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Abstract: Graph grouping supports data analysts in decision making based on the characteristics
of large-scale, heterogeneous networks containing millions or even billions of vertices and edges.
We demonstrate graph grouping with GRADOOP, a scalable system supporting declarative programs
composed from multiple graph operations. Using social network data, we highlight the analytical
capabilities enabled by graph grouping in combination with other graph operators. The resulting
graphs are visualized and visitors are invited to either modify existing or write new analytical
programs. GRADOOP is implemented on top of Apache Flink, a state-of-the-art distributed dataflow
framework, and thus allows us to scale graph analytical programs across multiple machines. In the
demonstration, programs can either be executed locally or remotely on our research cluster.
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1 Introduction
Graphs are an intuitive way to model, analyze and visualize complex relationships among
real-world data objects. The flexibility of graph data models and the variety of existing
graph algorithms made graph analytics attractive to different domains, e.g., to analyze the
link structure of the world wide web [BP98], users of a social network [Ne10], protein
interaction in biological networks [Pa11] or business process executions in enterprise data
[Pe14]. In these domains, graphs are often heterogeneous in terms of the objects they
represent. For example, vertices of a social network may represent users and forums while
edges may express friendships or memberships. Further on, vertices and edges may have
associated properties to describe the respective object, e.g., a user’s name or the date a user
became member of a forum.

The property graph model [RN10, An12] is an established approach to model heterogeneous
networks. Figure 1(a) shows a property graph that represents a simple social network
containing multiple types of vertices (e.g., User and Forum) and edges (e.g., follows and
memberOf ). Vertices as well as edges are further described by properties in the form of key-
value pairs (e.g., name : Alice or since : 2015). However, while small graphs are an intuitive
way to visualize connected information, with vertex and edge numbers increasing up to
millions or billions, it becomes almost impossible to understand the encoded information by
mere visual inspection. One way to reduce complexity is the grouping of vertices and edges
to so-called super vertices and super edges of a summary graph supporting the analyst in
extracting and understanding the underlying information [THP08, Ch08, Ju17].
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Fig. 1: (a) shows an example social network; (b) shows the summary graph of a large social network
grouped by the user’s city including aggregate values expressing the oldest and youngest user’s age
per city and the number of edges among cities.

Graph grouping allows structural summarization and attribute aggregation by user-defined
vertex and edge properties. In Figure 1(b), the users of a social network are grouped by their
city property, i.e., each super vertex in the summary graph represents all users that live in
the same city. As the property graph model is schemaless, users may not necessarily provide
certain properties. Such users are grouped within a dedicated NULL vertex. Super edges
represent mutual relationships among the grouped vertices of the input graph. For example,
an edge between Dresden and Leipzig in the summary graph represents all edges of that
same type among users from Dresden and Leipzig. Besides the structural summarization,
graph grouping allows for attribute aggregation on super vertices and super edges. In our
example, each super vertex and super edge stores the number of elements it represents.
Super vertices additionally store the minimum and maximum year of birth among the users.

In the demonstration, we present the graph grouping operator [Ju17] of GRADOOP [Ju16],
an open-source graph analytical system that implements the so-called Extended Property
Graph Model and that supports declarative operations on single property graphs as well
as collections of these. For example, given a social network similar to Figure 1(a), the
summary graph of Figure 1(b) can be easily declared by the following script:
summaryGraph = socialNetwork
.subgraph(
(vertex -> vertex[:label] == ’User’),
(edge -> edge[:label] == ’follows’))

.groupBy(
[:label, ’city’], [COUNT(), MIN(’yob’), MAX(’yob’)],
[:label], [COUNT()])

We will demonstrate how GRADOOP and its operators can be used to compute expressive
summary graphs. Since GRADOOP is implemented on top of Apache Flink [Ca15], a
distributed state-of-the-art dataflow framework, demo programs can be executed either
locally or on our research cluster without modifying the program. In the following section,
we provide a brief overview about GRADOOP and the Extended Property Graph Model. In
Section 3, we describe our demonstration scenario in more detail.
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2 Graph Grouping with GRADOOP

GRADOOP is a system for declarative graph analytics supporting the combination of
multiple graph operators and algorithms in a single program. Graph data is represented
within the Extended Property Graph Model (EPGM) [Ju16], which is based on the property
graph model [RN10], i.e., on directed multigraphs supporting identifiers, labels and named
attributes (properties) for vertices as well as edges. As an extension, the EPGM supports
the concept of logical graphs, which are logical partitions of a base graph. Thus, it is
possible to analyze single graphs as well as collections of these. Logical graphs also support
labels and properties, for example, to represent communities in a social network and to
store their number of users. Furthermore, logical graphs and collections are input and
output of EPGM operators which enables the composition of complex analytical programs.
GRADOOP already provides operator implementations for graph pattern matching, subgraph
extraction, graph transformation, set operations on multiple graphs as well as property-
based aggregation and selection [Ju16]. Graph analytical programs are declared using a
Java API representing the domain specific language GrALa (Graph Analytical Language).
Below the user-facing API, graph operators and algorithms are mapped to the programming
abstractions provided by Apache Flink and thus, their execution can be scaled out across a
cluster of machines. The source code of GRADOOP is available online under GPL license4.

Graph grouping extends the set of available graph operators in GRADOOP. The operator
takes a single logical graph as input and computes a new logical graph, which we call a
summary graph. The operator signature for graph grouping in GrALa is defined as follows:
LogicalGraph.groupBy(
vertexGroupingKey[], vertexAggregateFunction[],
edgeGroupingKey[], edgeAggregateFunction[]) : LogicalGraph

While the first argument is a list of vertex grouping keys, the second argument refers to a
list of user-defined or system-provided vertex aggregate functions. Analogously, the third
and fourth argument are used to define edge grouping keys and edge aggregate functions.
In our introductory example, the operator is parameterized using the symbol :label
and the property key city as vertex grouping keys. We use system-provided aggregate
functions to count the elements inside each group and to determine minimum and maximum
year of birth. The resulting super vertices adopt the label, the grouping property (e.g., city
: Dresden) and the results of the aggregate functions (e.g., count : 72,865). Edges are
implicitly grouped by the super vertices of their incident vertices and explicitly by their
label and counted. In the example, one can also see the composition of subgraph extraction
and graph grouping. First, a subgraph containing solely vertices of type User and edges of
type follows is extracted from the social network and forwarded to the grouping operator.
The resulting summary graph can be either used as input for another operator (e.g., pattern
matching), stored in a data sink or visualized.
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3 Demonstration Description
In our demonstration, we show how GRADOOP can be used to compute summary graphs
from social network data. We provide three example programs to cover distinct aspects
of graph grouping: (1) subgraph grouping analogous to our example, (2) type-dependent
grouping to declare grouping keys on individual labels and (3) graph grouping along dimen-
sional hierarchies for Graph OLAP scenarios [Ch08]. Example (2) and (3) require the graph
transformation operator to pre-process the input graph before the actual grouping. Visitors
are also invited to modify our example programs or to write new ones including further
operators (e.g., pattern matching) and plug-in algorithms (e.g., community detection).

The programs are presented and developed using the GRADOOP Java API and executed
either locally on the demonstration laptop or remotely on our research cluster. We provide
real-world graphs and artificial social network data with up to 10 billion edges generated
by the LDBC data generator [Er15]. GRADOOP provides multiple ways to visualize the
resulting summary graphs. In example (1), we will use our graph visualization EPGM-Viz5

(Figure 1(b)), in example (2), we will use the DOT output and GraphViz6, and in example
(3), we will utilize the Neo4j graph database to visualize the results7.
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