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Abstract
Background: Genome-wide expression, sequence and association studies typically yield large sets
of gene candidates, which must then be further analysed and interpreted. Information about these
genes is increasingly being captured and organized in ontologies, such as the Gene Ontology.
Relationships between the gene sets identified by experimental methods and biological knowledge
can be made explicit and used in the interpretation of results. However, it is often difficult to assess
the statistical significance of such analyses since many inter-dependent categories are tested
simultaneously.

Results: We developed the program package FUNC that includes and expands on currently
available methods to identify significant associations between gene sets and ontological annotations.
Implemented are several tests in particular well suited for genome wide sequence comparisons,
estimates of the family-wise error rate, the false discovery rate, a sensitive estimator of the global
significance of the results and an algorithm to reduce the complexity of the results.

Conclusion: FUNC is a versatile and useful tool for the analysis of genome-wide data. It is freely
available under the GPL license and also accessible via a web service.

Background
High-throughput genomic technologies are revolutioniz-
ing biology and medicine and provide new challenges in
the way we analyse and interpret these large amounts of
data. To this end it is necessary to integrate the acquired
knowledge into a flexible data structure and the Gene
Ontology (GO) Consortium has provided a widely used

solution to this challenge by describing properties of
genes using a controlled vocabulary and representing
them in a directed acyclic graph, which groups genes in
categories [1]. Consequently, there has been an explosion
in the number of methods to investigate large-scale gene
expression data in the context of these functional annota-
tions. The principle underlying most of these methods is
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the identification of an enrichment in particular gene
annotations among a selected set of genes compared to a
reference set – for example, an enrichment of differen-
tially expressed genes in certain annotation categories
compared to all other genes on a microarray. The signifi-
cance of the enrichment is tested for example using tests
based on the hypergeometric or the binomial distribu-
tion, Fisher's exact test, or a chi-square test. Various pro-
grams have implemented this approach (e.g. [2-7]). Ben-
Shaul and others have argued that in many cases such a
discrete distinction between "differentially expressed" and
"not differentially expressed" genes is arbitrary and can
reduce the power of the study to identify enriched catego-
ries (e.g. [8]). Therefore, methods have been proposed
that instead use a measure of choice to rank the genes, and
then use rank-based tests such as the Wilcoxon-rank test
or the Kolmogorov-Smirnov test to test if genes that
belong to one category differ in their ranks from genes
that do not belong to the category (e.g. [8]). In both cases
– rank-based classification or discrete categorization – and
independently of the statistic that is used to define the sig-
nificance of a single category, one needs to correct for the
large number of tests performed in such an analysis. This
is a challenging task, since the tested categories are highly
inter-dependent: a single gene is usually annotated in
many categories, and categories subsume other categories.
One approach for the correction is to compute the family-
wise error rate (FWER), i.e. to estimate the probability that
at least one false positive category exists among those that
are labelled significant. Applications exist that use a sim-
ple Bonferroni correction or other more powerful FWER
correction procedures [9-11]. However, it has been noted
that controlling the FWER might be too conservative in
many genomic applications and that it might instead be

more useful to determine the false discovery rate (FDR)
[12], i.e. the proportion of false positives among all signif-
icant features, since a known proportion of false positives
can easily be tolerated for an increase of power in these
contexts (see e.g. [13] for an overview). Several
approaches to estimate the FDR have been proposed (see
e.g. [14,15]) and some have been integrated in various
functional profiling applications (e.g. [5,9,16-21]). Many
methods rely on permutations to estimate the FWER or
FDR, since the dependency and structure of the annota-
tions makes it difficult to find analytical methods to do
the same [22]. Usually the gene lists are permuted, though
some approaches also allow the permutation of sample
labels [16,20,21,23], This allows not only a correction of
dependence among the categories, but also for depend-
ence among the genes [23].

In this paper we present the program package called
FUNC, which includes and extends on the methods
described above: It allows selecting among four different
kinds of tests, depending on the type of data to be ana-
lysed (see also Table 1): (i) a test based on the hypergeo-
metric distribution for analyzing binary associated
variables (e.g. differentially expressed, not differentially
expressed), (ii) a Wilcoxon rank test for a continuous
associated variable (e.g. probability of being differentially
expressed), (iii) a binomial test to compare the ratio of
two counts per gene in (e.g. human amino acid changes
versus chimpanzee amino acid changes) and (iv) a 2 × 2
table test that is suitable for a McDonald Kreitman type
test to infer selection on genes from divergence and poly-
morphism data at two types of sites, like synonymous and
non-synonymous sites in a coding sequence [24]. The two
latter methods have not previously been implemented in

Table 1: Properties of the four category tests

Test Gene associated
variable

Alternative hypothesis
(one side)

Alternative hypothesis 
(other side)

Example

Hypergeometric binary Category contains lower 
proportion of variable "1" as the 

root category

Category contains higher 
proportion of variable "1" as the 

root category

Gene list with detected genes on 
an array; "0" is not differently 
expressed, "1" is differently 

expressed
Wilcoxon rank continuous Sum of ranks of genes in the 

category is higher than all other 
genes

Sum of ranks of genes in the 
category is lower than all other 

genes

Gene list with detected genes on 
an array; continuous variable is 
the probability for being not 

differently expressed
Binominal two counts Frequency of countA in category 

is lower than in root category
Frequency of countB in category 
is lower than in root category

CountA is amount of SAGE tags 
in experiment A, countB is 

amount of SAGE tags in 
experiment B

2 × 2 contingency four counts Counts are dependent and 
countA/countB < countC/countD

Counts are dependent and 
countA/countB > countC/countD

CountA and countC are 
differences at nonsynonymous 

sites between and within species, 
countB and countD are 

differences at synonymous sites 
between and within species, 

respectively
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any GO statistical analysis application, and should be
especially useful for analyzing genome-wide DNA
sequences. These approaches, as implemented in FUNC,
have already been used for the analysis of the chimpanzee
genome sequence [25]. FUNC also uses permutations of
genes to calculate for each category, i.e. each p-value cut-
off, a FWER and a FDR estimate. In addition, FUNC pro-
vides a global test statistic to gauge the significance of the
complete data set, which has not been implemented in
other programs to date. The global test statistic tests
whether the complete distribution of functional annota-
tions differs from a random distribution and in this way
allows determining an overall significance for the data set.
Another method implemented in FUNC is the ability to
refine the results by eliminating extraneous categories
marked as significant. Some categories are significant
solely due to the fact that their subtree includes categories
that are significant. Thus, their significance does not pro-
vide additional information beyond that of their descend-
ant categories and their exclusion from lists of significant
categories can be helpful for interpreting and representing
the results. In summary, FUNC provides a useful and sen-
sitive tool to analyse annotations in the context of a vari-
ety of genomic data.

Implementation
Overview
FUNC is a set of four command line tools that allow the
analysis of a set of genes with respect to their annotation
(see Figure 1 for a schematic overview). It is particular use-
ful when analyzing ontological annotations such as pro-
vided by the Gene Ontology consortium [1] or eVOC
[26], but can be easily adapted to any other annotation.
Each of the command line tools performs a specific statis-
tical test on a certain type of input data. The user can select
the ontology or subtree of an ontology on which the test
should be performed, and restrict the tested categories to
those containing some minimum number of genes. For
each category in the ontology the statistical test of the used
tool is performed resulting in the "raw p-value" for that
category. Since many categories are tested and the tests are
inter-dependent in a complex manner, FUNC compares
the test results to results obtained from random datasets
in which the gene-associated variables are permuted. This
specifies the null hypotheses, namely that there is inde-
pendency between the associated variable and the annota-
tion of the genes. These random sets are used to calculate
for each category, i.e. each raw p-value cut-off, two cor-
rected p-values: a resampling-based false discovery rate
(FDR) [27] and the family-wise error rate (FWER) [28].
The FDR is an estimate of the proportion of categories that
are false positives among all the categories with a raw p-
value equal or lower than the given category. The FWER is
the estimated probability that at least one false positive
category exists among all the categories with a raw p-value

equal or lower than the given category. In addition, FUNC
compares the distribution of raw p-values of the random
sets with the distribution of raw p-values of the data set in
order to obtain an overall significance p-value – a Kol-
mogorov-Smirnov-type test against a single null hypo-
thesis stating that the gene associated variables are
randomly distributed across all the categories. This global
test statistic is useful since it is expected to be sensitive
even if a weak signal is distributed among many catego-
ries. The overall significance value can be used to decide
whether the data set is at all differently distributed from
random. If this is the case, one can then pick a FDR to
decide which of the categories deviate significantly. This
procedure might be preferable to a-priori selection of an
FDR or FWER significance level or changing them post-
hoc.

The output of FUNC is a summary of the above-men-
tioned statistics as well as a table listing the analysed cate-
gories and the associated raw and corrected p-values. After
picking a desirable p-value cut-off, the user can run the
refinement algorithm to identify those significant catego-
ries that provide the most concise information, i.e. to
identify those categories whose significance does not
depend solely on significant descendant categories.

Category tests
Each of the four FUNC tools is designed for one of the
possible category tests: hypergeometric test, Wilcoxon
rank test, binomial test and 2 × 2 test (Table 1). For each
test, two p-values for both sides of the test statistic are cal-
culated, which allows the detection of an enrichment or a
depletion of gene-associated variables among the catego-
ries. A detailed description of the algorithms used can be
found in the Supplement. Briefly, the hypergeometric test
takes a binary variable (e.g. "0" and "1") that is associated
with each gene (e.g. "1" for differentially expressed and
"0" for equally expressed) and uses the hypergeometric
distribution to calculate for each category the probability
to "draw" this many or more (respectively this many or
less) differently expressed genes from the top category of
the subtree selected by the user.

The Wilcoxon rank test differs from this scheme only in
that it takes a floating point variable instead of a binary
variable and compares the ranks of the genes in the tested
category with the ranks of the remaining genes in the top
category. This test is useful when it is not possible to
clearly classify genes to two distinct classes – as is often the
case in microarray experiments. This kind of test has also
been used previously in the comparison between the
human and the chimpanzee genome to identify GO cate-
gories, which contain an excess of fast or slowly evolving
genes [25].
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Schematic overview of FUNCFigure 1
Schematic overview of FUNC. See main text for a description.
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Whereas the hypergeometric and Wilcoxon rank tests
compare the distribution of one gene-associated variable
among categories, the "binomial test" compares the ratio
of two gene-associated counts among categories. Each
gene is associated with two counts, and the test deter-
mines whether the ratio of these counts in a category is
significantly different from the ratio in the top category.
The binomial test has been used to identify categories con-
taining more amino acid changes on the human lineage
compared to the number of changes on the chimpanzee
lineage, and to identify categories that have a higher than
expected number of amino acid changes between human
and chimpanzee compared to changes between mouse
and rat [25](see also the example below). This test might
also be useful when comparing counts of expressed
sequence tags e.g. from two SAGE (Serial Analysis of Gene
Expression) libraries [29].

The fourth test takes a 2 × 2 table as the associated gene
variables, sums them over each category, and uses a
Fisher's exact test or a chi-square test (if all values in the
tested category are larger then ten) to test whether the two
properties (in rows and columns, each in two states) are
independent of each other. Note that in contrast to the
other three tests, the calculated p-value is not dependent
on an expectation taken from the top category. This test
can be useful to conduct a McDonald-Kreitman type test
[24] on GO categories. A McDonald-Kreitman type of test
compares the number of fixed substitutions and the
number of polymorphisms at two classes of sites, such as
synonymous and non-synonymous sites. An excess of
fixed non-synonymous substitutions can indicate the
action of positive selection, whereas an excess of non-syn-
onymous polymorphisms can indicate the presence of
slightly deleterious amino acid variants (for a review see
[30]). The 2 × 2 contingency table test implemented in
FUNC calculates two separate p-values to test for an excess
of non-synonymous substitutions and an excess of non-
synonymous polymorphisms, respectively [see Additional
file 1]. The availability of a large (and largely unbiased)
genome-wide measurement of polymorphisms in
humans and other species together with the already avail-
able data on substitutions should make this test very use-
ful in the near future.

It is important to keep in mind that for all the four tests
the power to reject the null hypothesis differs among dif-
ferent categories since categories differ in their amount of
genes and/or their amount of gene associated counts.
Hence, the category with the biggest size effect is not nec-
essarily the most significant category and vice versa (see
also [31] and reply). Also note, for the binomial test and
the 2 × 2 contingency table test, that the null hypothesis
that FUNC tests is that the genes and not the gene associ-
ated counts are a random sample in a category. As a con-

sequence the raw p-values of these two tests should be
considered more like an arbitrary test statistic which is
compared to the distribution of p-values obtained by per-
muting genes and not single gene counts (see also exam-
ple below).

Correction for multiple testing
When many hypotheses are tested at the same time it is
expected that a number will appear significant even if all
the null hypotheses hold. Therefore, in order to confi-
dently reject some of the null hypotheses, it is necessary to
correct for multiple testing. The types of large-scale
genomic experiments that have become possible during
recent years, in particular microarrays, have revived inter-
est in different statistical methods that deal with the issue
of multiple testing (e.g. [13,15]). The issue is somewhat
complex, since (1) the tests are interdependent in a com-
plex manner, (2) the power of each single test is often low,
(3) more than one of the tested hypotheses are usually
truly not null and (4) rejected hypotheses can be regarded
as candidates for additional tests, so that less conservative
significance levels can be tolerated for an increase in
power. All of these issues are also relevant in the context
described here, in particular the complex interdependency
of the tests. To overcome the interdependency, we chose
to use permutations, i.e. the randomization of gene-asso-
ciated variables, in order to model the distribution under
the null hypothesis that gene associated variables are
independent of the gene annotation. This permuted data,
the random sets, can be used to estimate the family wise
error rate, i.e. the probability that among the tests that are
declared significant one or more are false positives [28].
This approach is more powerful than the conservative
Bonferroni correction and has, in the context of GO anal-
yses programs, been implemented for example in FuncAs-
sociate [10] and is also implemented in FUNC. For any of
the four tests described above one can calculate a raw p-
value cut-off for which the FWER is e.g. 5%. This approach
is, however, very strict, and a certain (known) fraction of
false positives among the significantly labelled tests can
often be tolerated for an increase of power. This is the rea-
son why the false discovery rate (FDR) has gained popu-
larity within the genomic community. The FDR is
(loosely) defined as the expected proportion of falsely
rejected hypothesis among all rejected hypotheses. Differ-
ent methods exist to estimate the FDR, differing in how
they treat the case that no hypothesis is rejected and in
how they estimate the number of falsely rejected hypoth-
eses (see e.g. [14,15,32] for a discussion). Several pro-
grams that analyse functional annotations have
implemented FDR methods (e.g. [5,9,16-21]), most often
using the procedure of Benjamini and Hochberg [12]. In
FUNC we implemented a similar method by Yekueteli
and Benjamini that is well-suited for resampling methods
[27]. Although it has been shown that the method also
Page 5 of 10
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works well under positive dependency among the tests
[33] and an easy (conservative) correction method can be
used under different kinds of dependencies [33], it is not
entirely clear whether it is well-suited for the kind of
strong dependencies that exist among the functional
annotations. Further, it is noteworthy that the current
methods for computing the FDR are strictly valid only
under the assumption of subset pivotality, i.e. under the
assumption that the significance of one test does not
depend on the significance of another test. However, this
assumption is violated for the hypergeometric test, the
Wilcoxon rank sum test and the binomial test, since the
expectation for each category is derived from the top cate-
gory, which includes the other categories tested. Hence, if
one or more categories truly deviate from the null hypo-
thesis, this influences the null expectation of other catego-
ries. However, there is often no reasonable alternative for
estimating the expectations independently. In practice, all
these issues will not be relevant for data sets which deviate
considerably from a random functional annotation. But
for data sets with a weak signal, the FDR might not qualify
as a well-suited measurement to determine whether there
is any (or no) indication for a non-random distribution of
the gene-associated variables among functional catego-
ries. Therefore, in addition to estimating the FDR and
FWER rate of the data set, we developed a method to test
directly the "global null hypothesis" that gene-associated
variables are randomly distributed among categories.

Testing the global null hypothesis
As was pointed out above, when the strength of the devi-
ation may be weak, it is useful to test whether the data
shows any deviation from the random distribution before
embarking on finding out which categories deviate from
others. For this we calculate a p-value to test the null
hypothesis that the gene-associated variables are ran-
domly distributed among all categories. This is done by
looking over all possible cut-offs of the raw p-values
between 0 and 0.05, and for each of them calculating the
proportion of random sets that have as many or more cat-
egories showing this many or fewer raw p-values. Then, in
a similar fashion to the Kolmogorov-Smirnov test, we find
the cut-off value for which the deviation from the random
sets is maximal. We then do the same test (finding the cut-
off with maximal distance) to every one of the random
sets. The overall p-value is then determined by calculating
the proportion of random sets that have the same or a
larger maximal distance (see Additional file 1 and Figure
2). If this p-value is low (e.g. smaller than 0.05), one can
reject the null hypothesis that the gene-associated varia-
ble(s) are distributed independently of their functional
annotations.

This measure should be especially helpful, when the sig-
nal is weak and/or is distributed among many categories

and should be more sensitive than an FDR estimate (see
example below). The FDR can be interpreted using an
analogy of how much money one would be willing to
waste. Testing the global null hypothesis can determine
whether it is worth spending any money in the first place,
and the FDR can subsequently be used to estimate how
much money one is willing to waste.

Refinement
Once one is confident that categories showing enrichment
or depletion of the gene-associated variable(s) exist, and
after choosing a suitable raw p-value as a cut-off, based on
a certain FDR or FWER, it is useful to specify the deviation
as precisely as possible. This means one wants to exclude
categories that are significant solely because they contain
significant descendant categories. The refinement algo-
rithm starts from the leaves (i.e. the most specific annota-
tion), recursively removes the genes annotated in
significant descendant categories, and tests the remaining
genes in a significant parent category again (Figure 3). In
this way the list of all significant categories can be limited
to the most specific categories, which make the results
more interpretable and manageable. This algorithm is
similar to the elim algorithm proposed recently [34].
However, in contrast to the elim or the related weight algo-
rithm [34] we interpret the results of the refinement like a
post hoc test. Consider a hypothetical example where the
gene associated variables are significantly overrepresented
in the category carbohydrate metabolism, which is due to
an overrepresentation in the two descendant categories
glycolysis and tricarboxylic acid cycle. It is true regardless
of the refinement that genes annotated in carbohydrate
metabolism are overrepresented in the data set. That genes
annotated in glycolysis and tricarboxylic acid cycle are
overrepresented is just the more specific statement. We
find it helpful and transparent to distinguish between sig-
nificant categories and the most specific significant cate-
gories and hence find it useful to separate these two
analyses.

Results and discussion
To demonstrate the usefulness of FUNC we analysed a
dataset of 7034 orthologous genes compared between
human, chimpanzee, mouse and rat [25]. We asked
whether there are GO categories that evolve faster than
expected in either rodents or primates. For this purpose
we added the number of amino acid changes for a given
gene between mouse and rat (rodent) and human and
chimpanzee (primate) and performed the binomial test
described above [see Additional file 2]. This procedure
treats all genes in a category essentially as a single gene.
Note that the p-value of this test is only nominal since it
assumes independency among amino acid substitutions,
but that the global p-value, the FWER and the FDR calcu-
lated by FUNC is based on the permutations across genes
Page 6 of 10
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and hence controls for the dependency of amino acid sub-
stitutions within genes. For brevity, we limit the analysis
here to the results from the ontology molecular function.

Of the 7043 genes, 4303 genes have an annotation in the
ontology molecular function (Table 2). The binomial test
is two-sided, i.e. for each category it tests whether there are
more amino acid changes in primates and tests whether
there are more amino acid changes in rodents. The
expected value is given by the ratio of amino acid changes
of all genes annotated in the ontology molecular function.
The global p-value is 0.0019 and 0.0008 for rodents and
primates, respectively, since in the 10,000 permutations
performed only 19 and 8 sets, respectively, had maximal
ranks of p-values that were equal or higher than for the
data set (Fig. 2). This indicates that categories exist, which
evolve faster in primates than in rodents and faster in
rodents than in primates. This is not due to different
mutation rates in rodents and primates among the differ-

ent categories since changes at silent sites do not show
such a significant grouping when tested accordingly (data
not shown). Interestingly, none of the categories that
evolve faster in primates had a FDR or FWER estimate
below 0.05, exemplifying that the global p-value is more
sensitive in detecting a deviation from the null hypothesis
than FDR or FWER estimates for single categories. At a
FDR threshold of 0.2, 38 categories evolve faster in pri-
mates. In order to get the categories with the most specific
annotation, we ran the refinement algorithm at the corre-
sponding raw p-value, which resulted in 13 categories
(Table 2). These categories might evolve faster in primates
because they experienced more positive selection in pri-
mates than in rodents or because they evolved under less
constraint in primates than in rodents (see e.g. [25] for a
discussion). Olfactory receptors, which are also identified
here (Table 2), are thought to have evolved under less
constraint in primates than in rodents since a higher frac-
tion of pseudogenes is found in primates [35], indicating

Illustration how the global p-value is calculatedFigure 2
Illustration how the global p-value is calculated. On the left ((a) and (c)) the cumulative p-value distribution between 0 
and 0.05 is shown for the data set (red line) and the random sets (black or gray lines). For each distribution its maximal rank is 
determined and the maximal rank of the data set (red arrow) is compared to the maximal ranks of the random sets ((b) and 
(d)). The upper two panels exemplify this principle with three random sets and the lower two panels show the result of testing 
the ontology molecular function for an excess of amino acid changes in primates (see results and discussion).
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that the more sensitive global test statistic identified bio-
logically relevant categories in the analysed example.

Conclusion
We present the software package FUNC, which enhances
the ability of researchers to correlate their data with gene
annotations that are often provided in the form of ontol-
ogies. FUNC currently has two main drawbacks. First, it
does not provide any graphical representation of the

results such as those provided e.g. by GOMiner [36]. Sec-
ond, it allows no easy way to permute sample-associated
variables instead of gene-associated variables. This has
been shown to be useful in some cases [23] and has been
implemented by some programs [16,20,23]. However,
despite these two drawbacks, FUNC provides considera-
ble advantages over existing tools: it integrates four kinds
of tests suitable for the analysis of gene expression data
and DNA sequence data of which two (binomial test on

Table 2: Categories evolving fast in humans and chimpanzees

GO ID Category Genesa AA rod.b AA prim.c Ratiod

GO:0003674 molecular_functione 4303 84306 8604 0.1
GO:0004889 nicotinic acetylcholine-activated cation-selective channel activity 6 85 29 0.34
GO:0004984 olfactory receptor activity 5 78 32 0.41
GO:0005184 neuropeptide hormone activity 13 95 31 0.33
GO:0005217 intracellular ligand-gated ion channel activity 2 117 30 0.26
GO:0005272 sodium channel activity 9 124 34 0.27
GO:0005279 amino acid-polyamine transporter activity 19 276 63 0.23
GO:0005523 tropomyosin binding 4 14 12 0.86
GO:0008188 neuropeptide receptor activity 17 212 44 0.21
GO:0008271 sulphate porter activity 4 107 37 0.35
GO:0015194 L-serine transporter activity 1 7 8 1.14
GO:0016652 oxidoreductase activity, acting on NADH or NADPH, NAD or NADP as acceptor 10 140 36 0.26
GO:0031402 sodium ion binding 31 684 109 0.16
GO:0031404 chloride ion binding 26 459 79 0.17

a number of genes analysed in category; b number of amino acid changes between mouse and rat; b number of amino acid changes between human 
and chimpanzee; b number of amino acid changes between mouse and rat; dratio of primates/rodents; e the ratio in the top category, in this case 
molecular function, gives the expected ratio.

Illustration of the refinement algorithmFigure 3
Illustration of the refinement algorithm. (a) Before the refinement, four groups are labelled significant (red) that contain 
the genes 1–4. (b) On the deepest level of the tree significant categories remain significant (orange). On the next level a signif-
icant category (arrow) is tested after all genes in the significant descendant categories (blue box) are removed. In this example, 
the category remains significant. (c) This procedure is repeated for the category on the next level (arrow) and again all genes in 
significant descendant categories (blue box) are removed. In this example the category is no longer significant after refinement.
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two gene-associated counts and 2 × 2 contingency table
test on four gene-associated counts) are not implemented
in other GO analysis programs. FUNC also provides two
established multiple correction methods (FDR and
FWER) as well as a new overall significance estimate,
which should be useful especially for data with a weak sig-
nal. Further, the implemented refinement algorithm is a
useful and transparent method for extracting the most
specific biological information from lists of significant
GO categories. Finally, FUNC is available as a well-docu-
mented stand-alone tool for UNIX/GNU Linux platforms
as well as accessible via a web service, which makes its use
more flexible than many other available GO analysis
tools. Thus, FUNC provides flexible, statistically rigorous
and novel tools to analyse the functional annotation of a
variety of genome-wide data.

Availability and requirements
Project name: FUNC

Project home page: http://func.eva.mpg.de

Operating System: Unix/GNU Linux

Programming languages: C++, Perl, bash

Other requirements: R mathematical library (libRmath)

License: GNU GPL V2.0
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