
Extended Abstract: LID-DS 2021

Martin Grimmer, Tim Kaelble, Felix Nirsberger, Emmely Schulze, Toni Rucks,
Jörn Hoffmann, and Erhard Rahm

all authors: Leipzig University, Augustuspl. 10, 04109 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de

Abstract. To advance research on system call-based HIDS, we present
LID-DS 2021, a recording framework, a dataset for comparative analysis,
and a library for evaluating HIDS algorithms.

Modern datasets and comparable results are key factors for the progress of HIDS
research. Previous work was based mainly on insufficient datasets that were not
used consistently [1, 2, 4]. To make matters worse, some of them were not eval-
uated comparably to each other. All this hinders trustworthy scientific progress
in the field of anomaly-based HIDS. For this reason, we present a new version
of the Leipzig Intrusion Detection - DataSet, the LID-DS 2021 consisting of
(1) an open source framework for generating HIDS datasets, (2) a modern and
comprehensive system call dataset, the including the implementation of all 15 of
its scenarios and (3) an open source library for evaluating and comparing HIDS
algorithms on the given and other datasets. In doing so, we aim to contribute
to the anomaly-based HIDS research not only a dataset but also guide other
researchers to benefit from existing work and create comparable results in the
future.

Fig. 1: Schematic rep-
resentation of a record-
ing.

The framework provides interfaces for defining
scenarios. A scenario describes an environment con-
sisting of three roles: Attacker, Victim and User (with
benign behavior and timings sampled from real-world
webserver logs). Each of them is defined as a Docker
container and executed by the framework. Records can
then be automatically created containing the system
calls (incl. arguments, return values and other meta-
data), network data and other statistics of the victim.
A schematic representation can be seen in Figure 1.

The dataset consists of the source code and recordings of 15 scenarios corre-
sponding to real security vulnerabilities. We presented the size of each scenario
from the 2019 and 2021 versions of LID-DS in Figure 2. The new one contains
about 8.5 times as many system calls as the old one.

The library enables the uniform loading of HIDS datasets.1 In addition,
the complete process from loading, feature extraction, anomaly detection to
evaluation can be performed automatically. Using a system of so-called building

1 currently supported: LID-DS 2019 and LID-DS 2021



2 M. Grimmer et al.

blocks, existing features and algorithms can be freely combined to build complex
HIDS algorithms, as indicated in Figure 3. On top, new features and algorithms
can be added simply by implementing the existing interfaces.

For an initial evaluation, we run a variant (as described in [1]) of the
STIDE [3] algorithm as a baseline on both the LID-DS 2019 and the LID-DS
2021 and present the results in Figure 2. As the lower F-score, lower detection
rate, and higher number of false alarms show, the 2021 version is more difficult
to solve with the base algorithm than the 2019 version.

The data, source code and documentation of the LID-DS are available via
GitHub2. Example algorithms can also be found there.

Fig. 2: Number of system calls in sce-
narios of the LID-DS and average re-
sults of the baseline algorithm STIDE
over all scenarios, with n = 7 and
w = 100.

read(...) = 64

word 2 
vec
(3,1)

return 
value
(64)

(3,1,64)

read(...) = 0

word 2 
vec
(3,1)

return 
value
(0)

(3,1,0)

(3,1,64) (3,1,64,3,1,0)

close(...) = 0

word 2 
vec
(1,5)

return 
value
(0)

(1,5,0)

(3,1,64,3,1,0,1,5,0)

concat

anomaly score

(3,1,64,3,1,0,1,5,0)

autoencoder

n-gram n-gram n-gram

concat concat

input

output

internal state

building block
legend

None None

Fig. 3: Example usage of Building Blocks
(BBs): Input (from left to right) is a
stream of system calls (read, read, close)
including their return values. Here, the
BBs are combined to create n-grams
with n = 3 of embedded system calls
and their return values, which are then
input to an autoencoder for anomaly de-
tection.

References

1. Grimmer, M., Kaelble, T., Rahm, E.: Improving host-based intrusion detection using
thread information. In: International Symposium on Emerging Information Security
and Applications. pp. 159–177. Springer (2021)

2. Grimmer, M., Röhling, M.M., Kreusel, D., Ganz, S.: A modern and sophisticated
host based intrusion detection data set. IT-Sicherheit als Voraussetzung für eine
erfolgreiche Digitalisierung pp. 135–145 (2019)

3. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of computer security 6(3), 151–180 (1998)

4. Röhling, M.M., Grimmer, M., Kreubel, D., Hoffmann, J., Franczyk, B.: Standard-
ized container virtualization approach for collecting host intrusion detection data.
In: 2019 Federated Conference on Computer Science and Information Systems (Fed-
CSIS). pp. 459–463. IEEE (2019)

2 https://github.com/LID-DS/LID-DS


