
# Ontologie-Management Kapitel 7: Erweiterte Verfahren

Wintersemester 2013/14 Anika Groß

Universität Leipzig, Institut für Informatik Abteilung Datenbanken http://dbs.uni-leipzig.de



Die Folien zur Vorlesung "Ontologie Management" wurden von Dr. Michael Hartung erstellt.

### **Inhalt**

### Erkennung (in)stabiler Ontologieregionen

- Motivation / Problematik
- Ontologieregion und zugehörige Metriken
- Algorithmus
- Anwendung und Evaluierung

### Merging von Ontologien

- Ontology Merging Prozess
- Arten von Merge
- Algorithmus



## Entwicklung großer Ontologien

### Große Ontologien

- > 10.000 Konzepte: GO, NCI Thesaurus, ...
- Kollaborative Entwicklung: "einer kann nicht alles"
- Jeder trägt zu Teilen bei, indem seine Expertise liegt
- Konsortium legen Designziele fest, z.B. Finalisieren eines Gebietes bis zum Ende des Jahres

### Probleme

- Anwender, Entwickler möchten sich über Fortgang informieren
- Zeitaufwendig, manuelles Vorgehen inakzeptabel

Gibt es "cold" oder "hot" Topics, d.h. interessante

Themen

Welche

Was waren die stabilsten Ontologieteile in den letzten Jahren?

Automatisches Verfahren um sich änderende Ontologieteile zu identifizieren



# Änderungen zwischen Ontologieversionen

### Lineare Folge veröffentlichter Versionen

 $\bigcirc$   $O_1, ..., O_{j-1}, O_j, O_{j+1}, ..., O_n$ 

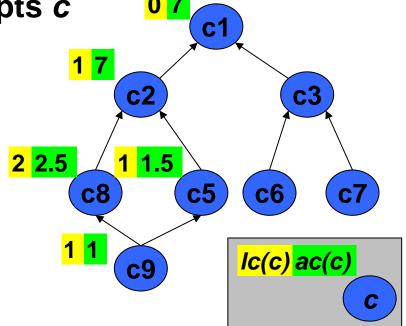
### Mögliche Änderungen

- Basis-Änderungstypen: add, del, upd
- Elemente die sich ändern können: Konzepte, Beziehungen, Attribute

| concept |     | relationship |     | attribute |     |     |  |
|---------|-----|--------------|-----|-----------|-----|-----|--|
| add     | del | add          | del | add       | del | upd |  |

### Beispiele

- Einfügen eines Konzepts: addConcept(GO:0015075)
- Beziehung löschen: delRel(GO:0015075, is\_a, GO:0005215)
- Attribute update: updAtt(GO:0015075, obsolete, 'false', 'true')




# Änderungskosten

- Kosten für Ontologieänderungen
  - □ Angabe des Einflusses auf die Ontologie
     change → impactValue
  - □ Beispiel: delConcept → 2, addConcept → 1

Kosten eines Ontologiekonzepts c

- Lokale Kosten *Ic(c)* 
  - Änderungen mit direktem
     Einfluss auf c
- Aggregierte Kosten ac(c)
  - Änderungen in den is\_a
     Nachfolgern von c





# Regionen und zugehörige Metriken

### Ontologieregion OR

- Teilgraph einer Ontologie mit Wurzelkonzept rc
- Umfasst alle Konzepte im is\_a Subgraphen von rc

### Metriken zur Bewertung

- Ziel: Änderungsintensität bewerten
- Verschiedene Aspekte
  - Absolute / relative Größe
  - Absolute Änderungskosten
  - Durchschnittl. Änderungskosten
  - Kombinationen möglich

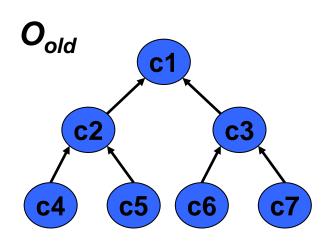
| <b>7</b> C               | 1               |
|--------------------------|-----------------|
| 7 c2<br>2.5 1.5<br>c8 c5 | <b>c3 c6 c7</b> |
| 1 c9                     | ac(c)           |

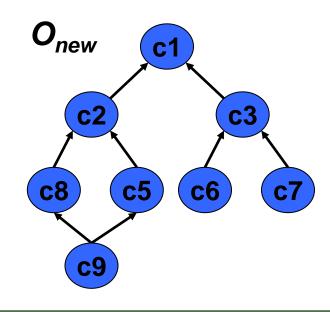
| region    | abs_size | rel_size  | abs_costs | avg_costs |
|-----------|----------|-----------|-----------|-----------|
| <b>c1</b> | 8        | 8/8=1     | 7         | 7/8=0.875 |
| c2        | 4        | 4/8=0.5   | 7         | 7/4=1.75  |
| с3        | 3        | 3/8=0.375 | 0         | 0/3=0     |



# Berechnung aggregierter Kosten für zwei Versionen

- **Eingabe:** zwei Ontologieversionen  $O_{old}$  und  $O_{new}$ , Kostenmodell  $\sigma$
- Ausgabe: O<sub>new</sub> mit aggregierten Kosten (ac)


Hartung, M., Groß, A., Kirsten, T., Rahm, E.: Discovering Evolving Regions in Life Science Ontologies. In Proc. Data Integration in the Life Sciences (DILS), 2010




# Änderungserkennung - diff(O<sub>old</sub>,O<sub>new</sub>)

### Änderungserkennung

- Ausnutzung der accession numbers von Konzepten
- Ergebnis: Menge von add/del/upd Änderungen

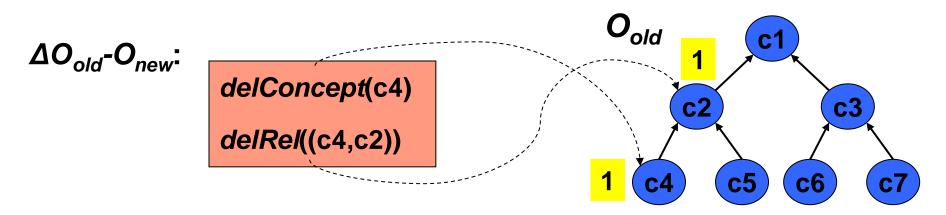




 $\Delta O_{old}$ - $O_{new}$ :

delConcept(c4)

delRel((c4,c2))


addConcept(c8, c9)

addRel((c8,c2), (c9,c5), (c9,c8))



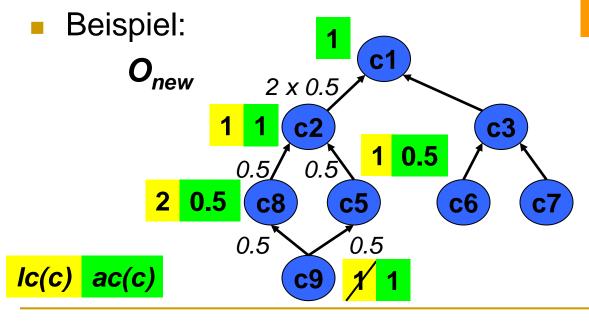
# Zuweisung lokaler Kosten - assignLocalCosts( $\Delta O_{old}$ - $O_{new}$ , $\sigma$ , $O_{old}$ , $O_{new}$ )

- Zuweisung basiert auf Kostenmodell und Änderungen
  - □ add/upd → Erfassung in O<sub>new</sub>
  - □ del → Erfassung in O<sub>old</sub>
  - □ Konzept / Attribut-Änderungen → *Ic* des betreffenden Konzepts
  - □ Beziehungen → *Ic* eines oder beider betroffener Konzepte
- Beispiel: Einheitskosten von 1, bei Beziehungen nur Target





# Zuweisung lokaler Kosten - assignLocalCosts( $\Delta O_{old}$ - $O_{new}$ , $\sigma$ , $O_{old}$ , $O_{new}$ )


- Zuweisung basiert auf Kostenmodell und Änderungen
  - □ add/upd → Erfassung in O<sub>new</sub>
  - □ del → Erfassung in O<sub>old</sub>
  - □ Konzept / Attribut-Änderungen → Ic des betreffenden Konzepts
  - □ Beziehungen → *Ic* eines oder beider betroffener Konzepte
- Beispiel: Einheitskosten von 1, bei Beziehungen nur Target



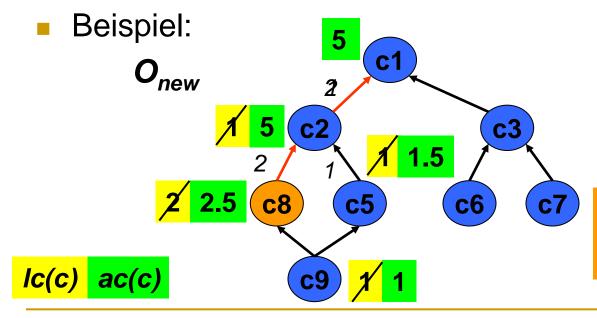
# Kostenpropagierung - aggregateCosts(O<sub>v</sub>)

- Propagierung lokaler Kosten *Ic* zur Berechnung von *ac*
  - Regel: "ac(c) eines Konzepts c ist die gewichtete Summe der ac's aller Kinder plus die eigenen lokalen Kosten Ic(c)"

$$ac(c) = \sum_{\text{direct childrenc' of c}} \frac{ac(c')}{|parents(c')|} + lc(c)$$



### propagation of *lc*(c9)


- ac(c9) + = lc(c9)
- ac(c8) + = lc(c9)/2
- ac(c5)+=lc(c9)/2
- ac(c2)+=Ic(c9)/2+Ic(c9)/2
- ac(c1)+=Ic(c9)/2+Ic(c9)/2



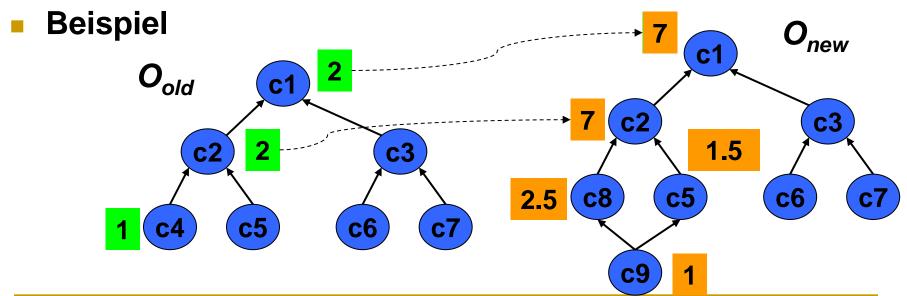
# Kostenpropagierung - aggregateCosts(O<sub>v</sub>)

- Propagierung lokaler Kosten Ic zur Berechnung von ac
  - Regel: "ac(c) eines Konzepts c ist die gewichtete Summe der ac's aller Kinder plus die eigenen lokalen Kosten Ic(c)"

$$ac(c) = \sum_{\text{direct children c' of c}} \frac{ac(c')}{|parents(c')|} + lc(c)$$



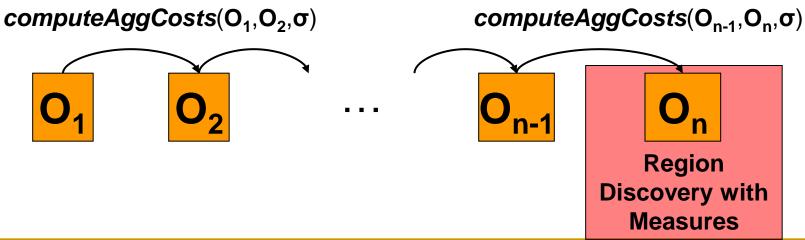
propagation of Ic(c9)


- ac(c9)+=lc(c9)
- ac(c8) + = lc(c9)/2
- ac(c5)+=lc(c9)/2
- ac(c2)+=lc(c9)/2+lc(c9)/2
- ac(c1)+=lc(c9)/2+lc(c9)/2

propagation of *lc*(c8) propagation of *lc*(c5) propagation of *lc*(c2)



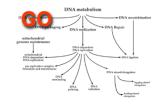
# **Kostentransfer - transferCosts(O<sub>old</sub>,O<sub>new</sub>)**


- Transfer aggregierter Kosten von alte in neue Version
  - □ Erkennung von Regionen auf neuester Version → erfasste aggregierte Kosten in alter Version ebenfalls einbeziehen
    - Kosten von del Änderungen
  - Regel: "aggregierte Kosten gleicher Konzepte werden zusammengefasst"





# Genereller Algorithmus für n Versionen


- Reuse von computeAggregatedCosts für 2 Versionen
  - Sukzessive Anwendung und Transfer aggregierter Kosten in die neueste Ontologieversion
  - Erkennung von Regionen auf neuester Version
- Eingabe: Ontologieversionen O<sub>1</sub>, ..., O<sub>n</sub>, Kostenmodell σ
- Ausgabe: O<sub>n</sub> mit aggregierten Kosten aller Versionen





## **Evaluierung**

- Zwei große Ontologien
  - Gene Ontology (GO)
  - NCI Thesaurus (NCIT)





- Versionen zwischen 2004 und 2009
- Kostenmodell:

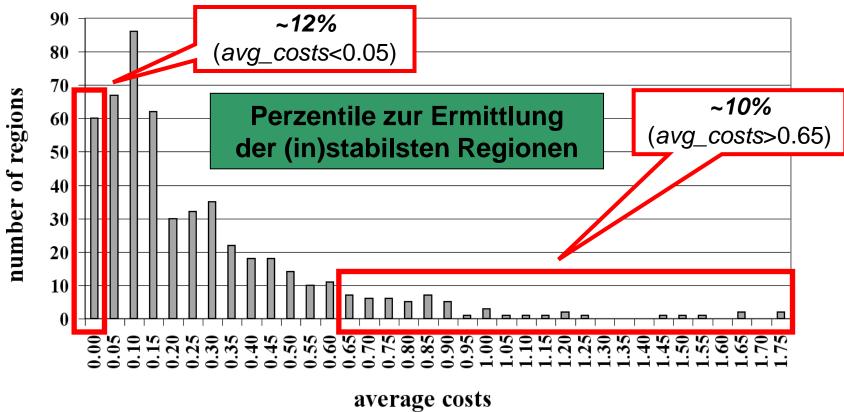
| concept |     | relationship |     | attribute |     |     |  |
|---------|-----|--------------|-----|-----------|-----|-----|--|
| add     | del | add          | del | add       | del | upd |  |
| 1       | 2   | 1            | 2   | 0.5       | 0.5 | 0.5 |  |

- Drei ausgewählte Analysen
  - Gesamtstabilität und Stabilitätsverteilung
  - Filterung der (in)stabilsten Regionen
  - Tracking der Stabilität einzelner Regionen



### Gesamtstabilität

- Annahme: komplette Ontologie ist eine Region
  - Wurzel der Ontologie = Wurzel der Region


|      | abs_size(root) |        | abs_costs(root) |        | avg_costs(root) |      |
|------|----------------|--------|-----------------|--------|-----------------|------|
|      | 2008           | 2009   | 2008            | 2009   | 2008            | 2009 |
| GO   | 27,799         | 30,304 | 24,242          | 19,412 | 0.87            | 0.64 |
| – MF | 9,205          | 9,459  | 4,636           | 3,002  | 0.50            | 0.32 |
| – BP | 16,231         | 18,108 | 17,594          | 14,557 | 1.08            | 0.80 |
| – CC | 2,363          | 2,737  | 2,011           | 1,854  | 0.85            | 0.68 |
| NCIT | 71,337         | 77,455 | 23,165          | 36,562 | 0.32            | 0.47 |

- abs\_size: Zunahme in beiden Ontologien
- abs\_costs: bei GO höher in 2008, NCIT umgekehrt
- avg\_costs: im Durchschnitt GO instabiler
  - Biologische Prozesse (BP) als änderungsintensivste Subontologie

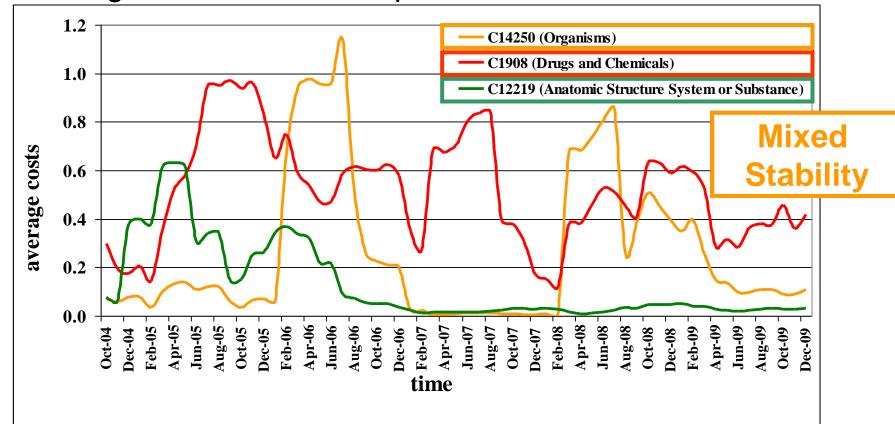


# Verteilung der Stabilitäten

- Verteilung der Regionen bzgl. avg\_costs
  - Minimale *rel\_size* = 0.3%
  - Beispiel: GO-BP in 2009 (abs\_size > 50 Konzepte)

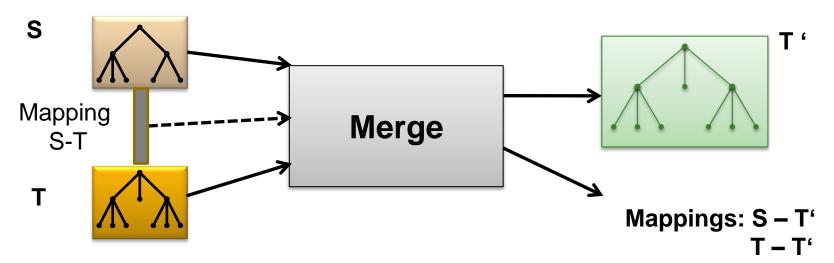





# (In)stabilste Regionen in 2009

|      |           | accession  | name                                                           | abs_size | rel_size | avg_costs |
|------|-----------|------------|----------------------------------------------------------------|----------|----------|-----------|
|      |           | GO:0005102 | receptor binding                                               | 408      | 4.31%    | 0.95      |
|      |           | GO:0009653 | anatomical structure morphogenesis                             | 583      | 3.22%    | 1.22      |
|      | unstable  | GO:0048856 | anatomical structure development                               | 566      | 3.13%    | 0.91      |
|      | uiistable | GO:0033643 | host cell part                                                 | 77       | 2.81%    | 1.90      |
|      |           | GO:0003676 | nucleic acid binding                                           | 241      | 2.55%    | 0.86      |
| 9    |           |            | anatomical structure formation involved in morphogenesis       | 253      | 1.40%    | 0.92      |
| 9    |           | GO:0031300 | intrinsic to organelle membrane                                | 36       | 1.32%    | 0.000     |
|      |           | GO:0030054 |                                                                | 31       | 1.13%    | 0.000     |
|      | stable    |            | regulation of cell activation                                  | 184      | 1.02%    | 0.012     |
|      |           |            | response to host                                               | 181      | 1.00%    | 0.019     |
|      |           |            | ubiquitin ligase complex                                       | 25       | 0.91%    | 0.000     |
|      |           | GO:0016860 | intramolecular oxidoreductase activity                         | 71       | 0.75%    | 0.000     |
|      |           |            | Retired Concept                                                | 3,264    | 4.21%    | 3.49      |
|      |           |            | Adverse Event Associated with Infection                        | 1,186    | 1.53%    | 2.36      |
|      | unstable  |            | Industrial Aid                                                 | 889      | 1.15%    | 1.40      |
|      | anotable  |            | Clinical Pathology Procedure                                   | 747      | 0.96%    | 0.84      |
|      |           | C66892     | Natural Product                                                | 708      | 0.91%    | 1.35      |
| NCIT |           | C53543     | Rare Non-Neoplastic Disorder                                   | 504      | 0.65%    | 1.22      |
| Ž    |           | C64389     | Genomic Feature Physical Location                              | 1,026    | 1.32%    | 0.000     |
|      |           | C23988     | Mouse Neoplasms                                                | 886      | 1.14%    | 0.000     |
|      | stable    | C48232     | Cancer TNM Finding                                             | 742      | 0.96%    | 0.000     |
|      | 31410.0   | C53798     | Adverse Event Associated with Surgery & Intra-Operative Injury | 707      | 0.91%    | 0.000     |
|      |           | C43877     | American Indian                                                | 555      | 0.72%    | 0.000     |
|      |           | C53832     | Infection Adverse Event with Unknown Absolute Neutrophil Count | 386      | 0.50%    | 0.000     |




# Tracking von Änderungsintensitäten

- NCIT mit 20 Hauptkategorien
  - Sliding Window der Länge 6 Monate zwischen 2004 und 2009
- Drei generelle Evolutionspatterns





## **Ontology Merging**



- Prozess der 2 (n) Ontologien zu einer integrierten (gemergten) Ontologie zusammenzufasst
  - Eingabe: 2 oder mehrere Ontologien, optional Mappings zwischen den Eingabeontologien
  - Ausgabe: integrierte (gemergte) Ontologie
- Varianten
  - Symmetric Merge
  - Target-driven Merge

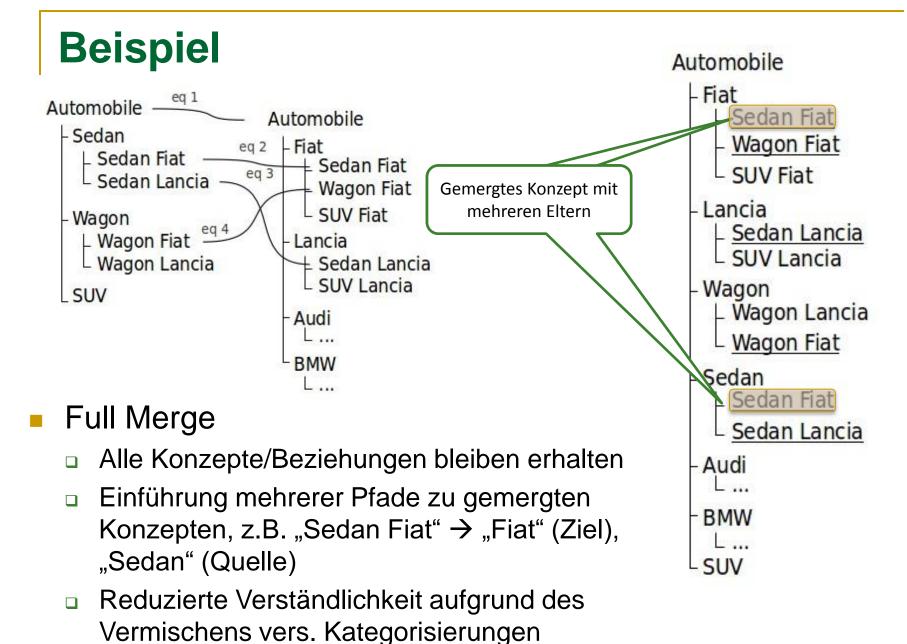


### **Verwandte Arbeiten**

- Zahlreiche Arbeiten im Bereich Schemaintegration
  - Adressieren meist beides: Match und Merge
  - Oftmals hoher manueller Anteil, gerade bei komplexen Lösungen
  - Siehe VL Datenintegration (Top-Down vs. Bottom Up Schemaintegration)
- Wenige Arbeiten im Bereich Ontology Merging
  - PROMPT (1999-2000), Chimaera (2000)
  - FCA-Merge (2001)
  - Ebenfalls oftmals hoher manueller Aufwand erforderlich
  - Symmetric Merge
    - Bewahrung aller Inhalte aus beiden Eingabeontologien
- Hier in VL
  - Match-based Ontology Merging
  - □ Target-driven Merge → ATOM System



# Symmetric Merge


### Generelles Prinzip

- Fasst alle äquivalenten Konzepte zusammen
- Erhält zudem alle weiteren Konzepte und Beziehungen aus den Eingabeontologien
- Full Merge

### Probleme

- Informationen (z.B. ein Konzept) werden auf verschiedene Art und Weise innerhalb der Ontologie angeordnet
  - Reduzierte Verständlichkeit
  - Unnötige Redundanz (semantic overlap)
  - Z.B. mehrere Pfade zu ein und der selben Information
- Reduzierte Stabilität
  - Präferierte Eingabeontologie (Mediatorontologie)
  - Z.B. Produktkatalog in einem Preisvergleichsportal, akzeptierte generelle Annatomieontologie für mehrere Spezies

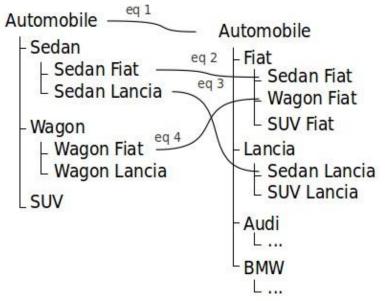






### **ATOM** \*




- Automatic Target-Driven Ontology Merging
  - Asymmetrischer, zielorientierter (target-driven) Merge-Ansatz
  - Reduzierung von "semantic overlap" in der integrierten Ontologie
    - Erhaltung der Zielontologie
    - Vermeidung von Konzepten / Beziehungen aus der Quellontologie welche Redundanz einführen
  - Nutzung eines Ontologie-Mapping zwischen Eingabeontologien
    - Basisversion: Äquivalenz-Korrespondenzen
    - Optional: weitere Korrespondenz-Typen wie is\_a / inverse-is\_a
  - Semi(automatisch)
    - Ergebnis kann durch Nutzer verändert / angepasst werden



Raunich, S., Rahm, E.: ATOM: Automatic Target-driven Ontology Merging, Proc. ICDE 2011

# ATOM vs. Full Merge

#### **ATOM**

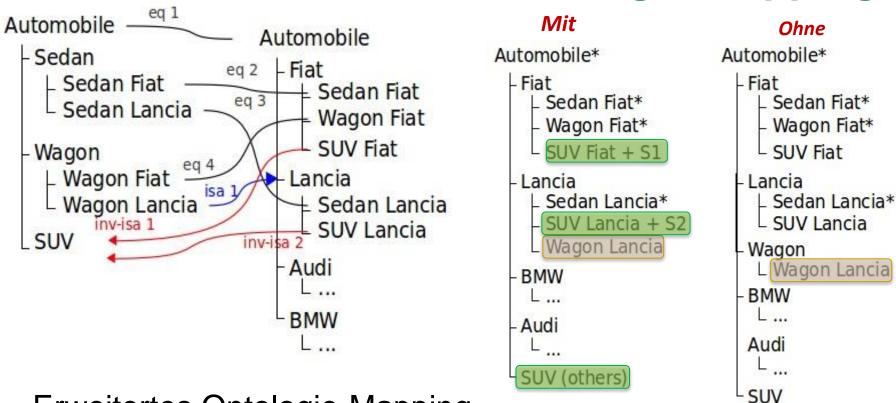




### ATOM Ergebnis

- Erhaltung der Zielontologie
- Kompakter als Full Merge, keine Mehrfachvererbung

### Aber


- "Semantic overlap" nur teilweise reduziert
  - Teilweise bessere Platzierung möglich (z.B. Wagon Lancia), Überlappung zwischen generellem SUV Konzept und SUV Fiat / SUV Lancia
- Mehr Semantik im Ontologie-Mapping → weitere Verbesserung möglich

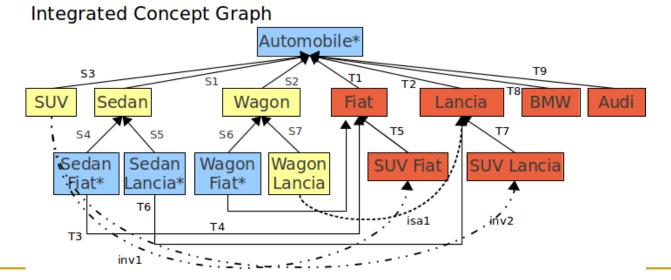
#### Full Merge

Automobile - Fiat Sedan Fiat Wagon Fiat SUV Fiat Lancia Sedan Lancia L SUV Lancia Wagon Wagon Lancia Wagon Fiat Sedan Sedan Fiat Sedan Lancia Audi **BMW** SUV



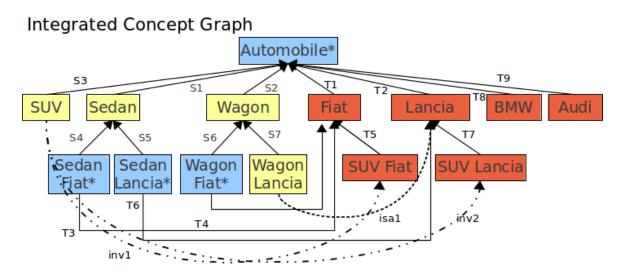
# **ATOM mit erweitertem Ontologie-Mapping**

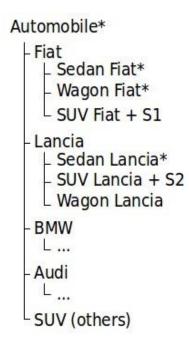



- Erweitertes Ontologie-Mapping
  - □ is\_a und inverse-is\_a Korrespondenzen in Ergänzung zu Äquivalenzen (eq)
  - Kategorie Wagon Lancia nun besser platziert
  - Keine Überlappung zwischen genereller SUV Kategorie und spezielleren SUV Fiat / SUV Lancia Kategorien



# Merge Algorithmus (1)


### Vorphase

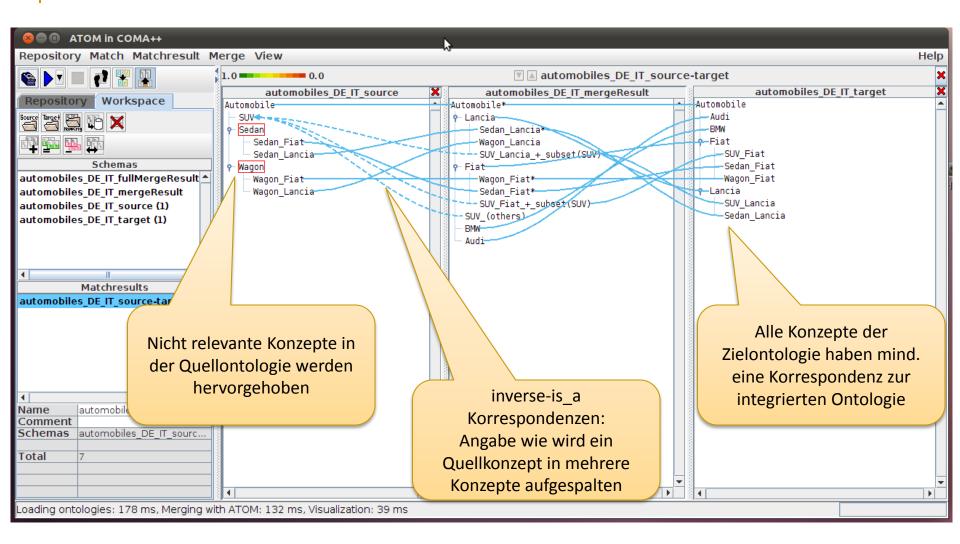

- Verwendung der Eingabeontologie sowie des Ontologie-Mapping zum Aufbau eines Integrated Concept Graph
  - enthält alle Konzepte / Beziehungen aus S bzw. T
- Übernahme aller Konzepte der Eingabeontologien, Zusammenfassen äquivalenter Konzepte
- 2. Eine gelabelte Kante für jede Beziehung aus S bzw. T
- 3. Eine gelabelte Kante für jede is\_a / inverse-is\_a Korrespondenz





# Merge Algorithmus (2)






### Hauptphase

- Übernehme alle Konzepte / Beziehungen der Zielontologie in das finale Ergebnis (target preservation)
- Übernehme alle Blattkonzepte sowohl aus der Quell- als auch Zielontologie (instance preservation)
- Übernehme nur innere Konzepte, welche keine zusätzliche Redundanz einführen (control of semantic overlap)
- Nutzung der is\_a / inverse-is\_a Korrespondenzen zur Verbesserung des Ergebnisses



# Integration in COMA++





# Zusammenfassung

### Erweiterte Verfahren

- Komplexere Algorithmen / Verfahren, welche im Bereich Ontologie-Management eingesetzt werden
- Lösung einer komplexen Aufgabe/Fragestellung
- Reduzierung von manuellen Aufwand

### Erkennung (in)stabiler Ontologieregionen

### Merging von Ontologien

### Weitere Verfahren

- Adaptierung von Mappings unter Evolution
- Erkennung von Ontologiemodulen für Reuse
- Term Enrichment Analysen in der Bioinformatik
- **」** ...

