
UNIVERSITÄT LEIPZIG

ISSN 1430-3701

Report Nr. 01(2000)

On Metadata Interoperability in
Data Warehouses

Hong Hai Do, Erhard Rahm

1

On Metadata Interoperability in Data Warehouses

Hong Hai Do, Erhard Rahm

Department of Computer Science, University of Leipzig
Augustusplatz 10/11, 04109 Leipzig, Germany

March 2000

Abstract. In current data warehouse environments there is either no or only insufficient support
for a consistent and comprehensive metadata management. Typically, a multitude of largely
autonomous and heterogeneously organized repositories coexist. We categorize the major meta-
data types and their interdependencies within a three-dimensional classification approach. We
then investigate how interoperability and integration of metadata can be achieved based on a fed-
erated metadata architecture and standardization efforts such as OIM and CWM. In particular, we
examine synchronization alternatives to keep replicated metadata consistent. We also give an
overview of currently available commercial repositories and discuss interoperability issues to
couple data warehouses with information portals.

1 Introduction

The successful operation and use of data warehouses heavily depends on the effective man-
agement of a multitude of metadata. This metadata is needed to describe all relevant aspects
of the warehouse data obtained from heterogeneous sources, maintained in a central ware-
house and possibly multiple data marts, and made accessible in various ways, e.g. for query-
ing, OLAP, navigation or data mining [MA97, De97]. A comprehensive metadata
management is also needed to guarantee a high quality of the warehouse data and provide
sufficient flexibility to extend the scope of the warehouse to new data sources and new infor-
mation requirements.

Data warehouses integrate massive amounts of heterogeneous and possibly inconsistent
source data. This data integration should be based on the integration of the corresponding
metadata to explicitly describe how the warehouse schema is derived from metadata of the
operational sources and how to properly perform data extraction, transformation and consoli-
dation. Metadata integration also has to deal with heterogeneity as source systems substan-
tially differ in the degree and form they provide describing metadata. The main problem is to
deal with semantic heterogeneity for which no automatic solutions are possible [HST99].
This is because available metadata of the data sources (database schemata, file structures) pri-
marily describe structure; semantic aspects are typically restricted to some integrity con-
straints, hopefully meaningful names and describing comments. Often the meaning of data is
not represented at all but hidden in application programs or only known to some people. Pre-
requisite to metadata integration is metadata interoperability, i.e. the ability to exchange
metadata or provide access to metadata among the various components of a data warehouse
configuration.

A typical data warehouse environment is shown in Figure 1. It consists of file systems and
DBMSs managing the operational sources, the data warehouse and data marts. Furthermore,
a variety of tools from different vendors is usually involved for data modeling, ETL tasks
(extraction, transformation, loading), and data access (OLAP, querying, etc.). All of these
components create and maintain metadata, e.g. within database catalogs, dictionaries or tool-
specific repositories. Typically metadata is maintained independently in a largely isolated
way and in specific representation formats. Metadata required by more than one component,
i.e. shared metadata, needs to flow between the components as indicated in Figure 1 typically
resulting in metadata replication. The use of different metadata representation models com-
plicates metadata interoperability between components, in particular for propagation of

2

updates to keep replicated metadata consistent. It is almost impossible for end-users or data
access tools to make good use of such decentralized and heterogeneous metadata. In practice,
these limitations are often found [Ma99] thereby severely restricting the usefulness and scope
of a data warehouse or even causing failures of entire data warehouse projects.

Consistently supporting shared metadata is thus crucial for data warehouses.1 Repository
support is needed permitting tools and other data warehouse components to access, create,
and extend shared metadata. Another key requirement is a powerful information model for
uniformly representing all types of relevant metadata. This metadata model should be exten-
sible to represent new types of metadata. Particularly important is support for metadata pro-
viding a business-oriented view of the warehouse data abstracting from technical details such
as table and column names. This requirement is not sufficiently supported in current systems.
It requires a solution to the semantic heterogeneity problem and a mapping of data elements
to a consistent set of business terms.

Data warehouses are increasingly accessed via so-called information portals [Wh99, Fi99,
Ha99], providing a uniform Web-based interface for different access forms such as OLAP,
querying, report generation, navigation or data mining. Furthermore, portals offer integrated
access to a variety of structured and unstructured data maintained outside data warehouses, in
particular news channels and digital libraries containing text documents or multimedia con-
tents. A personalized view of all data is provided to end-users considering their interest pro-
files and access rights. Obviously, information portals require a powerful repository to
provide this functionality. This also introduces new interoperability requirements for the
cooperation between the portal repository and warehouse-specific repositories.

In this paper, we discuss the interoperability issues for metadata management in data ware-
houses in more detail. This discussion is based on a three-dimensional classification of the
major types of metadata which is introduced in Section 2. Section 3 gives a brief overview of
current metadata models required for integrating different types of metadata, especially the
competing standardization efforts OIM and CWM. In Section 4, we discuss architectural

1 An example of shared metadata is the warehouse schema that may be created by a modeling (CASE) tool, implemented
in the warehouse DBMS, used by an ETL tool for the definition of data transformations and required by data access tools
for the definition of queries and reports.

Figure 1: Distribution of data and metadata in a data warehouse

= Metadata Management Component

Legend: = Metadata Flow = Data Flow

= Data Management Component/Tool

Data Access

Data Mart

Data
Warehouse

Operational

ModelingETL

Query /
Report

Report
Repository

OLAP

OLAP
Repository

Data
Mining
Mining
Repository

DWH DBMS

DB Catalog

DM DBMS

DB Catalog

DM DBMS

DB Catalog

Packaged
Application

Data
Dictionary

Flat Files

Copy
Books

DBMS

DB
Catalog

External
Data

Metadata

Modeling
Tool
Modeling
Repository

ETL Tool

ETL
Repository

3

alternatives for management of shared metadata. In particular, we differentiate between cen-
tralized, decentralized and federated approaches and distinguish various cooperation forms
(API-based, exchange files, use of wrappers). Approaches to maintaining consistency of rep-
licated metadata are discussed in Section 5. Section 6 contains a brief comparison of com-
mercial repository products. Finally, we discuss the use of information portals with respect to
metadata interoperability.

2 Classification of Data Warehouse Metadata

Addressing the metadata management problem requires a thorough understanding of what
types of metadata need to be dealt with. There have been several attempts to classify data
warehouse metadata [De97, SVV99, Wi98] but still there are no generally agreed-upon crite-
ria. This is also because metadata can be viewed from different perspectives depending on
what a particular study is focussing on. Furthermore, it is not possible to categorize ware-
house metadata into disjoint subclasses because of numerous dependencies between different
metadata types which, in fact, are one cause for the importance of supporting shared meta-
data.

2.1 Overview

We propose a simple classification scheme for data warehouse metadata differentiating along
the dimensions data, processes and users. Figure 2 shows the resulting three-dimensional
classification cube. The data dimension classifies metadata according to the data being
described. Based on the warehouse architecture, we distinguish between metadata associated
with operational systems, the data warehouse, and data marts.

While the data dimension represents a static, component-based view, the processes dimen-
sion deals with dynamic aspects and covers metadata associated with the four main ware-
house processes of designing, populating, administering, and analyzing. The design process
is typically supported by a modeling tool and defines conceptual models, views etc. of the
warehouse and data marts. It requires an integration of metadata obtained from the data
sources. The population process is typically supported by ETL tools and has to feed the data
warehouse and data marts with data required for analysis. It has to implement data integration
by executing rules and scripts for transforming, cleansing and mapping operational data into
the data warehouse or data marts. The administration process comprises operation, mainte-
nance, and tuning of the entire data warehouse environment except the operational systems.
Finally, the analysis processes are supported by specific end-user data access tools for deci-
sion support, e.g. for navigating/browsing, querying/reporting, OLAP, and data mining.

Our third dimension concerns users where we roughly distinguish the two groups of techni-
cal and business users. Technical users include database administrators, designers, and pro-
grammers. They are primarily concerned with the task of developing and maintaining the
system. Business users include managers, analysts, etc. who use the technical infrastructure

Figure 2: Three-dimensional classification of data warehouse

design

technical users

business users

populate admin analyze

data marts

data warehouse

operational

data warehouse
metadata

USERS

PROCESSES

DATA

4

developed by the technical users to perform data analysis. To address the different demands
for metadata of these user groups, we differentiate between technical and business metadata.
This classification criterion is quite common in the commercial world, e.g. [In98, IBM98b,
Ma99].

As already mentioned, there are tight relationships between the various subcases with respect
to their metadata requirements. For instance, technical users are concerned with several pro-
cesses and several warehouse components. On the other hand, not all possible combinations
in our three-dimensional cube are relevant, e.g., the combination [Operational Systems, Ana-
lyze, Technical User]. In Figure 3 we have indicated the main associations between the three
dimensions some of which are less pronounced (dashed lines). In the following, we discuss
this for technical and business metadata by looking at the processes and data they are associ-
ated with.

2.2 Technical Metadata

Technical metadata is relevant to all warehouse processes and all data components (opera-
tional systems, data warehouse, data marts).

• Data schemata (e.g. database schemata or file structures) represent the most important
part of technical metadata. They are generated and implemented during the designing or
the populating process, and maintained during the administering process. They are also
involved in the analyzing process to access and retrieve data from the data warehouse or
data marts. Data schemata of operational systems are heterogeneously represented, e.g.
file- or record-oriented, relational, object-oriented, hierarchical or network schemata. By
contrast, the data warehouse and data marts are homogeneous in nature and usually
described either by relational or multidimensional database schemata.

• Technical descriptions about the source and target systems involved in the populating
process (server names, network addresses, database names, file names, etc.)

• Data dependencies between the various layers of a warehouse environment (operational
data - warehouse data; warehouse - data marts; warehouse/data marts - data analysis
objects such as queries, reports, data cubes) need to be maintained to systematically man-
age and propagate changes. Some of these are specified for the population process, e.g.
rules for data cleansing, transforming, and mapping. The analyzing process generates
technical metadata about how the analysis-specific objects are created (e.g. SQL state-
ments, aggregations, filters), and in which form they are stored (e.g. database tables,
files).

• Metadata for administration purposes includes system statistics for performance tuning
(usage pattern, CPU and I/O requirements, ...), e.g. to define index structures or pre-com-

Figure 3: Associations between users, processes and data

USERS

DATA

PROCESSES

Technical User Business User

Operational Data Warehouse Data Marts

Design Populate AnalyzeAdminister

takes part in

involves data in

5

pute aggregations. Data refresh is based on technical metadata for scheduling population
jobs, status information on the progress and success of such jobs, etc. Purging and
archiving old warehouse data is based on metadata such as the time and frequency of
purging actions, strategy for selecting „old“ data, etc.

2.3 Business Metadata

Business metadata helps business users to understand the meaning of the data and supports
business-oriented data analysis. It can be generated by design, population, or analyze pro-
cesses.

• Information models (or conceptual data models) represent a technology-independent
specification of the data required by the enterprise to run its business. Typically, they are
based on the entity-relationship approach or UML (Unified Modeling Language). Infor-
mation models can exist for operational systems (operational data models), the data ware-
house or data marts. In addition, a comprehensive enterprise data model is desirable
defining the main business information objects, relationships among them and integrity
constraints (business rules).

• Enterprise modeling is to be based on a consistent definition of business terms. Business
terms describe business-relevant entities in natural language and should be familiar to
end-users. The descriptions are maintained in a lexicon. Construction of the enterprise
data model and business terms is discussed in [LJ99].

• To allow business-oriented data access, mappings between business terms and data mart /
data warehouse data elements (e.g. tables, attributes) are needed. Business users should
be able to formulate ad-hoc queries using familiar business terms instead of a complex
query language such as SQL. The mappings may be defined during the design of the
enterprise data model, e.g. after the definition of business terms is completed.

• Business users require understandable descriptions of predefined queries, reports and
data cubes in the system. Related business metadata includes responsible person (data
stewardship), owner (data ownership), creation time, frequency of updates, correspond-
ing topics and business areas, etc.

• Business users want information about the state and the quality of the data in the data
warehouse and data marts. Based on technical metadata generated during the populating
and the administering processes (ETL rules, scheduling of ETL jobs and purging activi-
ties, ...), business metadata entails information about data lineage (where the data comes
from), data accuracy (how the data has been transformed), or data timeliness (when was
the data last refreshed or purged).

• Metadata for personalization such as user profiles, user roles, subject areas of business
data, and associations between users, user roles, subject areas and data elements in the
data warehouse / data marts.

Obviously, there are associations and overlaps between technical and business metadata too.
In contrast to technical metadata, business metadata is not yet widely supported in data ware-
houses. It entails a substantial definition and modeling effort, in particular to define a consis-
tent set of business terms and to develop a comprehensive enterprise data model.

3 Metadata Models

Managing the different types of metadata requires repositories with a powerful metadata
model. Several vendors offer general repositories supporting data warehousing environments
as well as other application domains such as software development (see Section 6). In addi-
tion, most data warehousing tools use built-in repositories for their specific functionality thus
typically covering a particular subset of the metadata. Several research efforts have also pro-

6

posed metadata models suitable for data warehousing [BH98, JJQ+99, MSR99].

3.1 Requirement for a Uniform Representation of Warehouse Metadata

As discussed in the introduction, metadata from multiple sources needs to be integrated and
thus mapped between different repositories. If every participating repository uses a different
metadata model the mapping process becomes very complex and hard to maintain. Further-
more, it may not be possible to propagate all required metadata due to differences in the
expressive power of the metadata models. These problems are analogous to the well-known
schema translation and integration problems of federated database systems [SL90]. Schema
translation is performed to transform different database schemata into a common data model
(e.g., object-oriented model). Schema integration then combines the homogeneously repre-
sented but independent database schemata into a combined global schema. The main problem
in this step is to resolve semantic schema conflicts. Apparently, the proposed research
approaches have had little impact in the commercial world so far.

The metadata integration problem of data warehouses is partially more complex since not
only schemata but a multitude of additional metadata needs to be dealt with. Uniformly rep-
resenting this metadata (and thus solving the translation problem) can substantially be simpli-
fied by a powerful metadata model standard if it is supported by many repositories. Currently,
there are two competing industry efforts for such a standard metadata model for data ware-
houses, namely OIM and CWM. The OIM (Open Information Model) effort is led by the
Metadata Coalition2 (MDC) and supported by Microsoft and other companies [MDC99].
CWM (Common Warehouse Metamodel) has been introduced more recently; it is an
approach of the Object Management Group3 (OMG) and supported by IBM, Oracle and oth-
ers [OMG99]. We briefly discuss and compare these approaches in the following.

3.2 Technical and Business Metadata in OIM and CWM

The aim of OIM is to generally support tool interoperability across technologies and compa-
nies via a shared information model. OIM contains metadata from a broad range of subject
areas, i.e. software development, object-oriented analysis, business engineering, data ware-
housing, and knowledge management. CWM, on the other hand, addresses metadata inter-
change specifically in the data warehouse environment, i.e. between warehouse tools. Both
metadata models make use of OMG’s standard modeling language UML (Unified Modeling
Language) for the specification, visualization and documentation of their metadata types. The
object-orientation supports extensibility of the models by defining additional (specialized)
submodels. CWM also conforms to the Meta Object Facility (MOF), an OMG metadata
interface standard used for defining and representing metadata as CORBA objects.

2 www.mdcinfo.com
3 www.omg.org

Technical Metadata OIM Submodel CWM Submodel
Data Sche-
mata

Relational Relational Database Schema Relational Data Resource

Record-oriented Record-oriented Database
Schema

Record-oriented Data Resource

Multidimensional OLAP Schema Multidimensional Data Resource

OLAP

XML XML Schema XML Data Resource

Data Transformation Data Transformations Transformation

Warehouse Administration Warehouse Deployment

Warehouse Process

Warehouse Operation

Table 1: OIM and CWM submodels for technical metadata

7

As summarized in Table 1, OIM and CWM have similar submodels for representing techni-
cal metadata such as data schemata, (i.e. relational, record-oriented, multidimensional,
XML), and data transformations. CWM includes three additional submodels describing other
technical aspects of the data warehouse environment:

• Warehouse Deployment: records how the software systems in a data warehouse are used
and where they are installed (which computer, geographical location).

• Warehouse Process: documents process flow used to execute the transformations. A
warehouse process associates a transformation to a series of events (scheduled, internal or
external) used to trigger the execution of the transformation.

• Warehouse Operation: covers runtime metadata, e.g., about time and state of recent exe-
cutions of transformations, and a historical record of metadata changes

Regarding business metadata, both OIM and CWM provide basic metadata types to describe
general aspects of business information such as contact information (data stewardship), tex-
tual decriptions, etc., which can be attached to other model elements. Furthermore, both mod-
els contain some similar submodels devoted to business metadata from several areas of data
warehousing, such as data analysis and knowledge management (see Table 2).

• OIM Report Definitions / CWM Information Reporting: both provide metadata types to
represent formatted reports (report formatting definitions, relationships between report
fields and corresponding function / query expressions, ...).

• OIM Knowledge Descriptions / CWM Business Nomenclature: both provide metadata
types to describe and categorize information. A semantic network of taxonomies, con-
cepts, terms, glossaries, etc. can be built allowing the sharing and the collaboration of
knowledge in an organization.

Besides such overlap, both OIM and CWM contain some unique submodels:

• OIM Semantic Definitions: accommodates conceptual models of user information which
are basically built on three semantic concepts: entities, relationships, and dictionary
entries. Schema-to-semantic mappings linking physical data with business concepts and
relationships defined by means of linguistic phrases allow end-users to interact with a
database without learning a data retrieval and manipulation language such as SQL.

• CWM Information Visualization: provides the foundation for the CWM Information
Reporting submodel. It defines generic metadata types describing the mechanism for
visualizing, i.e. rendering, an arbitrary model element in two dimensions (e.g. displaying
a query result set in different formats, such as printed reports, Web page, charts, etc.).

• CWM Data Mining: contains metadata types and associations related to the data mining
process, such as a generic data mining model, mining settings driving the construction of
the mining model, input attributes and their usage, mining result set, etc.

Currently, both OIM and CWM do not address the management of users, access rights, user
profiles and the association between users and information objects. Therefore, personalized
views on warehouse data are not yet supported.

Business Metadata OIM Submodel CWM Submodel
General
Aspects

Contact Information Generic Elements CWM Foundation

Textual Descriptions

Data Analysis Reporting Report Definitions Information Reporting

Information Visualization

Data Mining Data Mining

Knowledge
Management

Conceptual Modelling Semantic Definitions

Business Term Model-
ling

Knowledge Descriptions Business Nomenclature

Table 2: OIM and CWM submodels for business metadata

8

The possibility to uniformly represent metadata from multiple sources simplifies but does not
solve the metadata integration problem. In particular, semantic heterogeneity has to be dealt
with when designing the warehouse schemata and defining the required transformations.

4 Architectural Alternatives

We first discuss general architectures for shared metadata that may be represented according
to one of the standard metadata models. Thereafter, we compare major alternatives for meta-
data interoperability, in particular exchange files and metadata APIs as well as the use of
wrappers for metadata mapping.

4.1 General Architectures for Metadata Management

Regarding the way metadata is managed and shared between applications, we generalize
three approaches for metadata management in a heterogeneous environment: centralized,
decentralized, and shared or federated (Figure 4). In addition, a mixed approach is discussed.

Centralized Approach
In this case, all tools and the warehouse and data mart DBMSs directly access a central repos-
itory. They do not store and maintain metadata locally. The central repository is used to man-
age shared as well as tool/DBMS-specific metadata. The biggest advantage of this approach
is that a non-replicated and consistent management of all metadata can be achieved. Every
component has access to all existing and current metadata. However, this approach would
require that all tools and DBMSs depend on the central repository even for specific metadata
not relevant for other components. Such a loss of autonomy is typically unacceptable, in par-
ticular if components from multiple vendors need to cooperate. In addition, there is a perfor-
mance problem because all metadata accesses would require interaction with the central
repository.

Decentralized Approach
This approach represents the other extreme that is typical for current data warehouse environ-
ments (Section 1). All tools and DBMSs possess their own (local) metadata repository and
communicate with each other to exchange metadata. This supports maximal autonomy and

Figure 4: Architectural approaches for metadata management

A> Centralized Approach

Central Repository

Tool A Tool B Tool C

Tool A

Local
Repository

Tool C

Local
Repository

Tool B

Local
Repository

Shared RepositoryShared Metadata

Tool A

Local
Repository

Tool C

Local
Repository

Tool B

Local
Repository

B> Decentralized Approach

+ non-replicated and consistent management of all metadata
+ global availability of all metadata
+ no metadata exchange mechanisms required

– dependence on one central repository
– complex central maintenance of tool-specific metadata
– slow metadata access

+ maximal autonomy of applications
+ fast access to local metadata

– numerous connections between repositories
– replicated metadata, difficult synchronization

+ uniform representation of shared metadata
+ autonomy of repositories
+ reduced number of connections between repositories
+ controlled replication of metadata

= Metadata FlowLegend:

C> Shared Approach

9

performance for tool/DBMS-specific metadata. On the other hand, numerous bidirectional
connections are needed to exchange shared metadata. Each connection may involve a com-
plex mapping if metadata is differently represented in the local repositories. Furthermore,
metadata is replicated in several components and difficult to keep current and consistent.

Shared Approach
This approach tries to combine the advantages of two previous approaches. Each tool/DBMS
possesses its own repository for its local metadata thus supporting autonomy and fast access
for this metadata. In addition, each component supports a metadata exchange interface to a
common repository managing all shared metadata. While the metadata may be heteroge-
neously represented within the local repositories, a uniform representation is supported by
the shared repository, e.g. based on a standard metadata model such as OIM or CWM. In con-
trast to the decentralized approach, the number of tool-to-tool connections and the mapping
overhead can be significantly reduced and metadata replication can be tracked and controlled
centrally.

The shared approach represents a federated metadata architecture preserving the autonomy
and supporting heterogeneity of the participating repositories. Each repository decides which
part of its metadata is to be exported, e.g., by defining a corresponding export schema. The
shared repository unifies and combines these export schemata within a common metadata
model thus improving its usability for other tools and end-users.

Mixed Approach
The aforementioned approaches can be combined within a mixed or hybrid metadata archi-
tecture. For instance, while the central approach seems to be of little relevance it can be uti-
lized at the data access layer, e.g. when multiple client invocations of an access tool share the
tool’s local repository. On the other hand, the shared/federated approach seems to be the best
choice but may not be achievable in its pure form in multi-vendor environments, e.g. if the
operational systems or the data warehouse DBMS do not directly support a shared repository.
Figure 5 shows such a mixed approach where a shared repository for managing globally rele-
vant metadata is introduced, but only connected to some components. Compared to the origi-
nal situation of Figure 1, we achieve a controlled flow of metadata from the ETL tool and the
modeling tool to the data access tools, so that dependencies between metadata in those tools

Figure 5: Mixed metadata architecture with a shared repository

= Data Management Component/Tool

Legend: = Metadata Flow

= Metadata Management Component

Data Access

Data Mart

Data
Warehouse

Operational

Modeling

Shared
Metadata
Management

ETL
DM DBMS

DB Catalog

DM DBMS

DB Catalog

DWH DBMS

DB Catalog

Packaged
Application

Data
Dictionary

Flat Files

Copy
Books

DBMS

DB
Catalog

External
Data

Metadata

Tool

Shared
Repository

Query /
Report

Report
Repository

OLAP

OLAP
Repository

Data
Mining
Mining
Repository

ETL Tool

ETL
Repository

Modeling
Tool
Modeling
Repository

10

can be recorded. The backflow of metadata from data access tools to the shared repository
enables users to inform themselves about objects created during data analysis, e.g. queries,
reports, or data cubes. Data marts, data warehouse and operational systems are not directly
connected to the shared repository. However, for them, the modeling and ETL repositories
represent shared repositories so that the architecture of Figure 5 can be seen as a multi-level
repository federation.

4.2 Interoperability Mechanisms

Most of the discussed metadata architectures require the ability to communicate and
exchange metadata between repositories. The exchange of metadata corresponds to a map-
ping process between two metadata models. Metadata exchange can more or less use the
same methods than for data exchange between different data management systems. In partic-
ular, file exchange and API approaches can be used (Figure 6). In addition, a wrapper-based
middleware approach can be employed to perform mappings between different metadata
models. In order to provide more flexibility, some repositories implement several exchange
methods at the same time.

File Exchange
The simplest method for metadata interoperability is to write metadata to a file of a specified
(standardized) format that can be imported by other tools or repositories. Such exchange files
are easily portable across multiple platforms. Furthermore, they can be produced and con-
sumed even by tools and applications without a local repository. The file exchange method
implies an asynchronous access to external metadata, actually to copies of it, which leads to
two disadvantages. First, metadata is only current at the time of import. Second, the mecha-
nism for translating between a tool’s proprietary metadata format and the file format is hard-
coded in the tool and needs to be adapted when the exchange format evolves.

Early specifications for metadata exchange formats include MDIS (Metadata Interchange
Specification) [MDC97] and CDIF (Case Data Interchange Format) [EIA97]. MDIS was
introduced by the Metadata Coalition in 1996. It allows the representation of different kinds
of database schemata (relational, object-oriented, record-oriented, multidimensional) as well
as inter-database relationships (textual descriptions of transformations and mappings
between databases). MDIS has not been enhanced or extended since 1997. CDIF was specifi-
cally developed for transfering data models between CASE tools and is based on an inte-
grated and extensible metadata model. CDIF is supported by CASE tools such as CA/
Platinum ERwin and Oracle Designer.

Currently, most promising appears the use of XML (Extensible Markup Language) [Ch99], a
standard language to represent data on the Web. XML supports so-called Document Type

Figure 6: Metadata exchange methods as model mapping

= Model MappingLegend:

metadata metadataAPI Calls
Repository A

metadata metadata

Exchange File

Tool A Tool B

Import/Export of Metadata File

Metadata Exchange through API

Tool B

Import/Export Import/Export

API

11

Definitions (DTD) to specify the structure of documents and other files. It is thus well-suited
as the basis for standardizing the formats for exchanging data or metadata. With regard to
data warehousing, XML has gained substantial importance as it is supported by the standard
metadata models OIM and CWM (see Section 3) and commercial repositories (e.g.,
Microsoft Repository, Viasoft Rochade). CWM supports XMI (XML Metadata Interchange)
for defining mappings of its metadata into XML; OIM provides an XML-based exchange for-
mat based on the former Microsoft specification XIF (XML Interchange Format). Currently,
XML is not yet widely supported by modeling, ETL and data access tools but this is expected
to change soon.

Repository API
A repository usually comes with a proprietary application programming interface (API) to its
contents: metadata can be retrieved, inserted and manipulated. Repositories document their
API and typically provide an application development environment. The API allows other
repositories and tools to synchronously access and exchange metadata. This enables access to
the current metadata of a repository. The API can also provide the means to extend and cus-
tomize the metadata model of the repository. The disadvantage of this method is however the
time and effort to be spent on the development of such applications.

Proprietary APIs are typically supported only by some other vendors. For instance, the Meta-
data Exchange (MX and its successor MX2) architecture of Informatica provides a set of
COM-based APIs to the repository underlying its ETL tool PowerCenter/PowerMart [Inf98].
Tools of several vendors (e.g. Cognos, Business Objects) use these APIs to retrieve and push
metadata from/into the repository. According to Informatica, MX2 is compatible with OIM.
An MX2 software development environment is also included for developing custom applica-
tions.

Relational and object-oriented data APIs such as ODBC and OLE/DB also provide access to
metadata and can thus be used for metadata exchange. For instance, the multidimensional
API standard OLE/DB for OLAP includes commands to query and manipulate metadata
describing the schemata of OLAP data sources.

Metadata Wrapper

In federated data architectures, wrappers are used to hide API differences of heterogeneous
data sources [RS97]. A wrapper performs the mapping between the API of a data source and
a common API that may be used by other middleware, such as a mediator providing uniform
access to the underlying sources. Such an approach can also be used in the data warehouse
context to provide uniform metadata access to heterogeneous repositories (Figure 7). In par-
ticular, it facilitates the integration of heterogeneous metadata within a shared repository. The
metadata exchange between the source repositories and the wrapper and between wrapper
and shared repository may be performed either API-based (synchronously) or asynchro-
nously with exchange files. Typically, bidirectional wrappers are needed to both write meta-

Figure 7: Metadata exchange through tool-specific metadata

Tool A

Local
Repository

Tool C

Local
Repository

Tool B

Local
Repository

Shared RepositoryShared Metadata

Tool-specific Metadata Wrapper

Metadata WrappersW 1 W 3
W 2

12

data into and read metadata from the shared repository. The wrapper approach is followed by
several commercial repositories (see Section 6).

5 Metadata Synchronization

While metadata changes less frequently than data, metadata updates are more difficult to deal
with. This is because metadata updates not only affect the data that is described (e.g, deletion
of an attribute) but also other metadata objects due to metadata interrelationships (e.g., refer-
ential integrity constraints). These problems already occur in a local (database) environment;
specific research aspects have been addressed in the area of schema evolution [RR97,
ALP91, KC88, DGN99]. In our context, we have to additionally synchronize repositories
sharing metadata with each other. In particular, updates of replicated metadata need to be
detected and propagated automatically in order to keep this metadata consistent. Further-
more, updated metadata needs to be applied (integrated) within a repository, e.g. to keep
interrelationships with metadata from other repositories consistent. For example, changes in
the data warehouse schema may cause errors in the execution of some ETL jobs, queries or
reports when they are not adapted appropriately.

In the following we first discuss general approaches to these synchronization problems. We
then turn to publish/subscribe approaches that may be used in combination with a shared
repository.

5.1 Replication Control and Update Propagation

Numerous methods for replication control have been proposed in the area of distributed data-
bases [ÖV99]. Most of them such as ROWA (read one, write any) or voting schemes strive
for one copy serializability where all replicas are mutually consistent and each read is guaran-
teed to get access to the most recent transaction-consistent copy of a replicated object. Fur-
thermore, each copy can typically both be read and updated. Unfortunately, such strict
approaches are too restrictive and expensive to be widely applicable. In particular, they intro-
duce substantial delays for synchronously updating multiple database copies (e.g., during
commit processing) and require global concurrency control for strictly serializing updates.
Furthermore, availability problems arise when some of the copies to be updated are not
accessible due to system failures etc.

Such approaches are thus not appropriate for controlling replication of shared metadata. This
is also because repositories are heterogeneous and largely autonomous and not ready to par-
ticipate in a global concurrency control scheme for serializing updates. We therefore focus on
„lazy“ synchronization approaches with weaker consistency goals [PSM98] which are also
found in commercial DBMSs. Such strategies can be characterized by a publish/subscribe
approach. A tool or repository changing (a copy of) shared metadata is called a „publisher“, a
recipient of (a copy of) shared metadata is called a „subscriber“. Of course, a component may
have both roles, publisher and subscriber, at the same time.

The following alternatives for metadata replication control can be differentiated:

• „Update anywhere“ vs. „primary copy“
In the general case any copy of a replicated metadata object may be updated (n publishers
per object), however without prior serialization. This requires an approach for merging
concurrently performed updates and for detecting and resolving conflicting updates (e.g.,
duplicate identifiers). In commercial DBMSs (e.g., Microsoft SQL Server) conflict reso-
lution for „update anywhere“ replication may be specified by application-specific rou-
tines or manually [Ham99]. This approach is quite flexible but the system loses control
over maintaining consistency.
These problems are avoided with only one publisher per object which is called the
object’s owner or master. It maintains the primary copy of a replicated object that is

13

always up-to-date. The subscribers hold secondary or slave copies that are read-only and
may not yet reflect all changes, depending on the update propagation strategy. We con-
sider such an approach as sufficient for our purposes and thus assume that each shared
metadata object has a primary repository where all updates are to be performed. This is a
natural approach since most metadata objects originate from some repository - which will
be the primary repository - from where they migrate to other repositories (subscribers).

• Timing of update propagation: synchronous, ASAP, or deferred
Update propagation between a publisher and subscribers can be synchronous or asyn-
chronous. Synchronous propagation occurs within the publishing transaction and requires
a coordinated commit protocol between publisher and subscribers. This is an expensive
approach and requires the repositories to participate in a standardized commit protocol,
e.g., based on the XA interface [GR93]. An asynchronous propagation of updates occurs
after commit of the publishing transaction and results in a delayed refresh of subscribed
copies. We differentiate two variants: ASAP (as soon as possible) and deferred. With
ASAP, copies are only slightly behind the primary copy but require every update to be
propagated almost immediately. The deferred approach allows a less frequent (e.g., peri-
odic) refresh with reduced communication overhead but resulting in less current subscrip-
tions, similarly to snapshot replication [AL80].

• Method for update propagation: notification (push) vs. probing (pull)
Two methods are differentiated depending on whether the publisher or subscribers are
more active for update propagation. With notification, each publisher registers the set of
metadata it shares with any subscriber. Updates are notified or pushed by the publisher to
all affected subscribers either synchronously, ASAP or in a deferred way. The strategy
requires that all participating repositories support a common interface for metadata regis-
tration and update notification (API-based interoperability).
With probing (pull), on the other hand, each subscriber is responsible for keeping its
imported metadata consistent. Periodically, it probes for new and changed metadata in
other repositories and imports (pulls) the relevant updates. This implies a deferred propa-
gation of updates. The probing approach can be implemented within the subscriber itself
(API-based) or by an external scheduler invoking scan programs to check the relevant
metadata sources (publishers). The latter approach is also applicable to a file-based meta-
data exchange. Probing permits obtaining metadata (updates) from repositories offering
little or no support for replication control.

After a repository receives updated metadata the changes have to be applied and integrated
with the existing metadata. In the simplest case, older versions of metadata objects are simply
replaced. However, changes may also result in metadata conflicts that cannot be resolved
automatically, e.g. due to dependencies to other metadata. Hence, a strategy for conflict con-
solidation needs to be provided. If the subscribing repository supports versioning, old meta-
data can remain and the updates are stored as a new version. The details of such a versioning
depend on the supported granularity of metadata versioning (e.g., attribute, object, class,
schema) and type of update.

A problem in this context lies in the fact that a given repository (subscriber) may obtain meta-
data updates from multiple sources (publishers) with different propagation methods and dif-
ferent timing approaches. As a result, even the most recent metadata objects can refer to
different points in time making it difficult to group them together so as to obtain transaction-
consistent versions of the metadata. The problem may be controlled by not independently
propagating every metadata change but by only periodically performing such updates. For
instance, modifications of source schemata may be propagated in batches, e.g. weekly or
together with changes of the warehouse schema.

We have differentiated several alternatives for automatically propagating updates between
repositories to refresh replicated metadata. Based on our discussion we favor a lazy publish/

14

subscribe replication control based on a primary copy approach for updates and a deferred
update propagation either based on notification or probing. We now discuss how such an
approach can be combined with the use of a shared repository.

5.2 Replication Control with a Shared Repository

The shared repository architecture can ease the task of metadata synchronization. It provides
an almost up-to-date and possibly versioned set of all shared metadata and allows a central-
ized replication control for this shared metadata. A particular publish-and-subscribe approach
(also called „hub-and-spoke“ [Ar99]) can be applied where the shared repository has both the
role of a subscriber and publisher. Other publishers and subscribers access the shared reposi-
tory to transfer/receive updates of shared metadata. The shared repository can register all
publishers and subscribers together with the set of metadata they export or import.

For update propagation each of the methods discussed can be chosen. The main choice we
left open was the distinction between a notification (pull) and probing (push) approach.
These alternatives exist for two propagating steps: update propagation from a publishing
repository to the shared repository (Step 1) and update propagation from the shared reposi-
tory to subscribers (Step 2). This results in four possible combinations where each of the
steps is either implemented by the shared repository or by the external publishers/subscribers
(Table 3).

• Combination 1 (Push/Pull): The publishers push (propagate) their changes to the shared
repository. The subscribers, on their own, detect the updates made in the shared reposi-
tory and pull (import) them into their repository. This approach actually does not make
active use of the shared repository for replication control: it only plays the role of a data
management component.

• Combination 2 (Push/Push): The publishers push their changes to the shared repository
which further pushs those changes to the subscribers. The shared repository registers the
set of subscribed metadata.

• Combination 3 (Pull/Pull): The shared repository detects and pulls changes made by the
publishers. The subscribers detect and pull updates made in the shared repository. The
shared repository registers the set of each provider’s published metadata.

• Combination 4 (Pull/Push): The shared repository detects and pulls changes made in the
publishers, and pushs them further to the subscribers. The sets of both published and sub-
scribed metadata are maintained and tracked by the shared repository.

Depending on the combination, functionality for update propagation is to be implemented
either in both publisher/subscriber repositories and the shared repository (2, 3), only in pub-
lisher/subscriber repositories (1), or only in the shared repository (4). Combination 1 is obvi-
ously the most inflexible approach because each tool and repository to be used must provide
replication support. By contrast, combination 4 seems particularly promising for automating
update propagation since it can be implemented entirely in the shared repository. However,
both combinations 3 and 4 require the implementation of a comprehensive change detection
which can be complex due to the heterogeneity of the repositories and tools.

Combination 2 is already realized in commercial repositories, e.g. Ardent MetaStage,
although the propagation process is largely performed manually. Here, a tool can either

Combination Implementation of Step 1 Implementation of Step 2
1: Push / Pull Publishers Subscribers

2: Push / Push Publishers Shared Repository

3: Pull / Pull Shared Repository Subscribers

4: Pull / Push Shared Repository Shared Repository

Table 3: Possible implementations of publish-and-subscribe

15

directly publish its metadata into the central MetaStage repository or into a queue for
approval by an authorized administrator. MetaStage tracks metadata subscriptions and noti-
fies changes to the users of affected tools so that they can request an update from MetaStage.

6 Commercial Repositories for Shared Metadata Management

In this section we discuss several commercial repository solutions for data warehouse meta-
data management: Ardent MetaStage, IBM DataGuide, Microsoft Repository, Sybase Ware-
house Control Center (WCC), and Viasoft Rochade. Based on the available information, we
summarize in Table 4 major features of these products with respect to the metadata model,
metadata interoperability, and other functions. Of course, only a snapshot can be provided (as
of late 1999) as the products are constantly evolving.

Several repositories (DataGuide, MS Repository, Rochade) provide mechanisms to extend
and customize their metadata model. Mostly, a proprietary metadata model is in use. MS
Repository is based on the OIM standard metadata model; Viasoft and IBM have announced
support for OIM and CWM, respectively. Typically, the repositories use a relational database
for storing the metadata, except for Rochade which is based on a proprietary repository
engine. With documented repository tables, metadata access and exchange can be performed
using SQL.

All repositories implement import and export mechanisms for exchanging shared metadata.
DataGuide and WCC use MDIS to import technical metadata from ETL tools such as Ardent
DataStage and ETI Extract, and tool-specific wrappers to pass this metadata to data access
tools such as Cognos Impromptu and Business Objects. DataGuide’s wrappers are bidirec-
tional allowing the import of metadata from several data access tools to describe queries,
reports, and data cubes. Microsoft provides wrappers to import metadata from its own prod-
ucts, OLAP Services and English Query, into MS Repository. Rochade comes with two kinds
of wrappers called buses and scanners. Buses support bidirectional metadata exchange and
are available for various CASE tools (e.g. CoolGen, ERwin, ERStudio) and relational
DBMSs. Scanners perform metadata extraction from programming languages (e.g. COBOL,
JCL). Ardent’s wrappers are called MetaBrokers and support bidirectional metadata
exchange with MetaStage. Currently, several data access tools (e.g., Cognos Impromptu,
Business Objects), modeling tools (e.g., ERwin, ERStudio), and Ardent’s own ETL tool
DataStage can be integrated with MetaStage by means of MetaBrokers. Despite such meth-
ods for metadata exchange, interoperability of a repository is generally limited to compara-
tively few tools because of the overhead of developing and maintaining metadata wrappers.

For metadata synchronization, MetaStage and WCC support the publish-and-subscribe para-
digm. MetaStage is able to track subscriptions and notifies tool users when the subscribed
metadata has been changed in the repository. WCC provides a facility to validate schema
metadata against physical databases. MS Repository supports versioning of objects and their
relationships, whereas Rochade provides versioning at the attribute level, the finest level of
granularity.

Regarding end-user support, all repositories include proprietary or Web-based user interfaces
for browsing, navigating and searching metadata. WCC supports „semantic views“ based on
alias names for physical database tables and columns. In DataGuide, comments, contact and
support information can be defined and attached to information objects. The searching facil-
ity is often based on pattern search in textual metadata. Except for DataGuide, the reposito-
ries lack a lexicon where business users can look up definitions of business terms, synonyms
or other related terms.

Impact analysis informing end-users of dependencies among data is usually implemented
through a query facility. MetaStage and Rochade provide query templates to speed up the
construction of common queries such as for data lineage and impact analysis. Generated que-

16

ries can be stored for reuse or shared with other users. In MS Repository and WCC, a brows-
able view based on technical metadata defined by the ETL process is provided allowing to
explore the relationships between source and target objects of an ETL job.

Most repositories do not yet support the integration of unstructured data and do not allow
end-users to drill down from metadata to physical data. Although the users can see in the
repositories which data exists in the data warehouse, typically they have to perform data
access operations outside of the repository. DataGuide allows at least direct invocation of
external programs for data access. Its metadata schema supports both structured and unstruc-
tured data. In particular, predefined object types are provided to describe database schemata
as well as various types of documents, multimedia and internet files.

Little attention has been paid on user management and personalization of user views on meta-
data. Repository accesses are typically controlled by access rights defined on the underlying
repository database. Users are usually not allowed to tailor and customize their user inter-
faces to obtain only the information they are actually interested in. A mechanism for auto-
matic delivery and distribution of information to be shared among end-users is not achieved
yet. Current implementations of publish-and-subscribe, as in MetaStage and WCC, provide
metadata delivery to a limited number of warehouse tools and still largely depend on user
interaction.

Aspects Ardent
MetaStage

IBM
DataGuide

Microsoft
Repository

Sybase
WCC

Viasoft
Rochade

Metadata Model proprietary proprietary,
extensible

OIM, extensi-
ble

proprietary proprietary,
extensible

Underlying DBMS UniVerse DB2 SQL Server Adaptive IQ,
SQL Server

proprietary

Exchan
ge
Mecha-
nisms
(in 2
direc-
tions)

File
For-
mat

Import IBM Tag Lan-
guage, MDIS
(ETI Extract)

XML/XIF MDIS
(DataStage),
WAM (Ware-
house Archi-
tect), ERX
(ERWin)

XML/XIF

Export

API Import MetaBroker
Toolkit

proprietary (C) proprietary
(COM)

proprietary
(C++)Export

Wrap-
per

Import Cognos
Impromptu,
Business
Objects,
ERwin,
ERStudio

Cognos
Impromptu,
Business
Objects, CASE
Tools

OLAP Serv-
ices, English
Query

CASE tools,
DBMS, Pro-
gramming
Languages

Export Cognos
Impromptu,
Business Objects

Cognos
Impromptu,
Business
Objects, Eng-
lish Wizard

CASE tools,
DBMS

Metadata Synchroniza-
tion

publish-sub-
scribe

publish-sub-
scribe

Versioning,
Configuration

(COM) object
level

attribute level

User
Inter-
face

Browsing,
Navigating,
Search

Web proprietary GUI
+ Web

proprietary
GUI

proprietary
GUI + Web

proprietary
GUI + Web

Impact Analy-
sis

query
builder

view of ETL
metadata

view of ETL
metadata

query builder

Further Information [Ar99]
www.ardent
soft-
ware.com

[IBM98a,
IBM98b]
www-
4.ibm.com/soft-
ware/data/vw

[BBC+99,
BB99]
msdn.micro-
soft.com/
repository

[Ov98, Sy99]
www.sybase.c
om/bid

[Vias97]
www.via-
soft.com

Table 4: Commercial repository approaches

17

7 Information Portals

As pointed out above, current data warehouses and repositories do not sufficiently support
business users. The situation can be improved by the proposed shared repository integrating
technical and business metadata and providing the base for various data access tools and end-
user interaction. However, business users also demand access to a variety of other informa-
tion not maintained in the company’s data warehouse. In particular, unstructured or semis-
tructured data such as documents, news, Web pages, or multimedia objects need to be
accessed in a simple and uniform way. The recently introduced concept of enterprise infor-
mation portals (EIP) [Wh99, Fi99, Ha99] aims at meeting these requirements.

7.1 Extending the Data Warehouse by an Information Portal

As shown in Figure 8 such an information portal can be viewed as a common user interface to
both structured business data, maintained in the data warehouse, and unstructured data possi-
bly coming from external (Web) data sources. People also talk of combining „business intel-
ligence“ with „knowledge management“. The focus of business intelligence is on applying
algorithms, such as, querying, reporting, OLAP, and data mining, for processing structured
data to identify trends and patterns that can be used to improve business strategies. Knowl-
edge management, on the other hand, focuses more on the processing of unstructured data
and the organization of such data into meaningful information that business users can search,
modify, analyze and share. Characteristic techniques of knowledge management include
indexing, categorization, content retrieval and distribution.

A key service provided by information portals is an individually customizable user interface
for almost universal data access. Personalized view and delivery of data is based on the man-
agement of associations between users, user roles, subject areas of business data and single
data elements within a portal repository. Users are assigned specific roles with corresponding
rights for data access and to perform specific operations (e.g. query/report definition, execu-
tion, etc.). Furthermore, business users can specify sophisticated interest profiles by subscrib-
ing to single information objects or entire subject areas of interest and information sources

Figure 8: The information portal and relevant metadata flows

Legend: = Metadata Flow

= Metadata Management Component = Data Management Component/Tool

Portal Portal

Portal
Repository

Data AccessShared
Metadata
Management

Data
Mart

Data
Warehouse

Operational

ModelingETL

Tool

Shared
Repository

Data Warehouse Environment
Structured Data

Intranet/Internet Environment
Unstructured Data

W W W

Documents Multimedia Web

Data Sources

Data Access

OLAP
Word
Processing

Data
Mining

Query /
Report

Document
Management

Text
Mining

18

(databases, files, Web pages, news channels, document stores, etc.) and specifying the fre-
quency for their updates.

Delivery of subscribed data and thus distribution of business data is managed by a publish-
and-subscribe engine. The portal maintains physical copies of the published objects at a cen-
tral place (a DBMS or the Web server where the portal resides) or only descriptions of the
objects with a link pointing to their location. Heterogeneous data requires different methods
to access and visualize. A simple solution usually implemented by portal tools is to allow
seamless invocation of external tools.

7.2 Coupling Portal and Warehouse Repositories

Available information portals, e.g. Viador E-Portal [Viad99], VIT SeeChain [VIT99], Hum-
mingbird EIP [Hu99], Information Advantage Eureka [In99] use a repository typically built
on a proprietary metadata model. Table 4 compares the typical content of a portal repository
with a shared warehouse repository indicating that there are some overlaps but also different
sets of metadata. The warehouse repository focuses on describing technical and (to some
degree) business metadata describing structured data, while portal repositories cover both
structured and unstructured data. Based on technical metadata gathered during the ETL pro-
cess, the shared repository can inform business users about existing data dependencies and
diverse aspects of data quality in the data warehouse. The main weakness of warehouse
repositories is their lack of end-user support in data access and delivery. On the other hand,
the information portal has more advanced support for user access rights and interest profiles.
Using Web technologies, it facilitates the integration, categorization and access of unstruc-
tured data outside of the data warehouse. Some portals, e.g. Viador E-Portal, also has inte-
grated facilities for performing querying, reporting and OLAP. However, information portals
so far lack the capability to capture data dependencies and to express quality aspects of ware-
house data.

Due to these differences in metadata scope and functions, the two repositories should be cou-
pled with each other. The first question to clarify is how business metadata should be sepa-
rated between the warehouse repository and the portal repository. A strict approach would be
to keep all business metadata in the portal repository, for both the warehouse and other data
sources. This would leave primarily technical metadata for the warehouse repository which
could already be covered by the ETL repository. The other possibility would be to maintain
warehouse-specific business metadata in a shared warehouse repository, thereby supporting
business-oriented data analysis without portal and thus increased autonomy for the ware-
house environment. In both cases, the mappings between the warehouse and portal metadata
need to be maintained, e.g. replicated in both repositories. Metadata interoperability is
needed to feed the information portal, e.g. with business metadata describing the data in the
data warehouse for user navigation. The warehouse repository should be aware of new
dependencies of warehouse data with the objects created in the portal. For interoperability
and replication control the technical approaches discussed above can be applied, for instance
an XML-based metadata exchange.

8 Summary

Currently, the metadata architecture of data warehouse environments is characterized by the
co-existence of a multitude of largely autonomous and heterogeneously organized reposito-
ries. The use of different metadata models makes it difficult to exchange and integrate meta-
data in order to optimally perform data integration and make good use of the warehouse data,
especially for business users.

We have provided a three-dimensional classification of metadata for data warehousing differ-
entiating between various types of technical and business metadata. Current tools and reposi-
tories primarily manage technical metadata describing aspects such as the structure of data.

19

However, end-users primarily need business metadata describing the meaning and usage con-
text of data. We face two problems concerning the integration of technical and business meta-
data. First, while technical metadata is omnipresent, not every tool provides an open interface
to its technical metadata. Second, unlike technical metadata, business metadata has first to be
defined and associated with the corresponding technical metadata.

To better support metadata interoperability we have proposed a federated architecture utiliz-
ing a shared repository in addition to the tool- and DBMS-specific repositories. The shared
repository integrates metadata from modeling and ETL tools. Furthermore, it can pass and
import metadata to/from data access tools. In order to cope with a large spectrum of meta-
data, a generic repository with a comprehensive, extensible metadata model is required. OIM
and CWM represent two remarkable approaches towards a standard metadata model for data
warehouses. However, they still do not cover all kinds of relevant metadata and are not yet
widely supported in commercial tools. Currently, vendors are forced to build a multitude of
proprietary metadata wrappers to map metadata between different repositories.

As metadata replication is unavoidable in data warehouse environments, an automatic propa-
gation of metadata updates is needed for replication control. We have discussed the major
alternatives and propose the use of a lazy replication control with a deferred update propaga-
tion. Our federated architecture based on a shared repository facilitates such a replication
control by naturally supporting a publish/subscribe approach. Particularly attractive seems an
approach where the repository pulls metadata updates from publishers and pushs these
updates to all relevant subscribers.

We have finally discussed the interoperability of data warehouses and information portals in
order to provide business users integrated Web-based access to both structured and unstruc-
tured data. Such an approach requires interoperability of warehouse repositories and the por-
tal repository and is subject to further study.

Aspects Shared Warehouse Repository Portal Repository
Technical
Metadata

Data Sources database schemata database schemata, file formats,
file location, URL

Data Dependencies operational <-> data warehouse, data
marts <-> queries, reports, cubes

data warehouse, data marts <->
queries, reports, cubes

Data Updating scheduling of ETL jobs scheduling of search, of report and
cube update

Business
Metadata

Conceptual Model,
Business Terms

database conceptual models subject areas of business data

Data Quality correctness (derived from ETL rules),
currency (derived from scheduling of
ETL jobs), completeness (derived
from logging of ETL jobs)

currency (derived from schedul-
ing)

Business Descrip-
tion of Informa-
tion Objects

queries, reports, cubes queries, reports, cubes, documents,
URL

Personalization user authorization users, user groups, subject areas,
information objects, associations
among them

Function-
ality

Browsing, Navi-
gating

yes yes

Content Search no (search in metadata only) yes (search in metadata and data)

Metadata Synchro-
nization

yes (metadata publish-subscribe) no

Impact Analysis yes no

Data Access, Visu-
alization

no yes

Personalized Data
View and Delivery

no yes (data publish-subscribe)

Table 5: Typical functionality of warehouse and portal repositories

20

Acknowledgement: We would like to thank Phil Bernstein and Sergej Melnik for helpful
comments.

References

AL80 Adiba, M., Lindsay, B.: Database Snapshots. Proc. 6th Intl. Conf. Very Large Data Bases
(VLDB) 1980, 86-91.

ALP91 Andany, J.; Leonard, M.; Palisser, C.: Management of Schema Evolution in Databases. Proc.
17th Intl. Conf. Very Large Data Bases (VLDB) 1991, 161-170.

Ar99 Ardent Software: MetaBroker Technology Overview and MetaStage Product Preview. White
Papers, January 1999.

BB99 Bernstein, P.A.; Bergstraesser, T.: Meta-Data Support for Data Transformations Using
Microsoft Repository. IEEE Data Engineering Technical Bulletin, 22(1), 1999, 9-14.

BBC+99 Bernstein, P.A.; Bergstraesser, T.; Carlson, J.; Pal, S.; Sanders, P.; Shutt, D.: Microsoft Reposi-
tory Version 2 and the Open Information Model. Information Systems, 24(2), 1999, 71-98.

BH98 Becker, J.; Holten, R.: Conceptual Specification of Management Information Systems.
Wirtschaftsinformatik, 40(6), 1998, 483-492. In German.

Ch99 Chawathe, S.S.: Describing and Manipulating XML Data. IEEE Data Engineering Technical
Bulletin, 22(3), 1999, 3-9.

De97 Devlin, B.: Data Warehouse - From Architecture to Implementation. Addison-Wesley Long-
man, 1997.

DGN99 Deruelle, L.; Goncalves, G.; Nicolas, J.C.: Local and Federated Database Schema Evolution -
An Impact Propagation Model. Proc. 10th Intl. Conf. Database and Expert Systems Applica-
tions (DEXA) 1999, 902-911.

EIA97 Electronic Industries Association: CDIF CASE Data Interchange Format - Overview. http://
www.eigroup.org/cdif/electronic-extracts/OV-extract.pdf.

Fi99 Firestone, J.M.: Defining the Enterprise Information Portal. White Paper, July 1999. http://
www.dkms.com/EIPDEF.html.

GR93 Gray, J.; Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
1993.

Ha99 Hall, C.: Enterprise Information Portals: Hot Air or Hot Technology. Business Intelligence
Advisor, 3(11), November 1999. http://www.cutter.com/bia/bia9911a.html.

Ham99 Hammond, B.: Merge Replication in Microsoft’s SQL Server 7.0. Proc.Intl. Conf. Management
of Data (SIGMOD) 1999, p. 527.

HST99 Härder, T.; Sauter, G.; Thomas, J.: The Intrinsic Problems of Heterogeneity and an Approach
to their Solution. VLDB Journal, 8(1), 1999, 25-43.

Hu99 Hummingbird: The Hummingbird EIP. White Paper, December 1999. http://www.humming-
bird.com/whites/index.html.

IBM98a IBM: Managing Data Guides 5.2. 1998. ftp://ftp.software.ibm.com/ps/products/visualware-
house/info/vw52/DGMANAGE.PDF.

IBM98b IBM: Metadata Management for Business Intelligence Solutions. White Paper, 1998. http://
www-4.ibm.com/software/data/pubs/papers.

In98 Inmon, W.H.: Enterprise Metadata. DM Review, November 1998. http://www.dmreview.com/
master.cfm?NavID=55&EdID=298.

In99 Information Advantage: MyEureka – Business Intelligence Portal. White Paper, February
1999.

Inf98 Informatica: Informatica Announces General Availability of First Object-Based API for Meta-
data Exchange. Press Release, March 1999. http://www.metadataexchange.com.

JJQ+99 Jarke, M.; Jeusfeld, M.A.; Quix, C.; Vassiliadis, P.: Architecture and Quality in Data Ware-
houses: an Extended Repository Approach. Information Systems, 24(3), 1999, 229-253.

KC88 Kim, W.; Chou, H.T.: Versions of Schema for Object-Oriented Databases. Proc. 14th Intl.
Conf. Very Large Data Bases (VLDB) 1988, 148-159.

21

LJ99 Lehmann, P.; Jaszewski, J.: Business Terms as a Critical Success Factor for Data Warehous-
ing. Proc. Workshop Design and Management of Data Warehouses (DMDW) 1999.

MA97 Murray, D.; Anahory, S.: Data Warehousing in the Real World - A Practical Guide for Build-
ing Decision Support Systems. Addison Wesley Longman, 1997.

Ma99 Marco, D.: Metadata Moves Mainstream. Microsoft White Paper, January 1999. http://
www.microsoft.com/SQL/bizsol/metadata.htm.

MDC97 Metadata Coalition: Metadata Interchange Specification (MDIS) – Version 1.1. August 1997.
http://www.mdcinfo.com/MDIS/MDIS11.html.

MDC99 Metadata Coalition: Open Information Model – Version 1.1. Proposal, August 1999. http://
www.mdcinfo.com/OIM/MDCOIM11.html.

MSR99 Müller, R.; Stöhr, T.; Rahm, E.: An Integrative and Uniform Model for Metadata Management
in Data Warehousing Environments. Proc. Workshop Design and Management of Data Ware-
houses (DMDW) 1999. http://dol.uni-leipzig.de/pub/1999-22.

OMG99 Object Management Group: Common Warehouse Metamodel (CWM) Specification. Revised
Submission, February 2000. http://www.omg.org/techprocess/meetings/schedule/
CWMI_RFP.html.

Ov98 Ovum Ltd.: Ovum Evaluates – Data Warehouse Tools and Strategies. 1998.

ÖV99 Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice Hall, 2nd ed.,
1999

PSM98 Pacitti, E., Simon, E., Melo, R.: Improving Data Freshness in Lazy Master Schemes. Proc.
17th Intl. Conf. Distributed Computing Systems (ICDCS), 1998, 164-171.

RR97 Ra, Y.G.; Rudensteiner, E.: A Transparent Schema Evolution System Based on Object-Oriented
View Technology. IEEE Transactions on Knowledge and Data Engineering, 9(4), 1997, 600-
623.

RS97 Roth, M.T.; Schwarz, P.: Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data
Sources. Proceedings of 23rd Intl. Conf. Very Large Data Bases (VLDB) 1997, 266-275.

SL90 Sheth, A.P.; Larson, J.A.: Federated Database Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases. Computing Surveys 22(3), 1990, 183-236.

SVV99 Staudt, M.; Vaduva, A.; Vetterli, T.: The Role of Metadata for Data Warehousing.
Techn.Report 99.06., Dep. of Information Technology, Univ. of Zurich, September 1999.

Sy99 Sybase: Warehouse Studio – A Foundation for Data Warehouse Delivery. White Paper, 1999.
http://www.sybase.com/bid/ws_whitepaper.pdf.

Viad99 Viador: Viador E-Portal Suite. Corporate Brochure, 1999. http://www.viador.com/pdfs/
CB02_5.pdf.

Vias97 Viasoft: The Rochade Repository Environment – The Foundation for the Information Asset
Warehouse. White Paper, 1997. http://www.viasoft.com/download_src/white_papers/IAW.pdf.

VIT99 VIT: VIT SeeChain Portal – An Information Portal for the Enterprise. White Paper, August
1999. http://www.vit.com/white_papers/dbaipaper.html.

Wh99 White, C.: Using Information Portals in the Enterprise. DM Review, April 1999. http://
www.dmreview.com/master.cfm?NavID=198&EdID=61.

Wi98 Wieken, J.-H.: Metadata for Data Marts and Data Warehouses. The Data Warehouse Concept,
Gabler, Wiesbaden, 1998, 275-315. In German.

