra-

matcher parallelization the job queues consist of only a single match(er) job. The 

workflow service sends the queued match jobs to available match services as long as 

there are unprocessed jobs available. The match services execute the jobs and send 

their results back to the workflow service which unifies the partial match results. For 

efficiency reasons, the match jobs are restricted by a similarity threshold so that they 

only return concept correspondences exceeding the minimal similarity.  

The match services run on dedicated nodes to fully exploit their compute power. 

Each match service contains several concurrently working match threads executing 

the match jobs (one thread per job at a time). The number of match threads per service 

can vary according to the number of available cores on the node. Hence, the infra-

structure can cope with heterogeneously configured computing environments, i.e., 

servers and workstations with different number of cores and speed can be used for the 

proposed infrastructure. The match threads obtain their input data (ontology parti-

tions) from the match job and execute the specified matcher implementation from a 

comprehensive matcher library. 

5   Evaluation 

We used the ontology matching infrastructure to evaluate the proposed parallelization 

strategies. We first describe the evaluation setup, in particular the considered ontolo-

gies and matchers. In Section 5.2 we show results for parallel matching on a single 

multi-core node. We then analyze the scalability of parallel ontology matching on 

multiple compute nodes. 

5.1   Evaluation Setup 

We use up to four nodes for running match services each consisting of four cores, i.e., 

we utilize up to 16 cores. Each node has an Intel(R) Xeon(R) W3520 4x2.66GHz 

CPU, 4GB memory and runs a 64-bit Debian GNU/Linux OS with a 64-bit JVM. We 

use 3GB main memory (heap size) per node. The workflow and data services run on 

additional nodes. 

In our experiments we consider a medium-scale as well as a large-scale match 

problem. For the medium-scale problem we match the AdultMouseAnatomy (MA) 

(2,737 concepts) with the anatomical part of the NCI Thesaurus (NCIT) (3,289 con-

cepts) as in the OAEI 2009 contest. The large-scale match problem computes an on-

tology mapping between the two GO sub ontologies Molecular Functions (MF) and 

Biological Processes (BP) consisting of 9,395 and 17,104 concepts, respectively (ver-

sions of June 2009). For intra-matcher parallelism we use different partition sizes for 

the two match problems. For the medium-scale problem we set the maximum parti-

tion size to 500 concepts resulting in 6 (7) partitions for MA (NCIT) and thus 42 



Figure 7: Intra-matcher paralleliza-

tion on 1 node: medium-scale problem 

Figure 8: Intra-matcher paralleliza-

tion on 1 node: large-scale problem 

match tasks. For the large-scale match problem the max. partition size is set to 1,500. 

Hence, MF (BP) is split into 7 (12) partitions which results in 84 match tasks.  

In this first evaluation analysis we focus on element-level and structure-level 

matchers. We applied three different single matchers namely NameSynonym (NS), 

Children (CH) and NamePath (NP). NS determines the maximal TriGram similarity 

for the name (label) and multi-valued synonym attribute values between concepts. CH 

and NP use TriGram similarity on the context attributes Child and NamePath, respec-

tively (see Section 3.2.2). NamePath is restricted to at most three ancestor levels 

including ‘is_a’ and ‘part_of’ paths. These matchers are evaluated individually as 

well as within combined match strategies. In this study we focus on evaluating the 

efficiency (execution times) and not the matching effectiveness (e.g., precision, re-

call). This is because our parallel match approaches only target efficiency but do not 

affect quality since we always evaluate the Cartesian product, e.g. when using size-

based partitioning (as described in Section 3.2). 

5.2   Individual Matcher Parallelization on a Multi-core Node 

We first analyze intra-matcher parallelization of individual matchers (NS, CH, NP) on 

a single multi-core node. Figures 7 and 8 show the execution time and speedup results 

for parallelizing the three matchers for up to eight parallel match threads for the me-

dium-scale and large-scale match problems, respectively. We observe that execution 

times can be significantly improved by increasing the degree of parallelism for all 

matchers and both match problems. The NP matcher with its long concatenated name 

strings is by far the most expensive matcher with about four times longer execution 

times than CH; for the large-scale problem it takes more than 6 hours without paral-

lelism. For the medium-scale match problem NS and CH take about the same time 

while NS takes much more time for the large-scale problem. This is because GO has 

many synonyms per concept so that for every concept pair about 11 (instead of 3 in 

the medium-scale problem) comparisons have to be computed. 

For all matchers we achieve excellent speedup values of up to 3.6-4.2 for the me-

dium-scale problem and even 4.5-5 for the large-scale problem. For up to four threads 

(= number of cores) we achieve almost linear speedup (up to 3.5). Increasing the 

number of threads brings further improvements (especially for the large-scale prob-



Figure 9: Parallelization strate-

gies for medium-scale problem 
Figure 10: Intra-matcher parallelization 

strategies for large scale problem 

lem) but at a reduced level. This is likely because the additional threads can utilize the 

cores when other match threads are waiting for new tasks to process.  

5.3   Parallel Ontology Matching on Multiple Nodes 

We now evaluate parallelization strategies using up to four compute nodes (16 cores) 

running up to four threads per node. In this experiment we combine the three individ-

ual matchers NP, CH and NS according to the following parallelization strategies: no 

parallelization (NoPar), inter-matcher parallelization (Inter), intra-matcher paralleli-

zation (Intra) as well as the combination of both intra- and inter-matcher paralleliza-

tion (Intra&Inter).  

Figure 9 shows the execution time results for these strategies on the medium-scale 

match problem. NoPar is the base case that does not benefit from multiple threads and 

cores. The other parallelization strategies lead to a performance improvement using 

more than one core. However, there are differences. Inter benefits only to a small 

degree since we do not apply intra-matcher but only inter-matcher parallelism. Since 

we apply three matchers we can only improve execution times for up to three 

cores/threads, i.e., multiple cores are not utilized for our match strategy. The total 

execution time is limited by the slowest matcher (NP). In contrast, Intra and In-

tra&Inter are very effective and achieve matching times of under 100 s. The com-

bined Intra&Inter parallelization is slightly better than only using Intra and achieves 

a speedup of up to 10.6 (vs. 8.6). This is because Intra executes the three matchers 

sequentially resulting in some execution delays between matchers that are avoided for 

the combined approach. 

Figure 10 shows the execution time and speedup results for the two parallelization 

strategies Intra and Intra&Inter for the large-scale match problem. Due to the large 

ontology sizes we omit the cases without intra-matcher parallelism and partitioning 

(NoPar, Inter). The sequential match time for the three matchers is 11h. Using 16 

cores Intra and Intra&Inter reduce the overall execution time to 55 and 50 min and 

achieve thus an impressive speedup of 11.9 and 12.5, respectively. So, the speedup 

could be increased compared to the medium-scale match case, similar to the paralleli-

zation on a single node. This shows Intra and Intra&Inter are especially valuable for 

parallel matching of large ontologies. 



6   Related Work 

Matching life science ontologies has attracted considerable interest, particularly the 

matching of anatomy ontologies [22, 33] and molecular biological ontologies [4, 17, 

26]. Typically, these studies aim at improving the quality of match results while effi-

ciency aspects found only little attention. The performance of matching large schemas 

and ontologies in general is considered an open issue [3, 29]. In the past different 

algorithmic optimizations and fragmentation techniques for improving ontology as 

well as schema matching performance have been proposed. 

Some approaches aim at reducing the search space compared to the Cartesian 

product for improved performance. Several divide-and-conquer approaches have been 

proposed where only parts of the input ontologies are matched against each other. 

[25,7] propose a fragment-based schema matching approach for COMA++ [1] where 

only similar fragments / sub-schemas need to be matched with each other. [14] parti-

tion entities of the input ontologies into sets of clusters and construct blocks which are 

matched based on pre-calculated anchors. The authors assess that the anchor pre-

calculation consumes a main part of the overall runtime. The Anchor-Flood algorithm 

proposed in [28] also uses anchors (pairs of look-alike concepts) to gradually explore 

neighboring concepts in order to match only between ontology segments. In [27] 

nodes are clustered based on a linguistic label similarity and performance can be im-

proved through minimization of the search space. 

[23] propose a rule-based optimization technique to rewrite match strategies for 

improved performance. In particular, newly added filter operators allow a reduction of 

a matcher output and can thus speedup subsequently executed matchers. QOM [8] 

uses heuristics to reduce the number of candidate mappings to avoid the complete 

pair-wise comparison. These candidate mappings are classified into promising and 

less promising pairs by exploiting the ontological structures. 

All these optimizations rely on algorithmic optimizations or partitioning/ fragmen-

tation strategies to reduce the number of comparisons for improved performance. 

However, these approaches often lead to reduced match quality because relevant 

correspondences can be missed. Furthermore, the applicability of the approaches is 

dependent on the considered ontologies and match techniques. In contrast our paral-

lelization strategies are orthogonal and general techniques to improve the perform-

ance of matchers and match strategies. They are especially valuable for large-scale 

match problems. We have shown their usefulness for evaluating the Cartesian product 

but they should also be usable in combination with other performance optimizations 

such as reduced search spaces.  

7   Conclusion and Future Work 

We propose general strategies for parallel ontology matching on multiple compute 

nodes, namely inter- and intra-matcher parallelization and their combination. They 

allow us to execute whole matchers in parallel and to parallelize matchers internally 

using data partitioning. For intra-matcher parallelism we propose a size-based parti-

tioning enabling good load balancing, scalability and limited memory consumption 



without reducing the quality of match results. We described how element-level, struc-

ture-level, instance-based matchers can be parallelized and use multi-valued context 

attributes for structural matching. We implemented a distributed infrastructure that 

enables parallel ontology matching and evaluated our approach for large life science 

ontology match problems. The results show the efficiency and scalability for single 

matchers as well as combined match strategies, especially for large match problems 

and for the combination of inter- and intra-matcher parallelism. 

There are several opportunities for future work. Parallel ontology matching can be 

investigated for additional matchers. Furthermore, parallelization can be combined 

with algorithmic performance optimizations and advanced fragmentation strategies 

proposed in previous work. Moreover, parallel ontology matching may be extended to 

larger configurations such as cloud infrastructures. 
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