
AutoShard -
Declaratively Managing Hot Spot

Data Objects in NoSQL Data Stores

Andreas Thor
Deutsche Telekom

University of Applied Sciences for Telecommunication, Leipzig

Stefanie Scherzinger, OTH Regensburg

HPI Symposium "Operating the Cloud", Oct. 28, 2014

2

Today's Web Applications

Vote up

Write a
response

3

NoSQL Data Stores
 Flexible data model
 Query functionality mostly

sufficient

 Impressive scalability handles
large amounts of data
 Build for massively parallel reads

 Strongly consistent writes and
reads against single entities
 Appropriate for most web

scenarios (#reads >> #writes)

Google Cloud Datastore,
Simple DB, CouchBase, …

4

Hot Spot Data Objects
 Frequently accessed/updated

data objects
 Performance vs. scalability
 Impressive scalability handles

large amounts of data
 Limited write throughput on

single data objects (∅ 5-10/sec)

 Frequently updated objects … not entirely new problem 
 Examples: available seats on a plane, overall account balance, …
 Previous work on hot spot objects for RDBMS

 New aspects for NoSQL data stores

Concurrent
„vote up“ request

Concurrent
„add response“

requests

5

Agenda
 Motivation
 NoSQL Data Stores and Hot Spot Objects
 Sharding
 Property Sharding
 Entity Group Sharding

 AutoShard
 Architecture
 Dynamic AST modification

 Evaluation
 Summary and Outlook

6

NoSQL data stores and Hot Spot Objects
 Optimistic concurrency control
 „Execute Txs immediately, check at commit for conflicts“
 No wait locks at the expense of possible aborts → Retry!
 Appropriate for most web scenarios (#reads >> #writes)

 Database as a Service
 Developers cannot modify the database in DaaS settings
 Hot spot objects must be handled on the application level

 No strong consistency
 Eventual consistency (clients may read stale data)

7

Property Sharding
 Logical property value is stored using multiple shards

(i.e., physical values)
 Writes are distributed across all shards
 Aggregated read over all shards

 Example: Vote counter for questions
 “VoteUp” on any shard; sum all shards to get number of votes

 QId Votes

A

QId Votes

A.1

A.2

A.3

VoteUp VoteUp VoteUp VoteUp VoteUp

VoteUp

VoteUp

VoteUp

VoteUp

VoteUp

1 2 3 4 5 0

1 2 0

0

0

1

1 2

8

Property Sharding: Implementation
 Initialization
 Set shard value to neutral element

 Write (set specific value)
 Set one (chosen at random) shard to specific value
 Set all other shards to neutral element

 Update (based on current value)
 Update one shard (chosen at random) using update function

 Read
 Read all shards and aggregate using fold function

 Manual implementation
 Laborious: complex implementation (and testing)
 Unnecessary (overhead) for many objects / properties

9

Entity Group Sharding
 Entity group (set of entities) is stored using multiple

shards (i.e., physical values)
 Writes are distributed across all shards
 Aggregated union over all shards

 Example: Responses for questions
 “AddResponse” on any shard (subset of responses)
 Unify all shards to get the complete list of reponses

10

AutoShard
 Object mapper with automatic and adaptive sharding
 Java objects ↔ NoSQL entities (in BigTable-like DS)
 Automatic sharding on logical schema avoids scalability

bottlenecks / write contention
 Adaptive, i.e., automatic identification of hot spots

 Two kinds of sharding
 Property sharding: distribute atomic values
 Entity Group sharding: distribute sets of entities

 Easy-to-use
 Definition using Java annotations
 Implementation by automatic AST transformation

11

Example Annotations: Class question
 @Entity

class Question {
 @Id private int id;
 private String question;
 private String author;
 private List<Response> responses;
 @Shardable (neutral=0)
 private int votes = 0;

 @ShardMethod
 public void voteUp() {
 this.votes++;
 }

 @ShardFold
 public static int foldVotes(int x, int y) {
 return x + y;
 }
 ...
}

12

AutoShard Architecture: Deploy Time
 „Injection“ of sharding functionality during compile time
 Automatic program modification based on annotations

.groovy

Java Class
annotated as @Entity

Groovy Parser

AutoShard
AST

Transformer

Abstract
Syntax Tree

(AST)

Modified
AST Groovy / Java

Compiler
Java bytecode

with sharded values

.class

AutoShard
Framework

13

Evaluation
 2,000 users, 75 voting requests per sec across 16 questions
 w/ Tx retry: re-start failed transactions (exception handling)

25% failed transactions
without sharding vs.

4% failed transactions
with AutoShard

this hurts

good

great

14

Current Work: Adaptive Sharding
 Automatic identification of …
 Properties / entities that should be sharded
 Sharding parameters, e.g., number of shards

 Statistics
 Time-based: Number of put requests per time and per entity
 Exception-based: Number of raised exceptions

 Implementation
 Add logging statements during AST transformation
 Store all / aggregated statistics in MemCache
 Rule-based decision

15

AutoShard Architecture: Run Time
 Put/get requests are logged into MemCache
 Fast, distributed in-memory cache

 Workload statistics used to apply sharding on-demand

.class

Java Class
(bytecode)

Java Object
put/get requests AutoShard

Data Store
Service

AutoShard
Statistics Service

Data
Store

Logging
Aggregated workload

statistics

DS Entity
put/get requests

Entities
Java object

16

Summary / Outlook
 AutoShard = A novel object mapper that can declaratively

manage hot spot data objects
 Avoids schema-inherant performance bottlenecks in NoSQL-

based web applications

 Implements database techniques (sharding) using
programming techniques (annotation + AST
transformation)

 Adaptive Sharding
 When is sharding required (80/20 rule)?
 What is good number of shards?
 Background processes for compaction, ...

	AutoShard -�Declaratively Managing Hot Spot Data Objects in NoSQL Data Stores
	Today's Web Applications
	NoSQL Data Stores
	Hot Spot Data Objects
	Agenda
	NoSQL data stores and Hot Spot Objects
	Property Sharding
	Property Sharding: Implementation
	Entity Group Sharding
	AutoShard
	Example Annotations: Class question
	AutoShard Architecture: Deploy Time
	Evaluation
	Current Work: Adaptive Sharding
	AutoShard Architecture: Run Time
	Summary / Outlook

