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Today's Web Applications 
 

Vote up 

Write a  
response 
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NoSQL Data Stores 
 Flexible data model 
 Query functionality mostly  

sufficient 

 Impressive scalability handles  
large amounts of data 
 Build for massively parallel reads 

 Strongly consistent writes and  
reads against single entities 
 Appropriate for most web  

scenarios (#reads >> #writes) 
 

Google Cloud Datastore, 
Simple DB, CouchBase, … 
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Hot Spot Data Objects 
 Frequently accessed/updated  

data objects 
 Performance vs. scalability 
 Impressive scalability handles  

large amounts of data 
 Limited write throughput on  

single data objects (∅ 5-10/sec) 

 Frequently updated objects … not entirely new problem  
 Examples: available seats on a plane, overall account balance, … 
 Previous work on hot spot objects for RDBMS 

 New aspects for NoSQL data stores 

Concurrent 
„vote up“ request 

Concurrent 
„add response“ 

requests 
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Agenda 
 Motivation 
 NoSQL Data Stores and Hot Spot Objects 
 Sharding 
 Property Sharding 
 Entity Group Sharding 

 AutoShard 
 Architecture 
 Dynamic AST modification 

 Evaluation 
 Summary and Outlook 
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NoSQL data stores and Hot Spot Objects 
 Optimistic concurrency control 
 „Execute Txs immediately, check at commit for conflicts“ 
 No wait locks at the expense of possible aborts → Retry! 
 Appropriate for most web scenarios (#reads >> #writes) 

 Database as a Service 
 Developers cannot modify the database in DaaS settings 
 Hot spot objects must be handled on the application level 

 No strong consistency 
 Eventual consistency (clients may read stale data) 
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Property Sharding 
 Logical property value is stored using multiple shards  

(i.e., physical values) 
 Writes are distributed across all shards 
 Aggregated read over all shards 

 Example:  Vote counter for questions 
 “VoteUp” on any shard; sum all shards to get number of votes 

 QId Votes 

A 

QId Votes 

A.1 

A.2 

A.3 

VoteUp VoteUp VoteUp VoteUp VoteUp 

VoteUp 

VoteUp 

VoteUp 

VoteUp 

VoteUp 

1 2 3 4 5 0 

1 2 0 

0 

0 

1 

1 2 
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Property Sharding: Implementation 
 Initialization 
 Set shard value to neutral element 

 Write (set specific value) 
 Set one (chosen at random) shard to specific value 
 Set all other shards to neutral element 

 Update (based on current value) 
 Update one shard (chosen at random) using update function 

 Read 
 Read all shards and aggregate using fold function 

 Manual implementation  
 Laborious: complex implementation (and testing) 
 Unnecessary (overhead) for many objects / properties 
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Entity Group Sharding 
 Entity group (set of entities) is stored using multiple 

shards (i.e., physical values) 
 Writes are distributed across all shards 
 Aggregated union over all shards 

 Example:  Responses for questions 
 “AddResponse” on any shard (subset of responses) 
 Unify all shards to get the complete list of reponses 
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AutoShard 
 Object mapper with automatic and adaptive sharding 
 Java objects ↔ NoSQL entities (in BigTable-like DS) 
 Automatic sharding on logical schema avoids scalability 

bottlenecks / write contention   
 Adaptive, i.e., automatic identification of hot spots 

 Two kinds of sharding 
 Property sharding: distribute atomic values 
 Entity Group sharding: distribute sets of entities  

 Easy-to-use 
 Definition using Java annotations 
 Implementation by automatic AST transformation 
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Example Annotations: Class question 
 @Entity 

class Question { 
   @Id private int id; 
   private String question; 
   private String author; 
   private List<Response> responses; 
   @Shardable (neutral=0) 
   private int votes = 0; 
    
   @ShardMethod 
   public void voteUp() { 
      this.votes++; 
   } 
    
   @ShardFold 
   public static int foldVotes(int x, int y) { 
      return x + y; 
   }    
   ... 
} 
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AutoShard Architecture: Deploy Time 
 „Injection“ of sharding functionality during compile time 
 Automatic program modification based on annotations 

 

.groovy 

Java Class 
annotated as @Entity 

Groovy Parser 

AutoShard 
AST  

Transformer 

Abstract  
Syntax Tree 

(AST) 

Modified  
AST Groovy / Java  

Compiler 
Java bytecode 

with sharded values 

.class 

AutoShard 
Framework 
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Evaluation 
 2,000 users, 75 voting requests per sec across 16 questions 
 w/ Tx retry: re-start failed transactions (exception handling) 

25% failed transactions 
without sharding vs. 

4% failed transactions 
with AutoShard 

this hurts 

 
 

good 
 
 

great 
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Current Work: Adaptive Sharding 
 Automatic identification of … 
 Properties / entities that should be sharded 
 Sharding parameters, e.g., number of shards 

 Statistics 
 Time-based: Number of put requests per time and per entity 
 Exception-based: Number of raised exceptions 

 Implementation 
 Add logging statements during AST transformation 
 Store all / aggregated statistics in MemCache 
 Rule-based decision 
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AutoShard Architecture: Run Time 
 Put/get requests are logged into MemCache 
 Fast, distributed in-memory cache 

 Workload statistics used to apply sharding on-demand 

.class 

Java Class  
(bytecode) 

Java Object 
put/get requests AutoShard 

Data Store 
Service 

AutoShard 
Statistics Service 

Data 
Store 

Logging 
Aggregated workload 

statistics 

DS Entity  
put/get requests 

Entities  
Java object 
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Summary / Outlook 
 AutoShard = A novel object mapper that can declaratively 

manage hot spot data objects 
 Avoids schema-inherant performance bottlenecks in NoSQL-

based web applications 

 Implements database techniques (sharding) using 
programming techniques (annotation + AST 
transformation) 
 

 Adaptive Sharding 
 When is sharding required (80/20 rule)? 
 What is good number of shards?  
 Background processes for compaction, ... 
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