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Abstract

Entity Resolution describes the identification and aggregation of semantically equivalent ob-
jects within one or between multiple data sources. With the ever growing amount of data
this task is essential to facilitate data integration and to assure high data quality. The Famer
framework addresses this issue and focuses on integrating data from not only a single but
numerous data sources. Alongside traditional Entity Resolution methods like blocking strate-
gies, it applies an additional clustering step that can further improve the match quality and
simplifies the match representation. Hierarchical agglomerative clustering is a commonly used
clustering technique where each data point represents a cluster in the beginning and new clus-
ters are formed by merging the most similar clusters. The traditional algorithm suffers from
high computational costs and no obvious parallel structure and can therefore not often be
applied on large data sets. Using the preprocessed data from the Famer framework and the
concept of reciprocal nearest neighbors, this study presents a distributed implementation of
hierarchical clustering based on Apache Flink that reaches good match quality results and
scales well on large data sets. The algorithm is compared to seven other clustering schemes
from the Famer framework using a large variety of data sets comprising clean, mixed and
dirty data sources.
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1 Introduction

1 Introduction

1.1 Motivation

The International Data Corporation (IDC) estimates the globally created data to grow to 175
Zeta Byte (175 trillion GB) by 2025, expecting further expansion. Today’s economy, research
and also personal life relies on this massive amount of data with increasing tendency [35, p. 6].
To take the best possible advantage of the available data, e.g. by effectively applying pre-
dictive analysis or machine learning techniques or by integrating into a company’s supply
chain, the maintenance, integration and high quality of the data has to be ensured, for they
constitute the basis to succeed in all those activities.
But even within the same organization data might be generated by different tools, stored
using different data base management systems or exposed to any other condition leading
to several representations of the same real-world object. The author of this study could for
instance not only be referred to as Lucie David but also as L. David or David, Lucie and
moreover there may be other authors publishing under the same name. So before further util-
ity can be extracted from the massive amounts of accessible data, one of the core activities to
achieve high data quality and facilitate data integration is the task called Entity Resolution
(ER). Also known as data-deduplication, record-linkage, object matching or link discovery,
ER aims to identify semantically equivalent objects within one or across data sources. While
this presents a large variety of applications in e-commerce, health care, geographical and
public data as well as many other domains, the challenges associated with ER are equally
big as its uses [41, p. 1–6]. The commonly addressed Big Data V’s, such as Volume, Variety,
Velocity and Veracity also apply to the field of ER. Besides the sheer massive amount of data
accompanied by an increasing complexity of networks and semantic relationships (Volume),
other issues include loose structuredness or extreme structural diversity due to schema vari-
ations (Variety), data streams of entities that need to be integrated (Velocity) or missing
values, abbreviations and data corruption (Veracity) [5, p. 4].
Although Entity Resolution has been widely addressed and investigated in the past [5,20,34,
41], the steadily growing amount of data and data sources requires further focusing on the
Big Data challenges and developing large-scale solutions that allow to effectively parallelize
ER-task on multiple processors.
So-called blocking techniques already address the data’s Volume and are able to significantly
reduce the number of necessary object comparisons by pre-grouping records based on chosen
attribute values. [32]. However, not only the amount of data within data sources increases,
but also the number of data sources themselves. The application of an additional clustering
phase within traditional ER-pipelines addresses the problem of multi-source ER, producing
two main advantages: Firstly, most previous ER approaches determine binary match map-
pings between the data sources but using a cluster representation instead has several benefits
regarding data maintenance and integration. The number of binary match mappings to main-
tain is growing quadratically with the number of sources, leading to poor scalability since
each binary match mapping is a heavy weight object that stores all pair-wise matches be-
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1 Introduction

tween two data sources. A cluster where all the records within are assumed to match is a
more compact representation that also simplifies the fusion of matching entities by combining
the attribute values of different cluster members and facilitates the incremental integration
of entities from additional data sources by comparing them with the previously discovered
clusters [34, p. 19]. Secondly, a good clustering algorithm is able to improve the match quality
by detecting wrong links and by inferring undetected links through completing the transitive
closure within a cluster [37, p. 281].
The ER-framework Famer focuses on multi-source Entity Resolution and already provides
several clustering techniques, each of them showing different behavior regarding suitability
and scalability [37, 38]. Since each clustering scheme leads to different results depending on
the characteristics of the input data or the Famer input specifications, the implementation of
additional clustering methods within the framework extends its flexibility and applicability
regarding various problem domains, addressing Big Data Variety in a broader sense.
Hierarchical clustering has previously been applied in several domains such as document clas-
sifcation [44], recent fields in bioinformatics [1] and environmental research [11] and even in
context of the current COVID-19 pandemic [42], but relatively little work has been done re-
garding its parallelization. In the context of the Famer framework this task is simplified due
to undertaken preprocessing steps, including similarity calculations and match classification
prior to clustering. The implementation and evaluation of a distributed hierarchical clustering
algorithm as part of the Famer framework will therefore be the subject of this study.

1.2 Research Objectives

The main contributions of this thesis are the following:

(1) An analysis of related approaches to parallelize hierarchical clustering algorithms and
the examination of their use for the Famer framework.

(2) The distributed implementation of three hierarchical agglomerative clustering variants
based on Apache Flink and their integration into the Famer framework.

(3) A comparison of the newly implemented hierarchical clustering algorithm to the al-
ready existing clustering methods from Famer using different real-life and synthetically
corrupted data sets, considering match quality and scalability for a different number of
machines and data sources.

1.3 Organization

This thesis is organized as follows: Chapter 2 covers the necessary theoretical background,
briefly introducing basic Entity Resolution concepts and the large-scale ER framework Famer
including its workflow as well as the software components it is based on. It further covers
the serial hierarchical clustering method, outlines the decisions that have to be made before
applying the algorithm and formally defines the three implemented hierarchical clustering
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variants. Chapter 3 follows up with an analysis of related work regarding the application of
clustering methods in the context of ER and theoretical and practical research results on
distributed hierarchical clustering from other domains. Chapter 4 describes the theoretical
concept and the implementation of the distributed algorithm, including a vertex-centric im-
plementation as well as a naive version based on partitioning. The former is evaluated in
chapter 5 where the empirical results regarding match quality and speedup are presented,
analyzing the impact of a newly introduced input parameter and the match quality output
dependent on the data set characteristics. Eventually, chapter 6 summarizes the results and
suggests possible subjects of future work based on this thesis.
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2 Theoretical Background

This chapter will briefly describe the basic concepts of Entity Resolution and its activities
introducing the Famer framework as an exemplary large-scale ER-tool. It outlines the Famer
architecture and the role of this study within the Famer workflow. It will further introduce
the concept of hierarchical clustering and covers the three hierarchical clustering variants that
have been implemented within the scope of this study. Their characteristics and behavior will
be explained before illustrating their application within the serial hierarchical clustering algo-
rithm. Additionally, the vertex-centric programming model will be presented as it constitutes
the basis for the distributed implementation, making it a necessary tool to achieve scalability
for large data sets.

2.1 Basics of Entity Resolution

The term entity describes any real-world object, such as a person, a place, a product or a
publication. Each entity can be characterized by its attributes, e.g. a name, a serial number,
geographical coordinates or a publishing date. The collection of attribute values for a specific
entity is called a reference. Using these terms, Entity Resolution can be defined as the process
of determining whether two references refer to the same entity or to different real-world ob-
jects. This pair-based definition can further be extended by systematically and successively
applying it to larger sets of references and therefore identifying and aggregating all references
to the same entity by forming groups or clusters of entities [40, p. 1].
A set of references, each holding a unique identifier, is called an entity collection. A naive
approach to identify matching objects would be the comparison of all references and at-
tribute values to each other, which is obviously not feasible regarding the challenges of Big
Data. Therefore, Entity Resolution usually comprises several successively executed tasks that
transfigure an entity collection into a set of resolved entities [5, p. 5].

Depending on the characteristics of the given input entity collection, ER-problems can be
categorized as follows [5, p. 5]:

(1) Clean-Clean ER focuses on determining matching entities between two overlapping but
individually clean, i.e. duplicate-free, entity collections.

(2) Dirty ER aims to identify duplicates within a single entity collection.

(3) Multi-source ER is used when the input comprises more than two entity collections,
which is the case for this study.

In almost all previous work on multi-source ER, the individual data sources are assumed to
be clean, so that only matching entities between but not within the data sources have to
be found, this will be referred to as Multi-source Clean ER (MSC ER). Recent research has
been conducted to further support the application of multi-source ER on dirty or a mixture
of clean and dirty data sources, called Multi-source Clean-Dirty ER (MSCD ER) [23].
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2 Theoretical Background

This study will cover both cases by analyzing the clustering quality on three MSC data sets
as well as an additional MSCD data set which comprises clean and dirty data sources in
different portions.

Figure 2.1: Generic End-to-End Workflow for ER, adopted from Christophides et. al. [5, p. 5]

A generic end-to-end ER workflow including the commonly applied ER-tasks independent of
the underlying type of ER-problem was developed by Christophides et. al. [5] and is shown in
figure 2.1. Blocking is usually the initial activity as it helps breaking down large volumes of
data into blocks so that entities from different blocks are unlikely to match. To further avoid
redundant comparisons Block Processing methods can be applied before actually calculating
similarities and deciding about Entity Matching. Clustering as the final tasks is then able to
infer indirect matching relations among the detected match pairs.
The individual activities will be described in more detail on the basis of the Famer framework
whose workflow includes each of the pictured tasks.

2.2 The Famer Framework for Multi-source Entity Resolution

Famer (FAst Multi-source Entity Resolution) is an ER approach that supports the clustering
of matching entities and utilizes blocking techniques and distributed processing to make it a
feasible tool for large-scale ER [37]. By allowing customized input specifications and a variety
of clustering techniques it can be applied to entity collections from various domains including
MSC and MSCD ER problems.
The Famer workflow consists of two main parts and is illustrated in figure 2.2, the new
clustering scheme is highlighted red. The first phase comprises three sub-tasks producing a
so-called similarity graph as an intermediate match result, which is the input for the second
phase that produces the final clustering output so that all entities within the same cluster
match.

Blocking The first step of the Famer workflow consists of preprocessing the records from
multiple data sources within a blocking phase. All records are partitioned into groups accord-
ing to a blocking key specified in the configuration input. This aims to reduce the number
of pair-wise comparisons by only comparing entities from the same block. For instance, only
publications published in the same year or products with the same serial number are com-
pared to each other. Famer supports several blocking strategies such as Standard Blocking,
Sorted Neighborhood Blocking and Single- and Multipass Blocking [37, p. 280–281].
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Figure 2.2: The Famer Workflow including the new Clustering Scheme, adopted from Saeedi
et. al. [37, p. 281]

Pair-wise Comparison Afterwards, all entities from the same block are compared to each
other. Similarity values are calculated using the functions and attributes specified in the
configuration input. A similarity function sim maps a pair of entity descriptions (ei, ej) to
a value between 0 and 1, indicating their degree of likeness. Examples are string similarity
functions like Jarowinkler or 3Gram on string attributes, e.g. a person’s name, a book’s title
or an address or numerical distance functions on numerical attributes like a person’s age, a
publishing date or geographical coordinates. A combination of several similarity functions is
possible too.

Match Classification Given the resulting similarity values, a match classification step de-
cides about the final output of the first phase. This is done by applying a simple match
function M , which maps each pair of entity descriptions (ei, ej) to {true, false}, where
M(ei, ej) = true means, that ei and ej are considered a match and vice versa. Given the
threshold value θ and the similarity function sim from the configuration input, the match
function can be described as

M(ei, ej) =

true, if sim(ei, ej) ≥ θ,

false, otherwise
(2.2.1)

Similarity Graph Output The outcome of the first part is a so-called similarity graph where
each vertex represents an entity and each edge indicates that its source and target vertex are
considered a match. Their degree of similarity is represented by the weight of the edge as a
value between 0 and 1 [37, p. 280–282].
Famer is implemented using a new extension for graph analytics called Gradoop [15], which
supports the Extended Property Graph Model (EPGM) and is useful to store the similarity
graph with its vertex and edge properties.
An example similarity graph is shown in figure 2.3, entities with the same index are assumed
perfect match pairs.
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2 Theoretical Background

In the case of MSC ER, links within the similarity graph can be categorized according to
the concept of link strength proposed by Saeedi et. al. [38, p. 4–5]. It utilizes the fact that
a vertex va from source A may have more than one link to another source B but it can be
assumed that there is at most one correct match for va with respect to source B (as both A
and B can not include any matches).

Definition 2.1. Let G = (V,E) be a similarity graph, A and B clean data sources
with A,B ⊂ V , va ∈ A and vb ∈ B entities descriptions from different data sources and
e(va,vb) ∈ E. The edge with the highest similarity for va relative to B can be determined
and is called the maximum edge:

emax(va, B) = argmax
b
{e(va,vb)} (2.2.2)

If an edge e(va,vb) is the maximum edge for both vertices at either side of it, the edge is
classfied as strong:

e(va,vb) = emax(va, B) ∧ e(va,vb) = emax(vb, A) (2.2.3)

If it is the maximum edge for exactly one of the adjoining vertices, the edge is classified
as normal:

e(va,vb) = emax(va, B) Y e(va,vb) = emax(vb, A) (2.2.4)

and if none of both cases apply, it is classified as weak:

e(va,vb) 6= emax(va, B) ∧ e(va,vb) 6= emax(vb, A) (2.2.5)

The chapters on the parallel implementation and the evaluation will refer to this concept
later on.

(a) (b)

Figure 2.3: Example Similarity Graph before (a) and after (b) Clustering

Clustering Using the similarity graph generated during the previous stage, clustering aims
at further refining the match classification by maximizing the intra-cluster similarity and

7



2 Theoretical Background

minimizing the inter-cluster similarity. The main benefits of this approach have already been
described in the previous chapter (see section 1.1). Subfigure (b) in figure 2.3 illustrates how
clustering can complete transitive closures and eliminate wrong matches from the example
similarity graph by highlighting clusters in grey. The entities a0 and c1 have been classified
as a match with regard to the similarity graph but are then decoupled as they are grouped
into different clusters. Moreover, the green link connecting entities a1 and c1 is added as they
are part of the same cluster, but have not been marked as a match in the similarity graph.
Sometimes matches can not be identified during match classification e.g. due to the applied
similarity functions or blocking technique. In this case clustering is particularly useful. As-
suming that the individual data sources do not contain any duplicates, inferring new matches
is only possible and necessary for data sets comprising more than two data sources, as clusters
determined based on n clean sources are limited to a size of n. In the case of n = 2, inferring
additional links based on the existing ones would lead to a cluster size > n since one link
already connects two entities.
A cluster that contains at most one entity per source is called source-consistent, which is
a preferable characteristic if working with clean data sources, as no two entities from the
same source are assumed to match. Some clustering methods may produce overlapping clus-
ters where one entity belongs to more than one cluster [38, p. 5]. Figure 2.4 exemplifies the
idea of source-consistency using the example similarity graph. Cluster C0 in subfigure (a) is
source-inconsistent as it contains two entities from source C. All clusters from subfigure (a)
are source-consistent, including no two entities from the same source. If a cluster is source-
consistent and furthermore includes an entity from each source, it is called a complete cluster,
like cluster C2 from subfigure (b).

(a) (b)

Figure 2.4: Example Similarity Graph with source-inconsistent (a) and source-consistent (b)
Clusters

2.3 Vertex-centric Programming

In order to provide high scalability and distributed graph processing, Famer is implemented
based on Apache Flink, a distributed stream and batch processing framework [4]. Flinks
Graph API Gelly supports the vertex-centric programming model, also known as 'think like
a vertex' (TLAV) model. Firstly published by Google in 2010 [25], TLAV frameworks aim at
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overcoming the drawbacks of sequential graph processing algorithms, which require random
access to all graph data. A vertex-centric computing framework iteratively executes a user-
defined function over all vertices of a graph. Instead of the global perspective of the data
employed by other distributed graph processing frameworks, programmers are encouraged to
take a local view of computation and 'think like a vertex ' [27, p. 2].
Flinks Graph API Gelly supports the TLAV model with a scatter-gather implementation
where the user-defined vertex function comprises two stages: During the scatter phase each
active vertex produces messages that will be send to other vertices. The vertex values are
then updated within the gather phase, depending on the incoming messages. If a vertex does
not receive any messages during one iteration it will stop forwarding messages to its neighbors
in the next iteration. Messages are recieved during the same iteration as they are sent. The
iterations, called supersteps, proceed synchronously until no more messages are sent or the
specified maximum of supersteps is exeeded. [16, p. 41].
The scatter-gather model has been applied successfully for all clustering algorithms imple-
mented in Famer. It will therefore form the basis of parallelizing the hierarchical clustering
algorithm which will be introduced the next section.

2.4 Hierarchical Agglomerative Clustering

Hierarchical cluster analysis comprises a group of clustering algorithms where every cluster is
a partition of two clusters of which each is again hierarchically clustered itself. The resulting
hierarchy is usually represented using a so-called dendrogram, a tree-like structure where
each leaf is a single data point and the nodes at each level symbolize the clusters at the
respective stage. Hence, the root node represents the output where all records are clustered
into one single group. This hierarchy can apparently be build in two ways: Either each record
is considered a cluster itself in the beginning and new clusters are formed by merging two
clusters (known as bottom-up or agglomerative approach) or all records are treated as one
cluster in the beginning and new clusters are formed by splitting former clusters in two (known
as the top-down or divisive approach) [10, p. 14]. As there are 2n possibilities of splitting a set
of n objects, the latter approach is usually not feasible for practical applications [17, p. 49].
Therefore, this study will only cover the agglomerative method, which is succinctly described
by Leskovec et. al. [24, p. 246] as follows:

Algorithm 2.1: Basic Hierarchical Agglomerative Clustering
1 Initialize each data point as a cluster
2 Pick the best two clusters to merge
3 Combine those two clusters into one cluster
4 If it is not time to stop go back to 2.

Once two clusters were merged they can not be separated during later steps. Hierarchical
agglomerative clustering (HAC) does not produce overlapping clusters but assigns only one
cluster ID per vertex.

The basic approach from algorithm 2.1 gives rise to the following questions:

9
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(1) How is the similarity between the data points calculated?

(2) How are the next two clusters to merge chosen?

(3) When does the algorithm stop merging clusters?

The first question can be answered easily: Unlike in other fields of application, the HAC
algorithm implemented within this study is not applied on a group data points but the graph
data from Famers linking module output. Hence, the similarity values are precalculated and
given in the form of the edge properties of the similarity graph.
The other two questions require more complex answers and will be subject of the succeeding
sections.

2.4.1 Linkage-Strategies

The decision which clusters to select for merging is mainly determined by the chosen linkage-
strategy. Assuming the best cluster candidates for merging are those having the highest
similarity value, a technique for redetermining the inter-cluster similarities after a cluster
merge has to be specified. There is a wide range of linkage-strategies addressing this compu-
tation, each of them showing a different impact on the final clustering result. This study will
cover three commonly used approaches, called single-, complete- and average-linkage. They
will be referred to as S-LINK, C-LINK and A-LINK, respectively. Other linkage-strategies
like median- and centroid-linkage or Ward’s method are not discussed within this study as
they require a more complex calculation of inter-cluster similarites, but their definition and
characteristics have been studied by many authors, such as Fung [10], Kaufmann et. al [17]
or Murtagh et. al [30].

Definition 2.2. Let A and B be two clusters and sim : A × B 7→ [0, 1] a similarity
function, then the three chosen linkage-strategies can be described as follows:

SimS−LINK(A,B) = maxa∈A,b∈B{sim(a, b)} (2.4.1)

SimC−LINK(A,B) = mina∈A,b∈B{sim(a, b)} (2.4.2)

SimA−LINK(A,B) = 1
|A||B|

∑
a∈A,b∈B

{sim(a, b)} (2.4.3)

[30, p. 89]

S-LINK determines the cluster similarity based on the two closest points from each cluster
and is also referred to as the nearest-neighbor strategy. This method is susceptible to outliers
which leads to a so-called chaining effect. Whenever two cluster come too close together even
at one point only, the clusters get merged immediately (and can not be separated in later
steps). This may result in larger clusters, where some cluster members are very far from each
other, like in figure 2.5 (a) [17, p. 47–48].

10



2 Theoretical Background

C-LINK is also known as the furthest-neighbor strategy and the cluster similarity is de-
termined by the two points most dissimilar from both clusters. This tends to produce very
compact clusters, where each cluster member is very close to the others, like in figure 2.5 (b)
and is useful to identify clusters that are not well separated [17, p. 47–48].
Note that the similarity graph may contain many entities that are not connected to each
other, those will be treated with a similarity of zero. Under the assumption that there are no
links between records from the same data source and clusters with a similarity of zero will
never get merged, clusters formed using this linkage strategy are always source-consistent.
This can be proven by contradiction: Assume that there is a cluster C build using the C-LINK
strategy that contains two entities v, w from the same data source. Then there must have
been a cluster merge between two clusters Cv and Cw with v ∈ Cv, w ∈ Cw and C = Cv ∪Cw

where SimC−LINK(Cv, Cw) > 0. By definition of C-LINK the cluster similarity is the min-
imum similarity between all entities from both cluster. Because of the assumption of clean
data sources it holds that sim(v, w) = 0. Therefore it is SimC−LINK(Cv, Cw) = 0, which
leads to a contradiction.

A-LINK acts as a compromise of the other two methods by defining the cluster similarity as
the average similarity over all edges connecting the two clusters. This results in clusters, where
all members have roughly the same similarity to each other, like in figure 2.5 (c) [17, p. 47–48].
Again, missing edges will be treated with a similarity value of zero, leading the cluster-linkage
to drop significantly if there are unconnected vertices between two clusters.

(a) elongated (b) compact but not well
separated

(c) ball-shaped

Figure 2.5: Cluster Types, adopted from Kaufmann et. al. [17, p. 48]

2.4.2 Stopping Condition

The application of HAC results in not only one but a set of clusterings, one at each level of the
cluster hierarchy. Working with small data sets, the complete dendrogram and clusters at each
node can easily be visualized, enabling the user to decide about the optimal clusters. Using
larger data sets complicates this process and generally determining the optimal clustering
from the hierarchy is not a trivial decision. Using the number of clusters as the stopping
condition is usually the easiest approach, but in the context of ER this number is unknown
and hence other methods have to be considered. There are several metrics, criteria and
even approaches to 'learn' the optimal threshold in HAC [7, 28] but they all come at high
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computational costs. To limit the scope of this theses, a new parameter, the merge threshold
t, will be introduced. The algorithm terminates if the maximum inter-cluster similarity falls
below t.

2.4.3 The Serial Hierarchical Agglomerative Clustering Algorithm

Now that the questions from section 2.4 have been answered, the serial HAC algorithm can
be described in algorithm 2.2.

Algorithm 2.2: Serial Hierarchical Agglomerative Clustering
Data: G = (V,E), threshold t ∈ [0, 1], linkage l ∈ {S − LINK,C − LINK,A− LINK}

1 Algorithm SerialHAC()
2 Q← initPriorityQueue(E)
3 M ← initHashMap()
4 for vi ∈ V do
5 vi.clusterID ← i
6 M.put(i, {vi})
7 repeat
8 e(i,j) ← Q.pop()
9 mergeClusters (i, j)

/* assume i > j, i is the new cluster ID */
10 updateSimilarities (i, l)
11 until e(i,j).weight < t or Q = {}
12 Procedure mergeClusters(clusterID cnew, clusterID cold)
13 for vk ∈M.get(cold) do
14 vk.clusterID ← cnew

15 M.get(cnew).add(vk)
16 M.remove(cold)
17 Procedure updateSimilarities(clusterID cnew, linkage l)
18 for i ∈ M.keySet \{cnew} do
19 Elink ←

⋃
e(i,cnew)

20 Q← Q− Elink

21 allLinks←M.get(i).size ∗M.get(c).size
22 enew ← initEdge(cnew, i, 0)
23 if l = A-LINK then
24 enew.weight← 1

allLinks

∑
e∈Elink

e.weight

25 else if l = S-LINK then
26 enew.weight← argmaxk{(ek ∈ Elink)}

/* only set the edge weight if there are no unconnected vertices */
27 else if l = C − LINK ∧ |Elink| = allLinks then
28 enew.weight← argmink{(ek ∈ Elink)}
29 Q← Q ∪ enew

In contrast to most traditional implementations that use a matrix representation for stor-
ing the cluster and vertex distances, this algorithm uses the preprocessed edges of the input
similarity graph and processes them using a priority queue based on the edge weights in
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descending order (line 2). To allow accessing all members of one cluster without iterating
over all vertices and comparing their assigned cluster IDs, a map data structure is used that
maps each cluster ID to the set of vertices that belong to the cluster (line 3).
First, each vertex is initialized with a unique cluster ID and an entry is added to the map
of cluster memberships (lines 4-6), hence each vertex is considered as a cluster of its own.
Now the edge with the maximum similarity value has to be found and processed, which can
be done by accessing the top element of the priority queue (line 8). The clusters from both
ends of the edge will be merged into one cluster (line 9) by unifying all vertices’ cluster IDs
from both clusters (lines 13–14) and adjusting the cluster map by removing the old cluster
ID (line 16) and adding all vertices from the old cluster to the set of vertices that is mapped
to the new cluster ID (line 15). Next, all edges connecting the newly formed cluster and any
another cluster have to be updated according to the specified linkage strategy (line 10). This
involves iterating over all other cluster IDs from the cluster map and determining all edges
that connect the new newly formed cluster and the one from the current iteration (line 19).
These edges will then be removed from the queue (line 20) so they can later be replaced by a
single edge representing the aggregated cluster similarity. In order to retrieve this similarity,
the number of all possible connections between the two clusters is calculated (line 21), which
is necessary as there might be unconnected vertices, whose weights have to be included into
the calculation of the new inter-cluster similarity by assuming a similarity of 0. The new edge
connecting the two currently processed clusters is initiated with a weight of 0 (line 22), its
new weight is then calculated according to the specified linkage strategy (lines 23 –28) and
it is added to the priority queue.
This procedure is repeated until the maximum edge similarity falls below the specified thresh-
old or until all edges have been processed (line 11). The output is a similarity graph where all
vertices within a cluster have been assigned the same cluster ID and vertices from different
clusters hold different cluster IDs.

For the S-LINK variant the algorithm can be even shortened by skipping the similarity update
procedure in line 10, significantly improving performance as the update of the edge weights
can only be calculated in quadratic runtime. This is possible because the topmost element
from the priority queue will always be the edge with the highest similarity with regard to
both adjoining clusters. It might happen that those have already been merged but this can
easily be tested by comparing the vertices’ cluster IDs prior to merging. This modified S-
LINK HAC version highly resembles the idea of Kruskals algorithm [21] for computing the
Minimum Spanning Tree (MST) of a graph and there is indeed a strong relation between the
MST and the S-LINK dendrogram of a graph, which will be further discussed in terms of
related work in chapter 3.

To illustrate the difference between the three linkage strategies, figure 2.6 shows the cluster
hierarchies and clustering output when HAC is applied on the example similarity graph
from figure 2.3 using different linkages but an equal merge threshold of 0.4. Dashed lines
represent cluster merges with a similarity lower than t. In this example only A-LINK is able
to determine the perfect clusters, while S-LINK only detects one large cluster and C-LINK
splits the second cluster in two smaller components. Note that algorithm 2.2 calls for strict
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(a) S-LINK (b) C-LINK (c) A-LINK

Figure 2.6: Cluster Hierarchies for the Example Similarity Graph using t = 0.4 and different
Linkage-Strategies

inequality of t and the currently processed edge weight (line 11), which means that even
for t = 0 the clusters 1 and 2 in figure 2.6b would not get merged, meaning that in this
particular case, C-LINK is not able detect the correct clustering not even by changing the
merge threshold configuration. S-LINK however would benefit from a higher merge threshold,
the correct clustering can be retrieved when t is chosen between 0.5 and 0.8. For A-LINK
on the contrary, a relatively low choice of t has a positive impact on the clustering result.
Raising t above 0.49 would split the cluster containing the entities with index 1 in two and
a threshold above 0.7 would cause the second cluster to split up as well. Whereas the same
split would already be performed for t > 0.6 using C-LINK, S-LINK is able to preserve the
ideal clustering until t ≤ 0.8.
This simple toy example already underlines the different behavior regarding the three linkage-
methods and points out the considerable impact of the newly introduced parameter t which
will be further evaluated using real-life data sets in chapter 5.
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3 Related Work

Entity Resolution has been the subject of many books, articles and surveys, including liter-
ature on the main methods and tools [20,41] but also studies focusing on large-scale ER [5].
This chapter analyzes previously undertaken studies regarding the application of clustering
methods in the context of large-scale ER and refers to a variety of distributed implementa-
tions of HAC from other domains. It intends to put this study in contrast to related ones and
aims to identify possibly adaptable approaches of parallel HAC for this thesis.

3.1 Clustering for Entity Resolution

Applying distributed clustering methods for multi-source ER has mainly been studied in the
context of the Famer framework [36–38]. By utilizing Apache Flink it can achieve better
performance and scalability than other parallel ER-approaches that are based on MapRe-
duce [3,19]. Previously implemented clustering techniques in Famer include Connected Com-
ponents, Center- and Merge- Center-Clustering, Correlation-Clustering and two versions of
Star-Clustering, all evaluated by Saeedi et. al. [37], a new algorithm called CLIP (Cluster
Repair based on Link Priority) and an approach for cluster repair based on CLIP, called
RLIP (Cluster Repair based on Link Priority), also studied by Saeedi et. al. [38]. They will
serve as a reference for the evaluation conducted in chapter 5 and will therefore be briefly
described for a more comprehensible and traceable argumentation regarding match quality
and runtime comparisons. The following descriptions are based on the implementations by
Saeedi et. al.:

Connected Components is the most straight-forward clustering approach as it simply de-
termines the subgraphs of a graph that are not connected to each other, regardless of the
edge weights.

Center Clustering focuses on edges with high similarities by iteratively determining the
edge with the highest similarity value and processing both adjoining vertices depending on
their center status. If both vertices are unassigned, they will form a new cluster where one
of them is picked center. If one of them is already chosen cluster center and the other is
unassigned, the latter will be added to the cluster of the center vertex. In any other case, the
edge will be ignored.

Merge Center Clustering is a modified version of the Center algorithm that merges two
clusters if a vertex from one cluster is very similar to the center of another cluster.

Star Clustering is based on computing a degree for each vertex and determining the unas-
signed vertex with the highest degree, whose neighbors are then added to its cluster. Star-1
calculates the degree based on the number of outgoing edges, while Star-2 uses their average
similarity degrees. This clustering approach may result in overlapping clusters.
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Correlation Clustering is an optimization problem that considers a graph with positive
and negative edge weights indicating the vertices similarities. The clustering is retrieved by
maximizing the sum of positive edge weights within clusters plus the sum of absolute negative
edge weights between the cluster. The implementation by Saeedi et. al. uses an approximate
approach called CCPivot.

CLIP has been developed based on the concept of link strength described in section 2.2. It
initially discovers clusters based on the connected components only considering strong links
and starts by determining only complete clusters. It then processes the remaining connected
components, additionally including normal links, and iteratively transforms them into source-
consistent clusters.

Other clustering algorithms like Markov Clustering, Cut Clustering and Ricochet Clustering
have also been evaluated but only in the context of Dirty ER [12].
Hierarchical clustering has mainly been applied on smaller data sets due to its runtime com-
plexity and there is no known application of HAC in the context of multi-source ER at
the time of this study. The further course of this chapter will therefore focus on parallel
HAC approaches from other domains, considering them as possible bases for the distributed
implementation of this study.

3.2 Distributed Hierarchical Clustering

Most prior work on parallel HAC algorithms focused on scaling the single-linkage algorithm.
This results from the fact that computing the the single-linkage clustering hierarchy can be
reduced to the problem of creating the Minimum Spanning Tree (MST), which has been
covered in many previous studies. Theoretical results on this subject have been presented by
Bentley et. al. [2], where a parallel algorithm for computing the MST is introduced. Dehne et.
al. [9] and Dahlhaus [6] cover the relation between the MST construction and single-linkage
HAC and Olsen [31] also presents theoretical results on distributed single-linkage HAC. Prac-
tical parallel single-linkage implementations include an algorithm called SHRINK [13] which
is based on SLINK, the state-of-the-art single-linkage HAC algorithm [39], an implementa-
tion based on the MST concept and build on top of Apache Spark [14] and an approximate
single-link algorithm using Locality-Sensitive Hashing (LSH) [18].
Despite its advantages concerning runtimes, the single-link version of HAC is less interesting
for this study as its clustering results coincide exactly with those from the Connected Com-
ponents approach, when the latter is executed on a similarity graph with a match threshold
θ equal to the merge threshold t of the single-linkage algorithm. The quality results pre-
sented in section 5.3 will further confirm this fact. Because Connected Components already
achieves the overall fastest runtime results of all in Famer implemented clustering algorithms,
single-linkage HAC is not expected to make any new contributions. However, for the sake of
completeness and comparability it will be implemented alongside the other two HAC algo-
rithms.
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A general approach for distributed HAC derives when looking into additional studies that
do not focus exclusively on single-linkage. None of the related studies considered using the
vertex-centric model but rather applied the naive concept of parallelization through parti-
tioning: The input data is split into sub data sets on which an (optimzed) sequential HAC
algorithm is performed whose results are then successively merged. Whereas Jin et. al. [14]
and Hendrix et. al. [13] randomly distribute the input data into equally sized subsets, other
approaches aim at grouping similar data points together. This includes the pPOP algorithm,
that uses axis-aligned overlapping cells [8], the concept of a Nearest-Neighbor Boundary based
on the idea of K-D- and Quadtrees [43], the application of a divisive clustering algorithm such
as k-means [26] or the use of LSH [18,22].
A substantial difference between those studies and this one occurs when looking at the type
of the input data. Unlike the related approaches, which process a set data points (mostly
euclidean and two-dimensional) the HAC algorithm for this study is executed on the prepro-
cessed similarity graph. Its edge values are already independent of the type of the underlying
data and methods like pPOP, K-D-Trees or LSH would require to access to the data points
and their properties. Partitioning methods that exclusively depend on the calculated sim-
ilarity values are therefore preferable. The similarity graph itself already provides such a
partition by its natural decomposition into connected components. This structure should not
be ignored but used to benefit and further splitting seems only reasonable if this structure
can be preserved or even refined. Another issue to consider is load-balancing: Neither using
the connected components nor any of the other mentioned approaches can guarantee equally
sized subsets; with the exception of a random distribution. This however would abolish the
mentioned and useful graph structure which has already been achieved by preprocessing tasks
prior to clustering.

Summarizing the conducted research it becomes clear that none of the previously applied
methods is directly adaptable to the problem domain of this thesis. In addition to a naive
approach utilizing partitioning based on connected components, the distributed version of
HAC is developed using a different variant of HAC. It is based on the concept of Reciprococal
Nearest Neighbors and enables a vertex-centric perspective of the algorithm. The idea was
originally surveyed by Murtagh et. al [29] and is mentioned again later by the same author [30]
where its suitability for a parallel implementation is pointed out but without reference to
practical realizations.
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4 Implementing Distributed Hierarchical Clustering

This section presents the developed distributed implementation of hierarchical agglomerative
clustering within Famer. It will first outline the challenges encountered during parallelization
of the serial HAC algorithm and proceed by describing the drawbacks of a naive solution
using partitioning. Introducing the previously mentioned alternative HAC algorithm using
Reciprocal Nearest Neighbors it will thoroughly explain how a vertex-centric version of HAC
can be developed based on this concept. The implemented scatter-gather algorithm will be
described in detail and its application will be illustrated using a simple example graph. All
source code is available at the public GitLab repository of the Famer project 1.

4.1 Challenges of Parallelization

In spite of the simple idea that underlies the basic HAC algorithm, a parallel implementation
encounters several challenges, including the inherently sequential structure and high data
dependence of the HAC algorithm. Each merge strongly depends on all previous merges,
because all updated similarity values have to be considered and the global maximum similarity
edge has to be found. This requires access to all graph data and makes it difficult to adapt
to the vertex-centric model, which is why a naive implementation based on partitioning has
been developed prior to a vertex-centric one. Machines working in parallel would need to find
their local maximum similarity edge before communicating this value to all the other parallel
instances and determining the overall maximum value. Dividing the similarity graph into
its connected components allows to skip this communication effort as the similarity between
two records from one connected component to the other is always zero, as there are no links
between any two connected components. Therefore, their hierarchies are build independently
from each other which further avoids the need of merging the built sub-hierarchies. However,
applying the serial HAC simultaneously on all connected components can not guarantee
load balancing. Although many links have already been removed during preprocessing tasks
in Famer, the size of the connected components might be unbalanced, depending on the
characteristics of the input data. Especially in the case of dirtier data sets where a lower
match threshold configuration is necessary, the similarity graph might have less and larger
connected components. The overall runtime is hence determined by the largest connected
component, leading to a bottleneck.

4.2 Naive Implementation

Nevertheless, the naive approach of applying the serial HAC algorithm in parallel on each
connected component has been implemented and tested prior to a vertex-centric implemen-
tation. A simplified Java code snippet is shown in listing 4.1. The implementation is based

1https://git.informatik.uni-leipzig.de/dbs/FAMER/-/tree/master/famer-clustering/src/main/java/org/
gradoop/famer/clustering/parallelClustering/hierarchicalClustering

18



4 Implementing Distributed Hierarchical Clustering

on the coGroup operator provided by Apache Flinks DataSet API. It combines two data sets
by first grouping each data set after a key and then joining the groups by calling a function
with the two sets for each key. This is necessary since the serial HAC algorithm requires a set
of vertices as well as a set of edges as the input. After applying the Connected Components
algorithm on the input graph (lines 10-14) all vertices from the same connected component
have been assigned the same cluster ID. Additionally, the cluster ID needs to get associated
with all the edges that belong to that connected component. This is implemented in lines
17-24 using the groupReduceOnNeighbors operator provided by Flinks Graph API Gelly. For
each edge a tuple consisting of the edge and its source vertex is created, enabling the join
within the coGroup operator based on the cluster ID of the respective connected component.

1 if ( removeWeakLinks ) {
2 /* keep all edges with selection status > 0 (0 = weak)*/
3 DataSet <EPGMEdge > allEdgesWithSelectedStatus = ... ;
4 edges = allEdgesWithSelectedStatus . filter (new

FilterEdgesOnSelectedStatus (0));
5 }
6

7 /* run connected components */
8 inputGraph = inputGraph . callForGraph (
9 new ConnectedComponents (...));

10

11 /* create a data set that contains each edge from the gelly graph
and its source vertex , this way an edge can be associated with
the cluster id of the connected component it is part of */

12 Graph <GradoopId , EPGMVertex , Double > gellyGraph = ... ;
13 DataSet <Tuple2 <Edge <GradoopId , Double >, Vertex <GradoopId ,

EPGMVertex >>> edgesWithSourceVertex =
14 gellyGraph . groupReduceOnNeighbors (new

GellyGraphToEdgeWithSourceVertex ());
15

16 /* run the serial hierarchical clustering algorithm on each
connected component */

17 DataSet <EPGMVertex > resultVertices = inputGraph . getVertices ()
18 . coGroup ( edgesWithSourceVertex )
19 .where(new EPGMVertexClusterIdSelector ())
20 . equalTo (new EdgeSourceClusterIdSelector ())
21 .with(new SerialClusteringOnSubgraph ( linkageType , threshold ));

Listing 4.1: Naive Implementation of Distributed HAC using Apache Flinks DataSet and
Gelly APIs

As assumed, first results have shown that the approach is not feasible for large data sets
due to unacceptable runtimes. An exception however, is the S-LINK version as it does not
require any updates regarding the edge weights and its serial version can be executed in linear
time. Runtime results can be found in appendix B. Since the aim of this study is developing
a scalable solution for all three HAC varaints, the first naive approach turned out to be
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yet insufficient. A further attempt to resolve this issue has been undertaken by utilizing the
concept of link strength, outlined in section 2.2: By removing links classified as weak prior to
clustering, the number of connected components increases while their average size decreases,
leading to improved conditions for load-balancing. As weak links are matches that are unlikely
to be correct, their removal does not adversly affect the clustering result. On the contrary,
an evaluation has shown that apart from slightly better runtimes the clustering quality also
improved by a noticeable degree. Detailed quality results rearding the removal of weak links
can be found in appendix A. Still, the runtimes for the A-LINK and C-LINK algorithm were
unaccetable for large data sets, making even this enhanced naive approach impracticable for
the application in Famer.

4.3 Vertex-centric Implementation

During an analysis of related work in chapter 3 it already became clear that HAC is no
obvious fit for vertex-centric computing as there exist no studies on this subject so far. To
overcome the outlined challenges such as the inherently sequential structure and high data
dependence of the traditional HAC algorithm, a modified version of HAC has been developed
for the vertex-centric implementation. In order to enable a vertex-centric view, it utilizes
the concept of Reciprocal Nearest Neighbors (RNNs). The main idea and the accompanying
advantages are described in the following section.

4.3.1 Hierarchical Clustering based on Reciprocal Nearest Neighbors

The definition below formally introduces the concept of RNNs:

Definition 4.1. Let G = (V,E) be an undirected similarity graph, vi, vj , vk ∈ V vertices
from that graph, e(vi,vk) ∈ E the edge connecting vi, vj , sim : V ×V 7→ [0, 1] a similarity
function and p ∈ [0, 1] some simlarity value. For vi, the vertex on the other end of the
edge with the highest similarity value is called its Nearest Neighbor (NN):

NN(vi) = argmax
k
{e(vi,vk)} (4.3.1)

Two vertices vi and vj are called Reciprocal or Mutual Nearest Neighbors (RNNs) if the
following equation holds:

NN(vi) = vj ∧NN(vj) = vi (4.3.2)
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Given the two RNNs vi, vj and a linkage strategy link ∈ {S − LINK,C − LINK,A −
LINK} the following properties hold:

sim(vi, vj) > p (4.3.3)

sim(vi, vk) < p (4.3.4)

sim(vj , vk) < p (4.3.5)

Simlink(vi ∪ vj , vk) < p (4.3.6)

[29, p. 356]

Formulas 4.3.3 to 4.3.5 describe the characteristics of RNNs, stating that if vi and vj are
RNNs, there exists no other vertex vk that is more similar to vj or vi than vi or vj respectively.
The inequation 4.3.6 is known as the reducibility property and states that after merging vi

and vj into one cluster, there still is no other vertex that is more similar to the newly
merged cluster than vi and vj to each other. This enables merging all RNNs simultaneously
without affecting the cluster hierarchy. Figure 4.1 illustrates the (reciprocal) nearest-neighbor
relations within the example similarity graph: Here a0 is the NN of c0 because the edge weight
connecting c0 to a0 is greater than the one linking c0 and b0. However, a0 has b0 as its NN
and a0 is also the NN of b0. This makes them RNNs, indicated by red arrows.

Figure 4.1: Nearest Neighbor Relations within the Example Similarity Graph

Based on the definition from above, the original HAC-RNN algorithm is outlined by Murtagh
[29, p. 356] as follows:

Algorithm 4.2: Hierarchical Agglomerative Clustering based on RNNs
1 Determine all RNNs
2 Replace all RNNs by cluster centers, thus reducing the set of points
3 Redetermine the NNs and hence RNNs
4 Goto to line 2 until only one point remains

The structure of this algorithm is obviously more suitable for parallel processing, allowing
simultaneous merges and moreover the detection of RNNs from a vertex-centric perspective.
Instead of finding the global maximum edge which requires access to the whole graph, RNNs
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can easily be determined by iterating over all in-and outgoing edges of each vertex. Further-
more does the use of a similarity graph provide an enormous advantage over the traditional
HAC version, where a matrix representation is used to maintain the inter-cluster similarities.
Instead of finding and updating the similarities to all other clusters, only connected clusters
have to be considered as an RNN.
Still, updating the similarity values after a cluster merge involves regarding all in- and outgo-
ing edges from all cluster members. This aggregation can hardly be parallelized and requires
a centralized computation. By exclusively applying vertex-centric programming the global
view of clusters and cluster memberships is lost which leads to the need of an alternative
cluster representation. For previously implemented clustering methods in Famer maintaining
and updating a cluster ID per vertex sufficed, but in the case of hierarchical clustering intra-
cluster communication is necessary to enable computing cluster similarities based on all edges
from each single cluster member. This issue is solved by applying the following concepts:

(1) Each cluster is represented by a center vertex which maintains all cluster information
including cluster members and inter-cluster similarities.

(2) A center vertex keeps a list of all cluster members which in turn only store their center
vertex ID.

(3) Initially all vertices are centers (as each vertex is a single cluster).

(4) After merging two clusters a new center vertex is chosen and all links are adjusted in
order to only connect cluster centers, enabling them to compute the new inter-cluster
similarities based on the chosen linkage method.

The message-passing scatter-gather concept provided by Flinks Gelly API allows the center
vertices to communicate with all their cluster members and the other cluster centers and
thereby enables them to maintain the described vertex-centric cluster structure.

Algorithm 4.3: Parallel Hierarchical Agglomerative Clustering based on RNNs
Data: G = (V,E), threshold t ∈ [0, 1], linkage l ∈ {S − LINK,C − LINK,A− LINK}

1 initV ertexProperties()
2 for vi ∈ V in parallel do
3 repeat
4 vj ← vi.computeNN(l)
5 if vj .computeNN(l) = vi then

/* assume i > j, i is the new center */
6 removeConnectingEdges(i, j)
7 vj .isCenter ← false
8 for vk ∈ vj .clusterMembers do
9 vk.clusterID ← vi.clusterID

10 vi.clusterMembers← vi.clusterMembers ∪ {vk}
11 vi.edges← vi.edges ∪ vk.edges

12 until computeLinkage(vi, vj , l) ≤ t or vj = null;

Algorithm 4.3 illustrates the parallel version of HAC based on RNNs. Exactly as in the serial
HAC algorithm, the input data is given in form of a similarity graph, a merge threshold and a

22



4 Implementing Distributed Hierarchical Clustering

linkage strategy. Prior to applying a procedure in parallel on each vertex of the input graph,
vertex properties are assigned including a priority values, initial cluster IDs and the center
status (line 1). Each center vertex then determines its nearest-neighbor by finding the in- or
outgoing cluster connection with the highest similarity value (line 4). If there is more than
one candidate the vertex is chosen depending on a random permutation of vertex priorities
assigned during the prior stage. If an RNN pair is detected (line 5), the edges connecting them
will be removed to prevent selecting them as RNNs again (line 6) and one of the vertices will
be chosen as the new cluster center (line 7). Now the cluster center vertex has to collect all
information from the cluster of the vertex it was merged with (lines 8-11). For each cluster
member of the former cluster (including the old center vertex), a new cluster ID will be set
(line 9), it will be added to the list of cluster members of the new cluster center (line 10)
and all edges will be added to new cluster center (line 11). The algorithm terminates if no
more nearest neighbor could be determined (line 12, vj = null) or the similarity between two
RNNs is less or equal than the chosen merge threshold.

4.3.2 Scatter-Gather Algorithm

The algorithm from the previous section will now be converted into a scatter-gather imple-
mentation. As updating the edge weights after a cluster merge is a fundamental part of the
algorithm and Flinks Gelly API does not support changing edge values but only the vertex
properties, an additional property is required. It stores all neighboring vertices and corre-
sponding edge weights, which enables edge updates during the gather phases. In order to
reduce memory requirements, not every single edge but a representative map entry for each
connected cluster is maintained. For the S-LINK variant, only the current maximum simi-
larity per connected cluster is stored, all other edges can be ignored. After a cluster merge
the newly added edge weights are compared to the current maximum and the map entries
are updated accordingly. A similar approach is applied for C-LINK, but additionally to the
current minimum similarity per cluster the exact number of connecting edges (but not every
single edge weight) is also stored and updated. This is necessary to detect the case of uncon-
nected vertices between two clusters, which leads to a cluster similarity of zero. For A-LINK
the sum of all similarities is kept and updated. This way the average can be easily deter-
mined by dividing the saved sum by the product of both cluster sizes. Another consequence
deriving from the impossibility of edge updates is that their is no way of storing the resulting
hierarchy, i.e. an output graph including the modified edge weights. The algorithms outcome
is simply a graph representing the clustering at one level of the hierarchy respective to t.
By supporting to use a clustering output generated in a previous execution as the input for
another run with a higher threshold value, computation effort could be saved since not every
cluster merge has to be recalculated but only those above the threshold of the input graph.
This strategy has not been tested within the scope of study but could be implemented with
minor code changes in future work.

The scatter-gather version of algorithm 4.3 consists of four phases. Firstly, RNNs are deter-
mined, then the clusters of both RNN vertices are merged. After that, the edge property of
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Algorithm 4.4: Scatter-Gather Hierarchical Agglomerative Clustering
Data: G = (V, E), threshold t ∈ [0, 1], linkageType l ∈ {single, complete, average}

1 Algorithm ScatterGatherHAC()
2 initVertexProperties()
3 repeat

/* Phase 1: determine RNNs */
4 Scatter1(Vertex v)
5 Gather1(Vertex v, MessageIterator

messages)
/* Phase 2: merge clusters */

6 Scatter2(Vertex v)
7 Gather2(Vertex v, MessageIterator

messages)
/* Phase 3: update edges */

8 Scatter3(Vertex v)
9 Gather3(Vertex v, MessageIterator

messages)
/* Phase 4: recalculate similarities */

10 Scatter4(Vertex v)
11 Gather4(Vertex v, MessageIterator

messages)
12 until no more messages are sent
13 Procedure Scatter1(Vertex v)
14 if v.NN != null then
15 msg.src← v.ID
16 msg.prio← v.prio
17 sentMessageT o(v.NN, msg)

18 Procedure Gather1(Vertex v, MessageIterator
messages)

19 for msg ∈ messages do
20 if msg.src == v.NN then
21 if msg.prio > v.prio then
22 v.isCenter ← false
23 v.clusterID ← msg.src
24 v.centerID ← msg.src
25 v.centerChanged← true

26 else
27 v.clusterMembers←

v.clusterMembers ∪msg.src

28 v.edges← v.edges− v.edges.get(msg.src)

29 Procedure Scatter2(Vertex v)
30 if v.CenterChanged then
31 msg.centerID ← v.centerID
32 for w ∈ v.clusterMembers do
33 sendMessageT o(w, msg)
34 msg.clusterMembers← v.clusterMembers
35 sendMessageT o(v.centerID, msg)
36 msg.messageT ype← 1
37 for x ∈ v.edges do
38 sendMessageT o(x, msg)

39 Procedure Gather2(Vertex v, MessageIterator
messages)

40 for msg ∈ messages do
41 if msg.messageType == 1 then
42 v.updateEdges(msg.centerID)
43 else
44 if v.isCenter then
45 v.clusterMembers← v.clusterMembers ∪

msg.clusterMembers

46 else
47 v.clusterID ← msg.centerID
48 v.centerID ← msg.centerID

49 Procedure Scatter3(Vertex v)
50 if v.centerChanged then
51 for edge ∈ v.edges do
52 msg.ID ← edge.tar
53 msg.similarity ← edge.value
54 sendMessageT o(v.centerID, msg)

55 Procedure Gather3(Vertex v, MessageIterator
messages)

56 for msg ∈ messages do
57 v.updateEdges(msg.ID, msg.similarity)
58 if v.centerChanged then
59 v.centerChanged← false

60 Procedure Scatter4(Vertex v)
61 if v.isCenter then
62 msg.src← v.ID
63 msg.prio← v.prio
64 for edge ∈ v.edges do
65 msg.clusterSize← v.clusterMembers.size
66 sendMessageT o(edge.tar, msg)

67 Procedure Gather4(Vertex v, MessageIterator
messages)

68 newNN ← null
69 for msg ∈ messages do
70 linkCount =

v.clusterMembers.size ∗msg.clusterSize
71 sim←

calcSim(v.edges.get(msg.src), linkCount, l)
72 if sim > t && (sim > max || sim == max &&

msg.prio > newNN.prio) then
73 max← sim
74 newNN ← msg.src

75 v.NN ← newNN

7777

all involved vertices is updated and lastly the new center vertices update their similarities
and thereby their nearest neighbors. Like in algorithm 4.3, vertex properties, e.g. priority
values, inital NNs, edge properties and cluster IDs are initialized prior to the first scatter-
gather superstep. The detailed procedure is outlined in algorithm 4.4. It repeatedly passes
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the four phases until no more messages are sent, meaning that no new cluster merges can be
performed.

Phase 1 During the first scatter step a message including the own vertex ID and priority
is send to the nearest neighbor vertex, if there is one (lines 14-17). In the gather step, each
vertex compares the sender ID of all incoming messages with its nearest neighbor ID. If a
match is detected, the vertices are RNNs (line 20) and the vertex properties are adjusted
exactly as previously described in algorithm 4.3 (lines 22-28).

Phase 2 If a vertex changed its center status to false during the previous phase (line 30),
it now produces the following messages to complete the cluster merge: one for each cluster
member informing it about the new cluster center and cluster ID (line 33), one for the new
center including the new cluster members (line 35) and one for each neighbor including the
new center ID, so they can update their edges accordingly, making sure all edges are only
connecting center vertices before sending them to the new cluster center in the next phase
(line 38). A message type is used (line 36) to distinguish the incoming messages during the
gather step, where all receiving vertices update their properties accordingly (lines 40-48).

Phase 3 Now that all edges were adjusted, the old center vertices produce messages for
their new cluster centers including all their neighbors and corresponding link values (lines
50-54), which then update their edge property according the received messages in the gather
step (lines 56-57). The old centers can now remove their center-changed property because
they do not need to produce any more messages (lines 58-59).

Phase 4 During the last phase the nearest neighbor vertices are recalculated. All centers
produce a message for each connected center including their own vertex ID, priority and the
size of their own cluster (lines 61-66), which is necessary for correctly calculating the new
similarity during the gather step (lines 70-71). For determining the new nearest neighbor, the
vertex iterates over all incoming messages (hence all connected clusters) finding the one with
the highest similarity and only keeping it if the similarity is greater than the merge threshold
(line 72). If this is not the case, the new NN will be null and the vertex will not produce any
messages during the following phase. Thus, after each round of four supersteps the number
of active vertices and clusters decreases.

Figure 4.2 illustrates the application of the described algorithm on the example graph from
figure 2.3 using A-LINK and a merge threshold of t = 0.4 There are two supersteps necessary
until the algorithm terminates, shown in the first and second line respectively. Clusters are
marked with dashed lines, center vertices are shown blue and non-centers white, messages
are represented by thick arrows and red lines illustrate adjusted edges.
During the first phase of superstep 1, the vertex pairs (a0, b0) and (b1, c1) are detected
as RNNs. Until this point all clusters only comprise one vertex which is why no additional
cluster members have to be informed about the cluster merge during phase 2. The center
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4 Implementing Distributed Hierarchical Clustering

Figure 4.2: A-LINK Scatter-Gather HAC applied on the Example Similarity Graph with
t = 0.4

status of vertices a0 and c1 is removed and they inform their neighbor vertices. Their edge
targets are then updated accordingly, visible in phase 3. Now the old centers a0 and c1 send
their adjusted neighbors to new cluster centers b0 and b1. To produce the firsts superstep
output, all center vertices communicate their new cluster sizes among each other in phase
4. E.g. vertex b0 receives a message from b1 including the information that the cluster of b1

consists of two vertices. Using its own cluster size, the new edge weight is computed according
to the A-LINK strategy by the sum of all edge weights divided by the product of both cluster
sizes , i.e. 0.5

2∗2 = 0.125.
Employing the adjusted edge weights, RNNs are now redetermined in phase 1 of the second
superstep. Whereas the cluster center of the first cluster is not changed, the second cluster
has now a1 as the new center. Since c1 is also part of this cluster, b1 needs to send a message
to c1 including the new cluster and center ID. As before, the old center vertex b1 informs
its neighbor b0 about the center change, causing the connecting edge to adjust. No messages
are necessary in phase 3 since all edges are already only connecting cluster centers. Again,
the remaining center vertices communicate their cluster sizes among each other in phase 4,
leading to the final clustering output. To ensure the correct computation of the new average
edge weight, the sum and number of all connecting edges is internally stored, i.e. the new
average is 0.5

3∗3 . Even though b0 and a1 are RNNs, the algorithm terminates because their
similarity is lower than the merge threshold of 0.4.
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5 Evaluation

The scatter-gather algorithm will now be comparatively evaluated regarding its effectiveness
and efficiency using four data sets from various domains applying different input specifica-
tions. All match quality results obtained using the scatter-gather implementation correspond
to those from the naive implementation. The quality metrics used for this evaluation and
the characteristics of the data sets will be described before analyzing the match quality and
subsequently runtimes and scalability. All results will be compared to the seven previously
implemented clustering schemes from Famer. Lastly, a comparative rating of the three HAC
variants will be presented.

5.1 Quality Metrics

To evaluate the match quality of the clustering results, the standard metrics precision, recall
and f-measure are used. They are determined by comparison of the computed match pairs (all
entities from the same cluster are assumed as matches) with the perfect match pairs, that
were either determined manually or were available because the data set was synthetically
corrupted. For the MSCD data set an approximate golden truth had to be used.

real match no match
match
detected

true postive
(tp)

false positive
(fp)

detected
positives (dp)

no match
detected

false negative
(fn)

true negative
(tn)

detected
negatives (dn)

real positives
(rp)

real negatives
(rn)

Table 5.1: Contingency Table, adopted from Powers [33, p. 2]

Determining the match quality can be traced back to a simple binary classification problem,
assessing the condition if a detected match is actually a real match. The computation of
the three metrics are based on a so-called contingency table, describing the relation between
actual matches and the determined ones as shown in table 5.1.

Definition 5.1. Let tp, fp, dp and rp refer to the definitions from table 5.1. Then the
following definitions hold:

Precision P = tp

tp+ fp
= tp

dp
(5.1.1)

Recall R = tp

tp+ fn
= tp

rp
(5.1.2)

F-Measure F = 2 ∗ P ∗R
P +R

(5.1.3)

[33, p. 2–4]
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While the precision defines the share of correctly clustered entities of all entities within a
detected cluster, the recall defines the share of correctly clustered entities from all entities
that should belong to a cluster. A good precision does therefore indicate that only truly
matching entities are found, whereas a good recall indicates that all matching entities have
been found. The f-measure combines both metrics in their harmonic mean. By increasing the
match threshold θ, links within the similarity graph are eliminated and therefore the amount
of false positives decreases, because lower similarity edges are more likely to be incorrectly
detected matches. Hence, precision increases. At the same time, the amount of false negatives
rises as the chance of removing correct matches increases with the match threshold, thus the
recall falls.

5.2 Data Sets and Configurations Setup

This evaluation is based the same data sets that where used to study the seven clustering
schemes that are already part of the Famer framework [23, 37, 38]. The four data sets each
vary in size, their number of sources and degree of corruption. Their main characteristics and
the applied input configurations are summarized in tables 5.2 and 5.3.

name domain attributes #entities #sources #clusters #perfect
match
pairs

DS1 geo- label, 3,054 4 820 4,391
graphical longitude,

latitude
DS2 music artist, title 20,000 5 10,000 16,250

album, year,
length

DS3-5M persons name, 5,000,000 5 3,500,840 3,331,384
DS3-10M surname, 10,000,000 10 6,625,848 14,995,973

suburb,
postcode

DSC camera hetereo- 21,023 23 3,910 368,546
models genous

key-value
pairs
Table 5.2: Data Set Characteristics

The three data sets DS1, DS2 and DS3 have been cleaned prior to clustering, i.e. the individual
data sources do not contain any duplicates. The smallest data set DS1 is a real-world data
set including geographical entities for which the perfect clusters were manually determined.
The other two data sets have been synthetically modified using data generators. The second-
largest data set DS2 is based on real data from the MusicBrainz database and is heavily
corrupted containing duplicates for 50% of the original records in two to five of the five
sources. DS3 is the largest data set and consists of five and ten sources respectively, each
including one million entities from the North Carolina voter registry. 50% of its records are
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duplicated without any corruption and present in all sources, the other 50% are corrupted
using a moderate corruption rate of 20%, half of them are present in all sources whereas the
remaining half appear in only some sources.

name blocking key similarity functions match rule merge
threshold

DS1 PreLen1(label) sim1: Jarowinkler(name) sim1 ≥ θ θ
sim2: distance sim2 ≤ 1358km

DS2 PreLen1(album) sim: 3Gram(title) sim ≥ θ θ

DS3 PreLen3(surname) sim: avg(3Gram(name), sim ≥ θ θ
3Gram(surname),
3Gram(suburb),
3Gram(postcode))

DSC PreLen3(manu- sim1: numerical similarity sim1 ≥ 0.3 θ
facturers name) for numerical values avg(sim1,
PreLen100(model sim2: 3Gram sim2) ≥ θ
number) for string values

Table 5.3: Data Set Input Specifications

To further evaluate hierarchical clustering in the case of MSCD ER, a data set including
mixed and dirty data sources is used, its additional specifications can be found in tables 5.4
and 5.5. The data set is based on test data from the ACM SIGMOD 2020 Programming
Contest2, containing approximately 30,000 product specifications from 24 dirty data sources.
Each source is an e-commerce website and their names and numbers of entities are listed in
table 5.4. All product specifications refer to camera models. For the purpose of this study,
the original data set was filtered, the data source www.alibaba.com has been excluded and
eight variants of the data set were generated, varying the share of clean data sources between
0 and 100 percent as outlined in table 5.5. As source number 7 (www.ebay.com) presents by
far the largest data source, the choice of considering it as dirty or clean greatly influences the
clustering result. DSC-26 and DSC-32 are used to evaluate this impact and therefore contain
the data source in a clean and a dirty form respectively. Furthermore, two different data sets
with a share of 62 percent clean sources have been generated. Both of them include source
number 7 in a clean form, but all other clean sources from DSC-62A are left dirty in DSC-62B
and vice versa. As the corruption concerning data set DSC is not generated synthetically and
the perfect match pairs can not be determined manually, the match pairs of the SIGMOID
contest winner 3 is considered the perfect match result. Applying extensive domain specific
preprocessing and utilizing a list of nearly all available cameras on the market, the winners
result achieved an f-measure of 0.99. On the contrary, Famer is a generic ER-tool that can
be used for data sets regardless of any domain information.

Prior to clustering, the similarity graphs were generated by Famer’s linking module using the
specifications from table 5.3. Firstly, Standard Blocking was applied on all data sets. For the
clean data sets DS1-DS3, the prefix of the specified property was used. In case of the MSCD

2http://www.inf.uniroma3.it/db/sigmod2020contest/index.html
3http://www.inf.uniroma3.it/db/sigmod2020contest/posters/SIGMODPoster.pdf
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data set, a key combined of the manufacturers name and the model number was applied and
only pairs with exactly the same model name, manufacturers part number (mpn) or european
part number (ean) were kept. Secondly, similarities were calculated based on different string
similarity functions on chosen properties, as well as in the case of DS1, the geographical
distance and a numerical similarity for for numerical attributes in DSC.
The match threshold θ is varied from 0.75 to 0.9 for DS1 and from 0.6 to 0.9 for DS3. For the
harder match problems DS2 and DSC θ had to be chosen lower to achieve acceptable results
and is set between 0.35 an 0.45 in the case of DS2 and between 0.3 and 0.7 for DSC. All
mentioned configurations have been determined during previously conducted studies [23, 37]
by performing a large range of experiments using different input specifications. The match
threshold t is chosen equal to θ for all three HAC algorithms. This decision will be justified
in detail in the following section by evaluating a variety of merge and match thresholds
configurations and their impact on the clustering result.

name ID # entities # entities deduplicated
www.buy.net 1 358 244
www.cammarkt.com 2 198 94
www.buzzillions.com 3 832 630
www.cambuy.com.au 4 118 56
www.camerafarm.com.au 5 120 59
www.canon-europe.com 6 164 163
www.ebay.com 7 14,009 3,255
www.eglobalcentral.co.uk 8 190 75
www.flipkart.com 9 118 47
www.garricks.com.au 10 130 69
www.gosale.com 11 895 578
www.henrys.com 12 181 137
www.ilgs.net 13 102 64
www.mypriceindia.com 14 347 279
www.pcconnection.com 15 211 126
www.price-hunt.com 16 327 282
www.pricedekho.com 17 366 325
www.priceme.co.nz 18 740 475
www.shopbot.com.au 19 516 334
www.shopmania.in 20 630 556
www.ukdigitalcameras.co.uk 21 129 73
www.walmart.com 22 195 115
www.wexphotographic.com 23 147 87

Table 5.4: Camera Data Sources

name % clean sources clean source IDs # clean entities # dirty entities
DSC-0 0 - 0 21,023
DSC-26 26 1-6, 8-23 4,868 14,009
DSC-32 32 7 3,255 7,014
DSC-50 50 7, 18, 19, 20, 22,

23
4,882 4,786

DSC-62A 62 1, 4, 6, 7, 9, 11,
13, 15, 17, 17, 19,
20

5,748 3,536

DSC-62B 62 2, 3, 5, 7, 8, 10,
12, 14, 16, 18,
21-23

5,630 3,478

DSC-80 80 1-12, 14-18 6,894 3,478
DSC-100 100 1-23 8,123 0

Table 5.5: MSCD Data Sets
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5.3 Match Quality of Clustering Approaches

The following match quality evaluation is split into three subsections. Before comparing the
match quality results of the HAC algorithms among each other and to the ones already
implemented in Famer, the impact of the merge threshold t will be evaluated by varying
it on similarity graphs with different match threshold configurations. Afterwards the match
quality will be analyzed using the three clean data sets and finally the behavior of HAC for
dirty data sources will observed using the MSCD camera data set.

5.3.1 Choosing the Merge Threshold

This section will examine how the chosen merge threshold t affects the quality of the detected
matching. The toy example from section 2.4 has already shown that the choice of t can
significantly influence the clustering result. As the perfect match threshold will be unknown
and furthermore differs for each data set and the applied input configuration, a good default
strategy is required to facilitate the application of HAC.

D
S1

θ = 0.75 θ = 0.8 θ = 0.85

D
S2

θ = 0.35 θ = 0.4 θ = 0.45

Figure 5.1: F-Measure dependent on Merge and Match Threshold on MSC data sets

An analysis of different merge and match threshold configurations is shown in figures 5.1
and 5.2 where the f-measure is plotted dependent on the merge threshold and a fixed match
threshold. For S-LINK and C-LINK only merge thresholds t ≥ θ produce different results
whereas for all merge thresholds t < θ the f-measure stagnates on a single value, visible left
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Figure 5.2: F-Measure dependent on Merge and Match Threshold on MSCD data sets

and right of the dashed grey line respectively. This observation can be explained easily, as for
S-LINK and C-LINK there exist no links with similarity < θ and both methods do not alter
but only remove certain edges during the recalculation of inter-cluster similarities. Choosing
t = 0.35 or t = 0.38 for a data set generated with θ = 0.4 will make no difference at all since
no links with a weight < 0.4 are generated during the algorithms execution. For A-LINK
however, new edges with a similarity less than θ are produced and cluster merges based
on an inter-cluster similarity lower than θ are carried out. Although this leads to improved
recall, the f-measure decreases with lower choices of t due to a significant loss in precision.
Especially on the MSC data sets this impact is only visible for extremely low choices of t,
the overall f-measure is steady for the majority of values. This leads to the conclusion that
the newly calculated edge weights are in a range � θ. The involvement of missing links and
their consideration as edges with a weight of zero significantly pulls down the calculated
average similarity. For t = 0 A-LINK and S-LINK results match since a merge threshold of
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zero represents the root node of the cluster hierarchy where all vertices are grouped into one
cluster. Due to the requirement of strict inequality between t and the calculated similarities
and unconnected entities within the similarity graph this case corresponds to the graphs
original connected components for A-LINK and S-LINK. It does not apply to C-LINK as
the algorithm removes links from the similarity graph in a way that changes the graphs
connected components. With increasing match threshold the cluster quality of the connected
components increases and thereby the S-LINK and A-LINK minimum f-measure in range
t ≤ θ.
Since A-LINK can not noticeably perform better for t < θ than for t ≥ θ, it can be concluded
that only merge thresholds above the match threshold are worth considering. The further
course of this section will therefore focus on analyzing the match quality for configurations
with t ≥ θ.
While the results of the S-LINK algorithm in the range above θ vary highly and the f-measure
increases significantly when increasing the merge threshold, A-LINK- and C-LINK are far
more robust against the choice of t. Choosing the maximum similarity between the vertices
from each cluster, as S-LINK does, results in poor match results especially for lower threshold
configurations because too many vertices and hence wrong matches get incorporated into the
formed clusters. Whereas S-LINK carries out merges on extremely high similarity values,
A-LINK and C-LINK form clusters based on lower inter-cluster similarities, which leads to
significantly better match results for lower choices of t, especially on the MSC data sets. As
C-LINK’s calculated cluster-linkages tend to be even lower than the ones computed using the
A-LINK strategy, its performance suffers slightly for higher merge threshold configurations
while A-LINK performs poorer for lower choices of t. Similar behavior can be observed on the
other DSC data sets. Moreover is the range of results for the S-LINK algorithm considerably
smaller on the MSCD data sets than on the MSC data sets which is further illustrated in
figure 5.3. It shows the average f-measure achieved over all merge threshold configurations
between the lowest and the highest match threshold including the minimum and maximum
reached values for DS1-DS3 and moreover for the MSC data sets including portions of 0, 50,
80 and 100 percent clean sources. To observe the largest range of different clustering results
the similarity graph generated using the lowest match threshold was used.
Since S-LINK favors larger clusters, its improved performance on DSC can be attributed
to the high number of match pairs and clusters in within the data set. Yet, not only the
occurrence of matches within the individual data sources but also the great number of sources
in DSC improves the S-LINK results. This is visible for DSC-100 which only comprises clean
sources but still leads to better match quality for S-LINK. The difference between A-LINK
and C-LINK is also more pronounced on DSC where C-LINK can not only achieve slightly
better average f-measure values but also leads to a smaller range of results than A-LINK.
The maximum reachable f-measure however is roughly the same for both algorithms.
As already mentioned in section 2.4, the optimal merge threshold can not be obtained easily
but considering the presented results, choosing the match threshold as the merge threshold
seems a good default configuration. For C-LINK and A-LINK this enables almost optimal
results except for the similarity graphs with the lowest threshold, e.g. for DSC-0 and θ = 0.3,
t = 0.4 would be the best choice for C-LINK and t = 0.6 for A-LINK. Note, that this decision
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slightly favors the C-LINK variant due to its better results for lower threshold configurations.
Especially on the MSCD data sets A-LINK could retrieve better results for higher choices
of t on similarity graphs with a lower match threshold. C-LINK on the contrary achieves
extremely steady results, hence the chance of retrieving high quality results using a fixed
and randomly chosen threshold value is greater for C-LINK than for A-LINK. C-LINK’s
robustness against the choice of t can therefore justify the decision of setting t = θ for the
evaluation and comparison in the following sections.

MSC Data Sets MSCD Data Sets

Figure 5.3: Average F-Measure Results over different Merge Thresholds including Min and
Max Values

5.3.2 Comparison of Clustering Approaches for MSC Entity Resolution

Figure 5.4 shows the achieved results for the three metrics and different similarity thresholds
for all ten clustering methods (S-LINK HAC, C-LINK HAC, A-LINK HAC, CLIP, Con-
nected Components, CCPivot, Center, Merge-Center, Star-1 and Star-2) on the three clean
data sources applying the configurations from table 5.3.
As already pointed out in chapter 3, the results of the S-LINK algorithm correspond to those
from the Connected Components algorithm, which is analyzed in detail by Saeedi et. al. [37].
In summary, Connected Components reaches the overall lowest f-measure because it suffers
from very poor precision, removing none of the matches from the similarity graph but only
adding new ones by completing the transitive closure of the subgraph components. Although
this enables great results in recall and lightly improves with increasing match threshold, its
general performance is considered weak compared to other clustering schemes. This evalua-
tion will therefore focus on analyzing the match quality of C-LINK and A-LINK HAC. Slight
differences between S-LINK and Connected Components match quality results (as visible for
DS2) are owed to the fact that Connected Components matches all entities with similarity
≥ θ whereas S-LINK matches only those with similarity > θ. Furthermore does Connected
Components require the determination of one similarity graph per match threshold config-
uration to observe different results, while S-LINK is able to generate the same results on a
single similarity graph by varying t.
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Figure 5.4: MSC Match Quality Results

It can be observed that both A-LINK and C-LINK HAC achieve good match quality re-
sults on all three data sets. Except for the highest match thresholds they outperform the six
originally implemented clustering methods from Famer. For the lowest threshold values their
f-measure almost reaches the excellent results attained by the new CLIP algorithm. C-LINK
even gains the best result overall on DS3 with θ = 0.6. Generally, C-LINK performs slightly
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better than A-LINK, except for DS1 where both achieve roughly equal results. Generally,
lower threshold configurations influence the HAC match quality results positively, as a larger
number of links is still present in the input similarity graph, which means that less similar-
ities have to be assumed to be 0 during the recalculation of inter-cluster similarities. This
contrasts other clustering methods like Star-1 and Star-2, CCPivot or MergeCenter which re-
quire higher threshold configurations to achieve equally good results. They mainly determine
larger clusters which leads to the inclusion of numerous wrong matches especially for lower
match thresholds. Yet, they are able to detect additional links which can not be determined
by other algorithms that mainly form smaller but more precise clusters, such as C-LINK and
A-LINK HAC or Center and CLIP.
Furthermore is the achieved range of f-measure values over all threshold configurations for
C-LINK and A-LINK HAC rather small compared to most other algorithms, the greatest
difference considering the minimum and the maximum reached values does not exceed 0.1.
Similar behavior can be observed for CLIP and Center, but especially the application of
MergeCenter, Connected Components and Star-1 can lead to highly different clustering out-
puts regarding the match quality.
Since the recall for both HAC algorithms is among the worse of all approaches (only Center
and CCPivot achieve worse results on some input configurations), the good f-measure values
are primarily determined by extremely high precision values. Especially on the dirtier data
set DS2, C-LINK significantly outperforms all other algorithms regarding precision. As CLIP
and Center, that also achieve high precision, HAC focuses on edges with high similarities. In
fact, the concept of link strength exploited in CLIP and the concept of RNNs are strongly
related: Each link connecting two RNNs is also a strong link, because it is the link with the
highest similarity for both vertices by the definition of RNNs. However, not every strong link
is an RNN-link, as one entity might have more than one strong link (one with respect to each
source), but only one nearest neighbor. As outlined in section 2.4, C-LINK HAC, like CLIP,
only detects source-consistent clusters, further explaining the good results. But while the
application of CLIP satisfies source-consistency by default, C-LINK HAC is only one special
case of HAC and HAC can generally not guarantee source-consistent clusters. Because CLIP
is based on determining the connected components preferring only strong and normal links it
reaches significantly better recall values than A-LINK or C-LINK HAC. Yet, A-LINK HAC
achieves a slightly better recall than C-LINK as inter-cluster similarities are only reduced
but not set to zero if there are unconnected entities between two clusters, which leads to a
higher probability for cluster merges. C-LINK is not even able to add any matches that have
not been already determined during the similarity graph creation. While this seems to be
a drawback at first and explains the poor recall, it is especially helpful for DS2 where the
match threshold is chosen relatively low, meaning that many wrong links are still present
in the similarity graph. On the contrary, it is interesting to notice that both C-LINK and
A-LINK perform poorly on DS1 for the highest threshold of 0.9, where even S-LINK reaches
better f-measure. This is can be reasoned similarly: DS1 presents the easiest match problem
of all three data sets, where the similarity graph already contains many correct and few wrong
matches. As both HAC versions tend to remove links rather than adding new ones, this leads
to wrong cluster decisions by removing already correctly found matches, resulting in very
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poor recall. The worse result on DS3-10M compared to DS3-5M is presumably owed to the
fact that with the increasing number of sources the number of links between entities from
different sources decreases which results in even smaller clusters and hence worse recall for
A-LINK and C-LINK.
Overall, the positive results for HAC compared to all clustering schemes can be mainly at-
tributed to two of the algorithms characteristics: Firstly to the focus on high similarity edges
and secondly (and even more importantly) to the ability of including similarity values from
every vertex within already identified clusters. The Center and Star-2 algorithms also achieve
good match quality results by focusing on high edge weights, but they only consider one
edge at at time (in case of Center) or all connecting edges between one single vertex and its
neighbors (as for Star-2). By calculating the overall graphs degree, CCPivot is the only other
algorithm that also regards multiple vertex connections at a time. This leads to accordingly
high quality clusters, yet does the detection of clusters based on successive merges outperform
the CCPivot method.

5.3.3 Comparison of Clustering Approaches for MSCD Entity Resolution

Figure 5.5 depicts the match quality results achieved by all ten clustering methods using the
data sets DSC-0, DSC-50, DSC-80 and DSC-100. The top row therefore shows the results
when all data sources contain duplicates, the bottom row represents an MSC ER problem and
for both middle rows the data sets comprise a mixture of clean and dirty sources, including
50% and 80% clean sources respectively. The special cases focusing on the impact of the large
data source 7 using DSC-26, DSC-32 and DSC-62A/B will be covered separately.
Mainly, the application of HAC on MSCD data sets shows similar behavior as the applica-
tion on clean data sources. Summarizing, this involves extremely high precision values for
C-LINK HAC on all thresholds and data sets, albeit at the cost of very poor recall results,
where only the Center algorithm performs worse. A-LINK HAC can not reach the same ex-
cellence in precision as C-LINK but results in better recall. The overall f-measure benefits
from lower threshold configurations especially for C-LINK, which outperforms the other al-
gorithms greatly on the lowest threshold of 0.3 but only slightly on the middle threshold of
0.5 and not at all on the highest threshold of 0.7. An exception poses the CLIP algorithm on
DSC-100 where it significantly surpasses all other algorithms since it is specialized in clean
multi-source ER. Its assumption of clean individual data sources does consequently lead to
very poor results on all other DSC data sets as it wrongly removes all links within the single
dirty data sources.
With increasing share of dirty data sources, the difference in match quality between HAC
and the other algorithms rises. This is less attributable to the increasing performance of HAC
on clean data sources but to the decreasing performance of the other algorithms. Whereas
especially C-LINK gains overall steady results, both Star algorithms, CCPivot, Merge Center
and Connected Components/S-LINK perform noticeably better on DSC-0 than DSC-100.
Only the Center algorithm shows similar steady results as C-LINK, but only because its
drop in precision with increasing share of dirty data sources is balanced by the simultaneous
rise in recall. Vice versa results can be observed for C-LINK: Its precision rises with rising

37



5 Evaluation

D
SC

-0
Precision Recall F-Measure

D
SC

-5
0

D
SC

-8
0

D
SC

-1
00

Figure 5.5: MSCD Match Quality Results

portions of clean sources, at the same time the recall drops, but the overall change is not
as pronounced as for the Center algorithm. Whereas C-LINK decides about removing links
by considering all entities within already detected clusters, the Center algorithm processes
only one link, i.e. two vertices at a time. The decision about removing the link is made based
on the cluster membership and the similarity of the currently processed edge regardless of
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the similarity to other cluster members. This can lead to many wrong cuts when there are
additional links present within the individual data sources. The consideration of all edges
connecting two clusters results in better recall, although precision suffers lightly.
The main difference regarding the behavior of the HAC algorithms on MSC data sets com-
pared to MSCD data sets is the considerably greater difference in match quality between
C-LINK and A-LINK HAC. While their f-measure and recall on DS1-DS3 were extremely
close by, the results on DSC are noticeably distinguishable, especially for lower match thresh-
olds. If not too many links are already removed during the similarity graph creation, C-LINK
mainly determines the same clusters regardless of the input specifications. This can again be
attributed to the high probability of removing inter-cluster links. Exclusively fully connected
clusters are detected which change only marginally over different configurations. If a cluster
consists of n vertices and is about to get merged with only one single other vertex, then n
links between the cluster and the vertex are required to perform the merge (for a cluster
merge with another cluster of size m, n ×m links would be needed). Any number of links
lower than n would force the clusters to stay separated; no matter if there are 0 or n − 1
links, the cluster-linkage would be set to a value of 0 in any case. When applying A-LINK
however, n − 1 links would lead to a significantly higher probability of merging because the
calculated inter-cluster similarity adapts to a change in the number of links in any range.
Interestingly, A-LINK HAC is able to outperform C-LINK HAC on the purely dirty data set
DSC-0 for thresholds of 0.5 and 0.7 and its performance drops the cleaner the data set gets.
While it reaches an f-measure of 0.89 for θ = 0.5, (which is the overall best result considering
all configurations on all dirty and mixed DSC data sets), it can only achieve a maximum
of 0.84 on DSC-100. Star-2 and CCPivot produce similarly good results on DSC-0 but only
for the highest match threshold. With a maximum f-measure of 0.87 for Star-2 and 0.85 for
CCPivot they still slightly fall behind A-LINK regarding their maximum values on DSC-0.
A-LINK benefits from the greater amount of entities and links in DSC-0, which enables a
more accurate calculation of inter-cluster similarities. Each edge that has to be assumed to
be 0 skews the similarity result because it is considered with the same weight as non-zero
edges during the computation of the new average similarity. A larger number of duplicates
and thus entities within an already identified cluster helps calculating a precise similarity
result that tends less towards zero. Therefore, the chance for cluster merges increases leading
to a significant boost in recall. For the lower thresholds on DCS-0 A-LINK almost reaches
the same recall as the top-recall algorithms MergeCenter, Connected Compontents/S-LINK
and Star-1.

It will now further be analyzed, how cleaning the largest data source 7 affects the clustering
results. As presumable there is a visible difference in match quality although at a different
degree for each clustering scheme. Figure 5.6 shows the achieved precision, recall and f-
measure regarding the data sets DSC-26 and DSC-32, the former still includes duplicates in
data source 7 whereas in the latter case the source has been cleaned. The DSC-26 results
highly resemble the ones from DSC-0 where data source 7 supplies most of the dirty entities.
By removing these duplicates the algorithms Connected Components/S-LINK, MergeCenter
and Star-1 are able to improve their precision slightly because they are supported in their
poor ability to detect incorrect matches. Algorithms that are already able to determine high
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Figure 5.7: MSCD Match Quality Results on DSC-62A and DSC-62B

precision clusters do not benefit from cleaning the source, their results even suffer a little.
Besides CLIP, Center and Star-2 this also includes C-LINK and A-LINK HAC. The latter two
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further experience a noticeably drop in recall, indicating that the larger amount of duplicates
from source 7 supports the detection of larger clusters preventing them from cutting correct
match pairs. A-LINK benefits considerably more than C-LINK, underlining the robustness of
the C-LINK algorithm not only against the threshold configurations but also regarding the
share and choice of dirty data sources.
While the impact of the large data source 7 visibly affected the clustering quality, the choice
which of the smaller data sources is considered clean or dirty does not significantly influence
the match quality. Figure 5.7 shows the three quality metrics for data set variants DSC-62A
and DSC-62B. Both data sets include source 7 in a clean form but all dirty data sources
from DSC-62A are clean in DSC-62B and vice versa. It becomes clear that there is almost
no considerable difference between the results on the two data sets. The overall precision is
improved minimal on DSC-62A while CLIP can achieve a marginal improvement on DSC-
62B. It can therefore be reasoned that all data sources except from source 7 are well suited
to generate representative data set variants as a base for an informative and meaningful
evaluation.

5.4 Runtimes and Speedup

Besides analyzing match quality results, scalability and runtimes have to be considered in
order to evaluate how the newly implemented HAC variants perform in a large-scale environ-
ment and hence to decide if they are a useful addition to the Famer framework. The applied
system configurations will be described before conducting a speedup analysis and comparing
the absolute HAC runtimes to the ones measured for the other seven clustering schemes.

5.4.1 System Configurations

All runtimes were determined on a cluster with 16 worker nodes connected via 1 Gigabit
Ethernet, each consisting of an E5-2430 6(12) 2.5GHz CPU, 48GB RAM, two 4TB SATA
disks and running openSUSE 13.2. The evaluation is based on Hadoop 2.6.0 and Apache
Flink 1.9.0, running as a standalone cluster with six threads and 40 GB memory per worker.
Due to the recurring appearance of time-out-exceptions, the runtimes for the largest data
set comprising ten sources could only be executed for similarity thresholds ≥ 0.8 and all 16
workers. The speedup analysis is hence restricted to the smaller data set consisting of five
sources each containing one million records. None of the HAC algorithms could be executed
for one worker only due to the occurrence of out-of-memory-errors. Absolute runtimes shown
in tables 5.6 and 5.7 represent the average runtime accumulated from multiple independent
runs with a merge and match threshold of 0.8.

5.4.2 Speedup Analysis

Figure 5.8 illustrates the speedup for DS3-5M varying the number of workers from 2 to 16
and table 5.6 shows the corresponding runtimes.
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no. of workers
algorithm 2 4 8 16
S-LINK 2541 1626 1548 1423
C-LINK 614 316 154 108
A-LINK 604 309 153 107

Table 5.6: Runtimes (seconds) for HAC on DS3-5M

Figure 5.8: Speedup for HAC on DS3-5M

Both A-LINK and C-LINK HAC achieve linear speed-up except for 16 workers, indicating
that they are able to effectively exploit the scatter-gather paradigm. The sub-linear speedup
for the largest number of workers suggests that the data set DS3-5M might not have been
large enough. On the contrary, S-LINK runtimes only slightly improve with growing number
of workers, which results in overall poor speedup behavior. Furthermore a great difference in
runtimes from the independent runs of the S-LINK algorithm could be observed. Depending
on which vertex was chosen as center, the number of messages to send can vary highly: If
a cluster only consists of one vertex and it gets chosen cluster center during a merge with
a much larger cluster, then the latter has to broadcast the new cluster ID to all its cluster
members, whereas the other way round only the single vertex would need to update its cluster
ID. A possible way of improving the S-LINK runtime would therefore consist of preferring the
cluster center of smaller clusters instead of choosing it dependent on the randomly assigned
vertex priorities. This does not apply to C-LINK or A-LINK HAC as they both result in
much smaller and more compact clusters and all runtimes from the independent runs were
roughly equal. The overall slow runtime and poor speedup for the S-LINK algorithm can
also mainly be explained by the fact that S-LINK results in larger and less clusters, hence
requiring more merges than A-LINK or C-LINK HAC. As one cluster merge consists of four
scatter-gather phases, the number of messages to send and process increases respectively.
Furthermore, while the algorithm proceeds and clusters are growing, the number of active
vertices decreases since only one vertex per cluster is in charge of computing and maintaining
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the inter-cluster similarities. This restricts the degree of parallelization regarding the S-LINK
algorithm as visible in the speedup curve.

5.4.3 Comparison of Runtimes

While S-LINK HAC has not only the worst runtime of all HAC algorithms but also the worst
runtime over all other clustering schemes, C-LINK and A-LINK are among the faster algo-
rithms. Only the simple Connected Components approach and CLIP achieve better results
on DS3-5M. Considering the runtimes on the largest data set DS3-10M, where the input size
is doubled compared to DS3-5M, all HAC runtimes are increased by a factor around 3. The
runtime of other algorithms like Star-1 and Star-2 increase by a lower degree so that they
achieve better runtime results on DS3-10M than the HAC algorithms.

algorithm DS3 - 5M DS3 - 10M
S-LINK 1098 3425
C-LINK 108 315
A-LINK 107 334
Connnected Components 37 57
Center 156 603
Merge Center 210 730
Star-1 124 273
Star-2 124 233
CCPivot 426 964
CLIP 81 195

Table 5.7: Runtimes (seconds) for all Clustering Schemes on DS3 using 16 Workers

The poorer results concerning the runtimes on the largest data is a result of the relatively
high memory requirements of HAC. Each vertex has to maintain several additional vertex
properties, especially the new edges property has to be maintained and updated during all
four scatter-gather phases, which is not necessary for any of the other algorithms as they do
not require changing the edge values and can therefore send all messages along their in- and
outgoing edges. The overall poor performance of the S-LINK algorithm is negligible since the
same clustering result can be retrieved with faster algorithms like Connected Components or
the naive S-LINK implementation of HAC.

Although not included visually here, other parameters that significantly influence runtimes
are the match and merge thresholds. Choosing a higher match threshold configuration usually
leads to faster runtimes since the number of links within the input graph and therefore the
amount of data to process decreases. A higher merge threshold for HAC results in similar
observations. The lower the choice of t, the more cluster merges will be performed, increasing
the computation workload and therefore the runtime. As already pointed out in the preceding
section, a greater number of cluster merges (hence a smaller number of output clusters) results
in less active vertices loaded with a greater computation effort, which also causes increased
runtime.
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5.5 Evaluation Summary

To summarize the evaluation results obtained during the previous sections, table 5.8 briefly
recaps the advantages and drawbacks of the three hierarchical clustering algorithms and rates
them on a scale of ++ to -- based on the vertex-centric implementation.

S-LINK C-LINK A-LINK
runtime - + +
scalability - + +
MSC precision -- ++ +
MSC recall ++ -- -
MSCD precision -- ++ +
MSCD recall ++ -- o
t robustness -- ++ +
θ robustness -- + o

Table 5.8: Comparative Rating of HAC Evaluation Results

The performance of S-LINK is overall unsatisfactory, not only poor match quality results
and the great dependence on the chosen parameter t but further its long runtimes and weak
speedup behavior lead to the fact that it is no useful extension within the Famer framework.
The S-LINK quality results can be achieved using the much faster Connected Components
algorithm and the scatter-gather model is apparently no appropriate fit, as the naive S-LINK
version performed significantly better than the vertex-centric implementation considering
runtimes.
A-LINK and C-LINK HAC however, can usefully exploit the scatter-gather model enabling
quick runtimes and scalability, while also reaching good match quality results. By making
cluster decisions dependent on all links connecting two clusters rather than only considering
one edge at a time, hierarchical clustering is even able to exceed the cluster quality of many
previously implemented clustering techniques from Famer. C-LINK can be used as a good
default strategy when it comes to multi-source clean ER, especially when lower threshold
configurations are necessary due to more heavily corrupted data sets. A-LINK on the other
hand is useful on completely dirty multi-source data sets. Yet, its results depend on the chosen
match and merge threshold to a considerable extent, which is less an issue for C-LINK making
C-LINK the overall most convincing HAC strategy.
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6 Conclusion and Outlook

Within this study three different types of hierarchical agglomerative clustering have been
implemented and integrated into the large-scale ER tool Famer. In contrast to related dis-
tributed hierarchical clustering approaches that are mainly based on partitioning, the im-
plementation developed during this study is able to utilize vertex-centric programming by
exploiting the concept of Reciprocal Nearest Neighbors. The evaluation using data sets of
different sizes and degree of corruption has shown that the A-LINK and C-LINK variants
of HAC achieve good match quality results not only on clean multi-source ER data sets but
also for a variety of data sets including dirty or a mixture of clean and dirty data sources.
Except from S-LINK, the parallel versions of HAC further attained good speedup values and
therefore support scalability for large data sets making them a useful addition to the Famer
framework. However, due to high memory requirements and complex vertex updates all HAC
algorithms encountered difficulties when applied on the largest data set using lower threshold
values and could not be executed for some input configurations. Its ability to include similar-
ity values from every vertex within already identified clusters clearly contributes to the great
match results, yet complicates the implementation which leads to the mentioned issues. This
offers the opportunity to further improve the algorithms performance within future work.
Besides making the implementation more efficient, following studies could include the imple-
mentation and evaluation of further linkage strategies or a modification of the existing three
by overcoming the drawback of assuming edge weights of 0. For A-LINK these edges could
be kept but assigned a lower weight within the computation of the average similarity and for
C-LINK setting the inter-cluster similarity to a low (but not zero) default value in case of
unconnected vertices between the clusters could be another possibility.
As the implementation proposed in this study requires the merge threshold as an additional
input parameter and the decision of when to stop cluster merging affects the clustering quality
noticeably, further research regarding the automation of this decision would be particularly
interesting. This could include determining a (nearly) optimal threshold value or implement-
ing additional stopping conditions and criteria that could not be studied within this thesis
but have been applied to other problem domains.
During the implementation of the naive approach of HAC a significant quality improvement
could be observed caused by the removal of weak links prior to clustering. The analysis of
this behavior could also serve as matter of future work. Lastly, the cluster repairing approach
RLIP, which has already been studied on the six other clustering schemes implemented in
Famer, could be applied on S-LINK and A-LINK HAC in the case of clean MSC ER. Since
C-LINK is already able to produce source-consistent clusters and HAC generally avoids over-
lapping clusters, RLIP is not expected to further improve C-LINK HAC.
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Appendix A: Match Quality Results Before and After Weak Link Removal applying the Naive
Implementation of Distributed HAC
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Appendix B: Average Runtimes (seconds) for the Naive Implementation of Distributed S-
LINK HAC
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16 39 78
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