
AutoShard -
Declaratively Managing Hot Spot

Data Objects in NoSQL Data Stores

Andreas Thor
Deutsche Telekom

University of Applied Sciences for Telecommunication, Leipzig

Stefanie Scherzinger, OTH Regensburg

HPI Symposium "Operating the Cloud", Oct. 28, 2014

2

Today's Web Applications

Vote up

Write a
response

3

NoSQL Data Stores
 Flexible data model
 Query functionality mostly

sufficient

 Impressive scalability handles
large amounts of data
 Build for massively parallel reads

 Strongly consistent writes and
reads against single entities
 Appropriate for most web

scenarios (#reads >> #writes)

Google Cloud Datastore,
Simple DB, CouchBase, …

4

Hot Spot Data Objects
 Frequently accessed/updated

data objects
 Performance vs. scalability
 Impressive scalability handles

large amounts of data
 Limited write throughput on

single data objects (∅ 5-10/sec)

 Frequently updated objects … not entirely new problem
 Examples: available seats on a plane, overall account balance, …
 Previous work on hot spot objects for RDBMS

 New aspects for NoSQL data stores

Concurrent
„vote up“ request

Concurrent
„add response“

requests

5

Agenda
 Motivation
 NoSQL Data Stores and Hot Spot Objects
 Sharding
 Property Sharding
 Entity Group Sharding

 AutoShard
 Architecture
 Dynamic AST modification

 Evaluation
 Summary and Outlook

6

NoSQL data stores and Hot Spot Objects
 Optimistic concurrency control
 „Execute Txs immediately, check at commit for conflicts“
 No wait locks at the expense of possible aborts → Retry!
 Appropriate for most web scenarios (#reads >> #writes)

 Database as a Service
 Developers cannot modify the database in DaaS settings
 Hot spot objects must be handled on the application level

 No strong consistency
 Eventual consistency (clients may read stale data)

7

Property Sharding
 Logical property value is stored using multiple shards

(i.e., physical values)
 Writes are distributed across all shards
 Aggregated read over all shards

 Example: Vote counter for questions
 “VoteUp” on any shard; sum all shards to get number of votes

 QId Votes

A

QId Votes

A.1

A.2

A.3

VoteUp VoteUp VoteUp VoteUp VoteUp

VoteUp

VoteUp

VoteUp

VoteUp

VoteUp

1 2 3 4 5 0

1 2 0

0

0

1

1 2

8

Property Sharding: Implementation
 Initialization
 Set shard value to neutral element

 Write (set specific value)
 Set one (chosen at random) shard to specific value
 Set all other shards to neutral element

 Update (based on current value)
 Update one shard (chosen at random) using update function

 Read
 Read all shards and aggregate using fold function

 Manual implementation
 Laborious: complex implementation (and testing)
 Unnecessary (overhead) for many objects / properties

9

Entity Group Sharding
 Entity group (set of entities) is stored using multiple

shards (i.e., physical values)
 Writes are distributed across all shards
 Aggregated union over all shards

 Example: Responses for questions
 “AddResponse” on any shard (subset of responses)
 Unify all shards to get the complete list of reponses

10

AutoShard
 Object mapper with automatic and adaptive sharding
 Java objects ↔ NoSQL entities (in BigTable-like DS)
 Automatic sharding on logical schema avoids scalability

bottlenecks / write contention
 Adaptive, i.e., automatic identification of hot spots

 Two kinds of sharding
 Property sharding: distribute atomic values
 Entity Group sharding: distribute sets of entities

 Easy-to-use
 Definition using Java annotations
 Implementation by automatic AST transformation

11

Example Annotations: Class question
 @Entity

class Question {
 @Id private int id;
 private String question;
 private String author;
 private List<Response> responses;
 @Shardable (neutral=0)
 private int votes = 0;

 @ShardMethod
 public void voteUp() {
 this.votes++;
 }

 @ShardFold
 public static int foldVotes(int x, int y) {
 return x + y;
 }
 ...
}

12

AutoShard Architecture: Deploy Time
 „Injection“ of sharding functionality during compile time
 Automatic program modification based on annotations

.groovy

Java Class
annotated as @Entity

Groovy Parser

AutoShard
AST

Transformer

Abstract
Syntax Tree

(AST)

Modified
AST Groovy / Java

Compiler
Java bytecode

with sharded values

.class

AutoShard
Framework

13

Evaluation
 2,000 users, 75 voting requests per sec across 16 questions
 w/ Tx retry: re-start failed transactions (exception handling)

25% failed transactions
without sharding vs.

4% failed transactions
with AutoShard

this hurts

good

great

14

Current Work: Adaptive Sharding
 Automatic identification of …
 Properties / entities that should be sharded
 Sharding parameters, e.g., number of shards

 Statistics
 Time-based: Number of put requests per time and per entity
 Exception-based: Number of raised exceptions

 Implementation
 Add logging statements during AST transformation
 Store all / aggregated statistics in MemCache
 Rule-based decision

15

AutoShard Architecture: Run Time
 Put/get requests are logged into MemCache
 Fast, distributed in-memory cache

 Workload statistics used to apply sharding on-demand

.class

Java Class
(bytecode)

Java Object
put/get requests AutoShard

Data Store
Service

AutoShard
Statistics Service

Data
Store

Logging
Aggregated workload

statistics

DS Entity
put/get requests

Entities
Java object

16

Summary / Outlook
 AutoShard = A novel object mapper that can declaratively

manage hot spot data objects
 Avoids schema-inherant performance bottlenecks in NoSQL-

based web applications

 Implements database techniques (sharding) using
programming techniques (annotation + AST
transformation)

 Adaptive Sharding
 When is sharding required (80/20 rule)?
 What is good number of shards?
 Background processes for compaction, ...

	AutoShard -�Declaratively Managing Hot Spot Data Objects in NoSQL Data Stores
	Today's Web Applications
	NoSQL Data Stores
	Hot Spot Data Objects
	Agenda
	NoSQL data stores and Hot Spot Objects
	Property Sharding
	Property Sharding: Implementation
	Entity Group Sharding
	AutoShard
	Example Annotations: Class question
	AutoShard Architecture: Deploy Time
	Evaluation
	Current Work: Adaptive Sharding
	AutoShard Architecture: Run Time
	Summary / Outlook

