
DIMSpan - Transactional Frequent Subgraph Mining with
Distributed In-Memory Dataflow Systems

André Petermann, Martin Junghanns and Erhard Rahm

University of Leipzig & ScaDS Dresden/Leipzig

[petermann,junghanns,rahm]@informatik.uni-leipzig.de

ABSTRACT
Transactional frequent subgraph mining identi�es frequent struc-

tural pa�erns in a collection of graphs. �is research problem

has wide applicability and increasingly requires higher scalability

over single machine solutions to address the needs of Big Data use

cases. We introduce DIMSpan, an advanced approach to frequent

subgraph mining that utilizes the features provided by distributed

in-memory data�ow systems such as Apache Flink or Apache Spark.

It determines the complete set of frequent subgraphs from arbitrary

string-labeled directed multigraphs as they occur in social, business

and knowledge networks. DIMSpan is optimized to runtime and

minimal network tra�c but memory-aware. An extensive perfor-

mance evaluation on large graph collections shows the scalability

of DIMSpan and the e�ectiveness of its optimization techniques.

CCS CONCEPTS
•Information systems→ Data mining; •Computing method-
ologies→ Distributed algorithms;

KEYWORDS
Distributed Frequent Subgraph Mining; Shared Nothing Cluster

1 INTRODUCTION
Mining frequent structural pa�erns from a collection of graphs,

usually referred to as frequent subgraph mining (FSM), has found

much research interest in the last two decades, for example, to iden-

tify signi�cant pa�erns from chemical or biological structures and

protein interaction networks [13]. Besides these typical application

domains, graph collections are generally a natural representation

of partitioned network data such as knowledge graphs [7], business

process executions [25] or communities in a social network [14].

We identi�ed two requirements for FSM on such data that are not

satis�ed by existing approaches: First, such data typically describes

directed multigraphs, i.e., the direction of an edge has a semantic

meaning and there may exist multiple edges between the same pair

of vertices. Second, single machine solutions will not be su�cient

for big data scenarios where either input data volume as well as

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

BDCAT’17, Austin, Texas, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5549-0/17/12. . . $15.00

DOI: 10.1145/3148055.3148064

size of intermediate results can exceed main memory or achievable

runtimes are not satisfying.

An established approach to speed up or even enable complex

computations on very large data volumes is data-centric processing

on clusters without shared memory. �e rise of this approach

was strongly connected with the MapReduce [8] programming

paradigm, which has also been applied to the FSM problem [2, 3,

10, 18, 19]. However, none of the approaches provides support for

directed multigraphs. Further on, MapReduce is not well suited

for complex iterative problems like FSM as it leads to a massive

overhead of disk access.

In recent years, a new generation of advanced cluster comput-

ing systems like Apache Flink [6] and Apache Spark [35], in the

following denoted by distributed in-memory data�ow systems, ap-

peared. In contrast to MapReduce, these systems provide a larger

set of operators and support holding data in main memory between

operators as well as during iterative calculations.

In this work, we propose DIMSpan, an advanced approach to

distributed FSM based on this kind of system. Our contributions

can be summarized as follows:

• We propose DIMSpan, the �rst approach to parallel FSM

with distributed in-memory data�ow systems (Section 3).

It adapts all pruning features of the popular gSpan [32] al-

gorithm to the data�ow programming model and supports

directed multigraphs.

• We provide a comparison to existing MapReduce based

approaches (Section 4) and show that DIMSpan not only

requires fewer disk access but also shu�es less data over

the network and can reduce the total number of expensive

isomorphism resolutions to a minimum.

• We present results of experimental evaluations (Section 5)

based on real and synthetic datasets to show the scalabil-

ity of our approach as well as the runtime impact of our

optimization techniques .

• Our implementation is practicable and works for arbitrary

string-labeled graphs. We provide its source code to the

community as part of the Gradoop framework [24] under

an Open Source licence.

In addition, we provide background knowledge and discuss re-

lated work in Section 2. Finally, we conclude in Section 6.

2 BACKGROUND & RELATEDWORK
In this section, we introduce the distributed data�ow programming

model, de�ne the frequent subgraph mining problem and discuss

related work.

BDCAT’17, December 5–8, 2017, Austin, Texas, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5549-0/17/12. . . $15.00
https://doi.org/10.1145/3148055.3148064

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

237

Table 1: Glossary of symbols

G/v/e/P/m graph / vertex / edge / pa�ern / embedding

G/V /E/P/M sets of G/v/e/P/m
F /µ set of frequent pa�erns / pa�ern-embeddings map

ϕ/ϕw pa�ern frequency / frequency within a partition

?
k /Gi∈N k-edge variant of ? / partition of a graph set

Cmin (P) minimum DFS code of a pa�ern

C1 (e) minimum DFS code of an edge

C1 (P) �rst extension of a pa�ern’s min. DFS code

2.1 Distributed Data�ow Model
Distributed data�ow systems like MapReduce [8], Apache Flink [6]

or Apache Spark [35] are designed to implement data-centric algo-

rithms on shared nothing clusters without handling the technical

aspects of parallelization. �e fundamental programming abstrac-

tions are datasets and transformations among them. A dataset is

a set of data objects partitioned over a cluster of computers. A

transformation is an operation that is executed on the elements

of one or two input datasets. �e output of a transformation is

a new dataset. Transformations can be executed concurrently on

W = {w0,w1, ..,wn } available worker threads, where every thread

executes the transformation on an associated dataset partition.

�ere is no shared memory among threads.

Depending on the number of input datasets we distinguish unary
and binary transformations. Table 2 shows example unary tran-

formations. We further divide them into those transformations

processing single elements and those processing groups of elements.
All of the shown functions require the user to provide a transforma-
tion function τ that needs to be executed for each element or group.

A simple transformation is �lter, were τ is a predicate function and

only those elements for which τ evaluates to true will be added

to the output. Another simple transformation is map, where τ de-

scribes how exactly one output element is derived from an input

element. Flatmap is similar to map but allows an arbitrary number

of output elements. MapReduce provides only one single-element

transformation (denoted by MRMap in Table 2) which is a variant

of �atmap that requires input and output elements to be key-value

pairs.

�e most important element group transformation is reduce.
Here, input as well as output are key-value pairs and for each

execution all elements sharing the same key are aggregated and τ
describes the generation of a single output pair with the same key.

Since input pairs with the same key may be located in di�erent

partitions they need to be shu�ed among threads which is typically

causing network tra�c among physical machines. If τ is associative

(e.g. summation), an additional combine transformation can be used

to reduce this tra�c. Combine is equivalent to reduce but skips

shu�ing, i.e., in the worst case one output pair is generated for

each key and thread. A�erwards, these partial aggregation results

can be passed to a reduce transformation.

As map and �lter can also be expressed using MRMap, MapRe-

duce and the new generation of distributed in-memory data�ow
systems (DIMS) like Flink and Spark have the same expressive

power in terms of unary transformations. However, in the case of

successive or iterative MRMap-reduce phases intermediate results

Table 2: Selected Unary Tranformations

Transf. Signature Constraints
single element transformations
Filter I ,O ⊆ A O ⊆ I
Map I ⊆ A,O ⊆ B |I | = |O |
Flatmap I ⊆ A,O ⊆ B -

MRMap I ⊆ A × B;O ⊆ C × D -

element group transformations
Reduce I ,O ⊆ A × B |I | ≥ |O | ∧ |O | ≤ |A|
Combine I ,O ⊆ A × B |I | ≥ |O | ∧ |O | ≤ |A ×W |

(I/O : input/output datasets, A..D : domains, W : worker threads)

need to be read from disk at the beginning and wri�en to disk

at the end of each phase. �us, MapReduce is not well suited to

solve iterative problems and problem-speci�c distributed comput-

ing models arose, for example, to process very large graphs [20].

In contrast, MapReduce and DIMS are general purpose platforms

and not dedicated to a speci�c problem. However, DIMS support

more complex programs including iterations, binary transforma-

tions (e.g., set operators like union and join) and are able to hold

datasets in main memory during the whole program execution.

2.2 Frequent Subgraph Mining
Frequent subgraph mining (FSM) is a variant of frequent pa�ern

mining [1] where pa�erns are graphs. �ere are two variants of

the FSM problem. Single graph FSM identi�es pa�erns occurring at

least a given number of times within a single graph, while graph
transaction FSM searches for pa�erns occurring in a minimum

number of graphs in a collection. Our proposed approach belongs

to the second se�ing. Since there exist many variations of this

problem we �rst de�ne our problem precisely before discussing

related work and introducing our algorithm.

De�nition 2.1. (Graph). Given two global label setsLv ,Le , then

a directed labeled multigraph, in the following simply referred to

as graph, is de�ned to be a hextuple G = 〈V ,E,s,t ,λv ,λe 〉, where

V = {v} is the set of vertices (vertex identi�ers), E = {e} is the set

of edges (edge identi�ers), the functions s : E → V / t : E → V map

a source and a target vertex to a every edge and λv : V → Lv / λe :

E → Le associate labels to vertices and edges. An edge e ∈ E is

directed from s (e) to t (e). A multigraph supports loops and parallel

edges.

De�nition 2.2. (Subgraph). Let S ,G be graphs then S will be

considered to be a subgraph of G, in the following denoted by

S v G, if S has subsets of vertices S .V ⊆ G .V and edges S .E ⊆ G .E
and ∀e ∈ S .E : s (e),t (e) ∈ S .V is true.

On the bo�om of Figure 1, a collection of directed multigraphs

G = {G1,G2,G3} and an example subgraph S0 v G1 are illustrated.

Identi�ers and labels of vertices and edged are encoded in the format

id:label, e.g., 1:A.

De�nition 2.3. (Isomorphism). Two graphs G,H will be consid-

ered to be isomorphic (G ' H) if two bijective mappings exist for

vertices ιv : G .V ↔ H .V and edges ιe : G .E ↔ H .E with matching

labels, sources and targets, i.e., ∀v ∈ G .V : G .λv (v) = H .λv (ιv (v))

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

238

Figure 1: Example illustrations for a graph collection, a sub-
graph, a pattern lattice and embeddings.

and ∀e ∈ G .E : G .λe (e) = H .λe (ιe (e)) ∧ G .s (e) = H .s (ιe (e)) ∧
G .t (e) = H .t (ιe (e)).

De�nition 2.4. (Pattern Lattice). A pa�ern is a connected

graph isomorphic to a subgraph P ' S . Let P = {P−1,P0, ..,Pn }
be the set of all pa�erns isomorphic to any subgraph in a graph

collection, than pa�erns form a la�ice based on parent-child rela-

tionships. Pp will be a parent of Pc if Pp @ Pc ∧ |Pp .E | = |Pc .E | -

1. Based on edge count k there are disjoint levels P−1, ..,Pk ⊆ P.

Root level P−1 = {P−1} contains only the empty pa�ern P−1
which

is the parent of all pa�erns with k = 0. For all other pa�erns

∀Pk ∈ P,k > 0 ∃ Pk−1 ∈ P : Pk−1 @ Pk is true.

Figure 1 shows the la�ice of pa�erns P = {P00, ..,P20} occurring

in the example graph collection G.

De�nition 2.5. (Embedding). LetG be a graph and P be a pa�ern,

then an embedding is de�ned to be a pair m(G,P) = 〈ιv ,ιe 〉 of

isomorphism mappings describing a subgraph S v G isomorphic

to P . As a graph may contain n subgraphs isomorphic to the same

pa�ern (e.g., subgraph automorphisms), we use µ : P → Mn

to denote an embedding map, which assoicates n elements of an

embeddings set M to every pa�ern P ∈ P. If µ maps to an empty

tuple, the graph will not contain a pa�ern.

Figure 1 shows three di�erently colored edge mappings of example

embeddingsm0 (G1,P20),m1 (G2,P20) andm2 (G2,P20).

De�nition 2.6. (Freqency/Support). Let G = {G0, ..,Gn } be a

graph collection and P be a pa�ern, then the frequency ϕ : P → N of

a pa�ern is the number of graphs containing at least one subgraph

isomorphic to the pa�ern. �e term support describes the frequency

of a pa�ern relative to the number of graphs σ (P) = ϕ (P)/|G|.

De�nition 2.7. (Freqent Subgraph Mining). Let G be a graph

collection, P the set of all contained pa�erns and smin be the

minimum support with 0 ≤ smin ≤ 1, then the problem of frequent
subgraph mining is to identify the complete set of pa�erns F ⊆ P

where ∀P ∈ P : P ∈ F ⇔ σ (P) ≥ smin is true.

Figure 2: Pattern lattice search strategies.

(a) BFS (b) DFS (c) LDFS

Using the example graph collection G = {G1,G2,G3} of Figure 1,

frequent subgraph mining with smin = 50%/fmin = 2 results in

the �ve not-crossed pa�erns with ϕ (P) ≥ 2.

2.3 Related Work
A recent survey [13] by Jiang et al. provides an extensive overview

about frequent subgraph mining (FSM). Due to limited space and

the vast amount of work related to this problem we only discuss

approaches matching De�nition 2.7. �us, we omit the single-

graph se�ing [5, 9, 28] as well as graph-transaction approaches

with incomplete results like maximal [29], closed [34] or signi�cant

[26] frequent subgraph mining.

�e �rst exact FSM algorithms, e.g., AGM [12] and FSG [16],

followed an a priori approach. �ese algorithms implement a level-

wise breath-�rst-search (BFS, illustrated by Figure 2a) in the pa�ern

la�ice, i.e., candidate pa�erns Pk are generated and the support

is calculated by subgraph isomorphism testing. In a subsequent

pruning step frequent pa�erns F k ⊆ Pk are �ltered and joined to

form childrenPk+1
(next round’s candidates). �e search is stopped

as soon asF k = ∅. �e disadvantage of these algorithms is that they

are facing the subgraph isomorphism problem during candidate

generation and support counting. Further on, it is possible that

many generated candidates might not even appear.

�us, the next generation of pa�ern-growth based FSM algo-

rithms appeared and outperformed the a priori ones. Popular repre-

sentatives of this category are MOFA [4], gSpan [32], FFSM [11] and

Gaston [21]. In comparison to the a priori ones, these algorithms

traverse the la�ice in a depth-�rst search (DFS, illustrated by Figure

2b) and skip certain links in the la�ice (do�ed lines in Figure 1) to

avoid visiting child pa�erns multiple times. A key concept of these

algorithms are canonical labels generated during DFS. However, if

labels are generated without recalculation (e.g., gSpan) they won’t

totally prevent false positives (non canonical labels) and thus an

additional isomorphism-based veri�cation will be required. Com-

parative work [22, 31] has shown that runtime can be decreased by

fast label generation and holding embeddings in main memory.

While most popular exact FSM algorithms are from the �rst half

of the 2000s, more recent work focuses on problem variations [13]

as well as parallelization, for example, using GPUs [15], FPGAs [27]

and multithreading [30]. All existing approaches of graph trans-

action FSM on shared nothing clusters [2, 3, 10, 18, 19] are based

on MapReduce [8] and will be further discussed in comparison to

DIMSpan in Section 4. Graph transaction FSM cannot bene�t from

vertex-centric graph processing approaches [20] as partitioning a

single graph shows di�erent problems than partitioning a graph

collection.

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

239

Algorithm 1 Distributed FSM data�ow.

Require: G = {〈G,µ1〉i }i⊂N, fmin
1: F ← ∅

2: F k ← ∅

3: repeat
4: Pk ← G.�atmap(report)
5: ϕkw ← P

k .combine(count)
6: ϕk ← ϕkw .reduce(sum)

7: F k = Pk .�lter(ϕk (P) ≥ fmin)

8: broadcast(F k
)

9: G ← G.map(patternGrowth)
10: G ← G.�lter(∃ P : |µk+1 (G,P) | > 0 ∧C (P) = Cmin (P))

11: F ← F ∪ F k

12: until F k , ∅
13: return F

3 ALGORITHM
In the following, we provide details about the DIMSpan algorithm

including its concept (3.1), the respective data�ow program (3.2) as

well as pruning and optimization techniques (3.4 - 3.7).

3.1 Concept
�e input graph collection G is represented by a dataset of graphs

equally partitioned into disjoint subsets G1,G2, ..,Gn correspond-

ing to the availble worker threadsW = {w1,w2, ..,wn }. �us, trans-

formations can be executed on |W | graphs in parallel but every

exchange of global knowledge (e.g., local pa�ern frequencies) re-

quires synchronization barriers in the data�ow program which

cause network tra�c. Our major optimization criteria were mini-

mizing delays dependent on exchanged data volume and, as FSM

contains the NP-complete subgraph isomorphism problem, mini-

mize the number of isomorphism resolutions.

To achieve the la�er, we adapted approaches of two e�cient

pa�ern-growth algorithms gSpan [32] and Gaston [21]. �ese al-

gorithms basically are iterations of pa�ern growth, counting and

�lter operations but di�er in detail. gSpan allows fast append-only

generation of canonical labels representing pa�erns but records

only pa�ern-graph occurrence lists. �is requires subgraph iso-

morphism testing to recover embeddings. In contrast, Gaston has

a more complex label generation tailored to the characteristics of

molecular databases but stores complete pa�ern-embedding maps.

For the design of DIMSpan, we combine the strong parts of both

algorithms. In particular, we use a derivate of gSpan canonical

labels (Section 3.3) but also store embedding maps to avoid sub-

graph isomorphism testing at the recovery of previous iterations’

embeddings. To minimize the additional memory usage, we use

optimized data structures and compression (Section 3.7).

As in absence of shared memory every iteration is causing a syn-

chronization barrier, the DFS search of pa�ern growth algorithms is

less suited as it requires |P | iterations (one for each visited pa�ern)

while a BFS search only takes kmax
iterations (maximum edge

count). �us, we decided to perform a level-wise depth-�rst search
(LDFS, illustrated by Figure 2c), which can be abstracted as a set

of massive parallel constrained DFSs with level-wise forking. �is

approach allows us to bene�t from the e�ciency of pa�ern growth

Algorithm 2 Pa�ern growth map function τ .

Require: G,µk ,F k = 〈P0, ..,Pn | sorted by Cmin〉

1: C1

min ← 〈〉 // minimum branch

2: E≥min ← G .E // shrinking branch-validated edge set

3: for Pk ∈ F k | µk (G,Pk) , 〈〉 do
4: if C1 (Pk) > C1

min then
5: C1

min ← C1 (Pk) // update min branch and edge set

6: E≥min ←⊂ E≥min | C
1 (e) ≥ C1

min
7: end if
8: formk ,e ∈ (µk (G,Pk) × E≥min) do
9: if @mk .ιe (e) and time constraint satis�ed then

10: grow Pk+1,mk+1
and add to µk+1

11: end if
12: end for
13: end for
14: return G,µk+1

algorithms and to apply level-wise frequency pruning at the same

time. For example, in Figure 1 we apply the frequency pruning

of P10,P11,P12 in parallel within the same iteration but use search

constraints (Section 3.4) to grow only from P10 to P20.

By using a distributed in-memory data�ow system instead of

MapReduce, DIMSpan further bene�ts from the capability to hold

graphs including supported pa�erns and their embeddings in main

memory between iterations and to exchange global knowledge by

sending complete copies of each iteration’sk-edge frequent pa�erns

to every worker without disk access. In Apache Flink and Apache

Spark this technique is called broadcasting
12

.

3.2 Distributed Data�ow
Algorithm 1 shows the distributed data�ow of DIMSpan. Inputs

are a dataset of graphs G and the minimum frequency threshold

fmin . �e output is the dataset of frequent pa�erns F . For each

graph, supported 1-edge pa�erns P1
and the embedding map µ1

are already computed in a preprocessing step (see Section 3.6). Our

algorithm is iterative and per iteration one level of the pa�ern

la�ice is processed until no more frequent pa�erns exist (line 12).

In the following, we describe transformations and intermediate

datasets of the iteration body (lines 4 to 11) in more detail:

Line 4 - Report: In the beginning of each iteration every graph

reports allk-edge (k ≥ 1) supported pa�erns, i.e., the keys of the last

iteration’s embedding map µk , through a �atmap transformation.

Line 5 - Combine: �e partition frequency of pa�erns ϕw :

P ×W → N is counted in a combine tranformation.

Line 6 - Reduce: �e global frequency of pa�erns ϕ : P → N
is calculated in a reduce transformation. Here, partition frequencies

are shu�ed among workers and summed up.

Line 7 - Frequency pruning and veri�cation: A�er global

frequencies of all pa�erns are known, a �lter transformation is

used to determine the frequent ones. Additionally, every remaining

pa�ern is veri�ed to be no false positive (see Section 3.5). �is is

the step we resolve subgraph isomorphism with cardinality |F |.

1
h�ps://ci.apache.org/projects/�ink/�ink-docs-release-1.2/dev/batch/index.html

#broadcast-variables

2
h�p://spark.apache.org/docs/latest/programming-guide.html#broadcast-variables

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

240

Line 8 - Broadcasting: A�er F k
is known, a complete copy is

sent to the main memory of all workers using broadcasting.

Line 9 - Pattern growth: Here, the previously broadcasted set

F k
is used to �lter each graph’s embeddings µk to those of frequent

pa�erns. For each of the remaining embeddings, the constrained

pa�ern growth (Section 3.4) is performed to generate µk+1
.

Line 10 - Obsolescence �lter: A�er pa�ern growth, we apply

another �lter operation and only graphs with non-empty µk+1
will

pass. �us, G can potentially shrink in each iteration if only a

subset of graphs accumulates frequent pa�erns.

Line 11 - Result storage: Finally, we use a binary union trans-

formation to add the iteration’s results to the �nal result set.

3.3 Canonical Labels for Directed Multigraphs
We use a derivate of the gSpan minimum DFS code [32] as canonical

labels for directed multigraph pa�erns:

De�nition 3.1. (DFS Code). A DSF code representing a pa�ern

of j vertices and k edges (j,k ≥ 1) is de�ned to be a k-tuple C =
〈x1,x2, ..,xk 〉 of extensions, where each extension is a hextuple x =
〈ta ,tb ,la ,d ,le ,lb 〉 representing the traversal of an edge e with label

le ∈ Le from a start vertex va to an end vertex vb . d ∈ {in,out }
indicates if the edge was traversed in or against its direction. A

traversal will be considered to be in direction, if the start vertex is

the source vertex, i.e.,va (x) = s (e). �e �elds la ,lb ∈ Lv represent

the respective labels of both vertices and their initial discovery times

ta ,tb ∈ T | T = 〈0, .., j〉 where the vertex at t = 0 is always the start

vertex of the �rst extension. A DFS code Cp will be considered to

be the parent of a DFS codeCc , i� ∀i ∈ 〈1, ..,k − 1〉 : Cc .xi = Cp .xi .

According to this de�nition child DFS codes can be easily gener-

ated by adding a single traversal to their parent. Further on, DFS

codes support multigraphs since extension indexes can be mapped

to edges identi�ers to describe embeddings.

However, there may exist multiple DFS codes representing the

same graph pa�ern. To use DFS codes as a canonical form, gSpan

is using a lexicographic order to determine a minimum one among

all possible DFS codes [33]. �is order is a combination of two

linear orders. �e �rst is de�ned on start and end vertex times of

extensions T ×T , for example, a backwards growth to an already

discovered vertex is smaller than a forwards growth to a new one.

�e second order is de�ned on the labels of start vertex, edge and

end vertex Lv × Le × Lv , i.e., if a comparison cannot be made

based on vertex discovery times, labels and their natural order (e.g.,

alphabetical) are compared from le� to right. To support directed

graphs, we extended this order by direction D = {in,out } with

out < in resulting into an order over Lv ×D ×Le ×Lv , i.e., in the

case of two traversals with same start vertex labels, a traversal of

an outgoing edge will always be considered to be smaller.

De�nition 3.2. (Minimum DFS Code). �ere exists an order

among DFS codes such that ∀C1,C2 : C1 < C2 ∨C1 = C2 ∨C1 > C2

is true. Let CP be the set of all DFS codes describing a pa�ern P

and Cmin be its minimum DFS code, than @ Ci ∈ CP : Ci < Cmin
is true.

3.4 Constrained Pattern Growth
Besides gSpan’s canonical labels we also adapted the growth con-

straints to skip parent-child relationships in the pa�ern la�ice

(do�ed lines in Figure 1). However, in contrast to gSpan, we don’t

perform a pa�ern-centric DFS (Figure 2b) but an level-wise DFS

(Figure 2c), i.e., we perform highly concurrent embedding-centric

searches. Due to limited space, we refer to [33] for the theoretical

background and focus on our adaptation to the distributed data�ow

programming model.

�ere are two constraints for growing children of a parent em-

bedding. �e �rst, in the following denoted by time constraint,
dictates that forwards growth is only allowed starting from the

rightmost path and backwards growth only from the rightmost ver-

tex, where forwards means an extension to a vertex not contained

in the parent, backwards means an extension to a contained one,

the rightmost vertex is the parent’s latest discovered vertex and the

rightmost path is the path of forward growths from the initial start

vertex to the rightmost one. �e second constrained, in the follow-

ing denoted by branch constraint, commands that the minimum

DFS code of an edge C1 (e) needs to be greater than or equal to the

parent’s branch C1 (P) which is the 1-edge code described by only

the initial extension of the a pa�ern’s minimum DFS code.

Algorithm 2 shows our adaption of these constraints to the dis-

tributed data�ow programming model, in particular, a map function

τ that executes pa�ern growth for all embeddings of frequent pat-

ters in a single graph (line 9 of Algorithm 1). �erefore, we hold

not only G but also embedding map µk for each element of G and

enable τ access to F k
as it was received by every worker in the

broadcasting step (line 8 of Algorithm 1).

In an embedding-centric approach, a naive solution would be

testing possible growth for the cross of supported frequent pa�erns’

embeddings and the graph’s edges. As an optimization, we use a

merge strategy based on the branch constraint to reduce the number

of these tests. �erefore, F k
in Algorithm 2 is an n-tuple and

ascendantly sorted by minimum DFS code. When executing the map

function, we keep a current minimum branch C1

min and a current

edge candidate set E≥min (lines 1,2). �en, for every supported

frequent pa�ern (line 3) we compare its branch to the current

minimum (line 4) and only if it is greater, the current minimum

will be updated (line 5) and the set of growth candidates can be

shrunk (line 6). �us, only for the cross of embeddings and branch-

validated edges (line 8) parent containment and the time constraint

need to be checked (line 9). In the case of a successful growth (line

10) the resulting pa�ern and its embedding will be added to µk+1
,

the output of the map function (line 14). Sorting and rightmost

path calculation are not part of the map function and executed only

|W × F | times at broadcast reception.

3.5 False Positive Veri�cation
Although the constrained pa�ern growth described previously

helps skipping links in the pa�ern la�ice (do�ed lines in Figure 1), it

gives no guarantee for visiting every pa�ern only once. In the case

of multiple (n) visits, n − 1 non-minimal DFS codes (false positives)
will be generated. �us, they need to be veri�ed. �erefore, we turn

the label into a graph and recalculate the minimum DFS code. Since

this is the only part of the algorithm resolving the isomorphism

problem, reducing its cardinality may reduce total runtime [33].

�us, we placed the veri�cation step a�er frequency pruning (line

7 of Algorithm 1). Hence, false positives are counted and shu�ed

but veri�cation is only executed |F | times.

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

241

3.6 Preprocessing and Dictionary Coding
Before executing the data�ow shown by Algorithm 1, we apply

preprocessing that includes label-frequency based pruning, string-

integer dictionary coding and sorting edges according to their 1-

edge minimum DFS codes. �e original gSpan algorithm already

used these concepts but we improved the �rst two and adapted the

third to our level-wise DFS strategy. In the �rst preprocessing step,

we determine frequent vertex labels and broadcast a dictionary

to all workers. A�erwards, we drop all vertices with infrequent

labels as well as their incident edges. �en, we determine frequent

edge labels, in contrast to the original, only based on the remaining

edges. �us, we can potentially drop more edges, for example, e1

of G1 in Figure 1 would be removed. �is would not be the case

by just evaluating its edge label since without dropping e2 of G0

before (because v2 has infrequent label C) the frequency of edge

label b would be 2, i.e., considered to be frequent.

A�er dictionaries for vertex and edge labels are made available

to all workers by broadcasting, we not only replace string labels by

integers to save memory and to accelerate comparison but also sort

edges according to their minimum DFS code, i.e., we use n-tuples

instead of sets to store edges. We bene�t from the resulting sort-

edness in every execution of the constrained pa�ern growth (see

Section 3.4) as the e�ort of determining branch-valid edge candi-

dates (line 6 of Algorithm 2) is reduced from a set �lter operation

to a simple increase of the minimum edge index.

3.7 Data Structures and Compression
We not only use minimum DFS codes as canonical labels but also

a data structure based thereon to support all pa�ern operations

(counting, growth and veri�cation) without format conversions.

We further store graphs as sorted lists of 1-edge DFS codes to allow

a direct comparison at the lookup for the �rst valid edge of a branch

in the pa�ern growth process (line 6 of Algorithm 2). Figure 3 illus-

trates a single element of G in Algorithm 1 representing G2 from

Figure 1 and its embedding map µk in the k = 2 iteration. Graphs

and pa�erns are stored according to De�nition 3.1 but encoded

in integer arrays where all 6 elements store a graph’s edge or a

pa�ern’s extension. For the sake of readability we use alphanumer-

ical characters in Figure 3. µk is stored as a pair of nested integer

arrays 〈Pk ,Mk 〉 where equal indexes map embeddings to pa�erns.

All embeddings of the same pa�ern are encoded in a single multi-

plexed integer array where all |P .V | + |P .E | elements store a single

embedding. Here, indexes relative to their o�set relate vertex ids

to their initial discovery time and edge ids to extension numbers.

�is data structure not only allows fast pa�ern operations but

also enables lightweight and e�ective integer compression. �ere-

fore, we exploit the predictable value ranges of our integer arrays.

As we use dictionary coding and vertex discovery times are bound

by the maximum edge count kmax the array’s values may only

range from 0..(max (kmax ,lv ,le) − 1) where lv ,le are the numbers

of distinct vertex and edge labels. In the context of FSM, the maxi-

mum value will typically be much less than the integer range of 2
32

.

�ere are compression techniques bene�ting from low-valued inte-

ger arrays [17]. In preliminary experiments we found that Simple16

[36] allows very fast compression and gives an average compres-

sion ratio of about 7 over all pa�erns found in our synthetic test

dataset (see Section 5.2). We apply integer compression not only

Figure 3: Dataset element representing graphG2, pattern P20

and embedding setM (G2,P20) of Figure 1.

to pa�erns but also to graphs and embeddings, which also have

low maximum values, to decrease memory usage. Embeddings and

graphs are only decompressed on demand and at maximum for one

graph at the same time. All equality-based operations (map access

and frequency counting) are performed on compressed values. Our

experimental evaluation results show a signi�cant impact of this

compression strategy (see Section 5).

4 COMPARISON TO APPROACHES BASED ON
MAPREDUCE

To the best of our knowledge, only �ve approaches to transactional

FSM based on shared nothing clusters exist [2, 3, 10, 18, 19]. �ey

are all based on MapReduce. Since [2, 3] show relaxed problem

de�nitions in comparison to De�nition 2.7, we compare DIMSpan

only to I-FSM [10], MR-FSE [19] and the �lter-re�nement (F&R)

approach of [18]. �e authors of MR-FSE and F&R have shown

to be faster than I-FSM in experimental evaluations. Initially, we

wanted to reproduce evaluation results of MR-FSE and F&R on our

own cluster. Unfortunately, MR-FSE is not available to the public.

Regarding F&R, only binaries
3

are accessible. However, there is

no su�cient English documentation and the binaries rely on an

outdated non-standard Hadoop installation. �us, we were not

able to execute the binaries without errors despite notable support

of the author. For this reason, we qualitatively compare the main

execution costs of the MapReduce approaches with DIMSpan w.r.t

volume of disk access and data exchange (shu�ing) and the number

of isomorphism resolutions.

4.1 Methodical Comparison
Table 3 compares the considered methods w.r.t. the steps of prepro-

cessing, two map-reduce phases and postprocessing. All approaches

except one are iterative, i.e., perform a level-wise search. For these

iterative methods, the map-reduce phases of Table 3 represent a

single iteration’s body. In contrast, F&R is partition-based and re-

quires only two map-reduce phases to extract frequent pa�erns

of all sizes. In the following, we brie�y describe the MapReduce

approaches with regard to Table 3:

I-FSM is using full subgraphs (structure and labels) as its main

data structure. In map phase 1 (Map 1) k-edge subgraphs of the

previous iteration are read from disk. In reduce phase 1 (Reduce 1),

subgraphs are shu�ed by graph id and graphs are reconstructed

by a union of all subgraphs. A�erwards, k + 1-edge subgraphs are

generated and wri�en to disk. In Map 2 they are read again and a

canonical label is calculated for every subgraph. In Reduce 2, all

subgraphs are shu�ed again according to the added label and label

frequencies are counted. Finally, all subgraphs showing a frequent

label are wri�en to disk.

3
h�ps://sourceforge.net/projects/mrfsm/

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

242

https://sourceforge.net/projects/mrfsm/

Table 3: Methodical comparison of DIMSpan and approaches based on MapReduce.
Pre. Map 1 Reduce 1 Map 2 Reduce 2 Post.

I-FSM [10]

(iterative)

read subgraphs

shu�e subgraphs,

pa�ern growth,

write subgraphs

read subgraphs,

add canonical label

shu�e subgraphs,

�nd frequent labels,

�lter subgraphs by label,

write subgraphs

MR-FSE [19]

(iterative)

read pa�ern-embeddings map,

read frequent pa�erns,

pattern growth,

write pa�ern-embeddings map

read pa�ern-

embeddings map,

extract pa�erns

shu�e pa�erns,

count and �lter,

write frequent pa�erns

F&R [18]

(2-phase)

read graphs,

FSM for each partition

shu�e partition

frequencies,

�lter candidates,

write candidates

read graphs,

read candidates,

re�ne partition
frequencies

shu�e pa�erns,

count and �lter,

write frequent pa�erns

DIMSpan

(iterative)

read

graphs

receive frequent pa�erns,

pa�ern growth,

update pa�ern-embeddings map

extract pa�erns

from pa�ern-

embeddings map

count partition frequencies,

shu�e partition frequencies,

count and �lter,

verify frequent patterns,
send frequent pa�erns

write

frequent

pa�erns

MR-FSE is using pa�ern-embedding maps as its main data struc-

ture. In Map 1 k-edge maps of the previous iteration are read from

disk. Additionally, all k-edge frequent pa�erns are read by each

worker. �en, graphs are reconstructed based on embeddings, pat-

tern growth is applied and updated maps are wri�en back to disk.

Reduce 1 is not used. In Map 2 the grown maps are read again

and a record for each pa�ern and supporting graph is extracted. In

Reduce 2, these records are shu�ed to count their frequency. A�er

�ltering, frequent ones are wri�en to disk.

F&R reads graphs from disk and runs a modi�ed version of Gas-

ton [21], an e�cient single-machine algorithm, on each partition

in Map 1. �en, a statistical model is used to report partition fre-

quencies of pa�erns. In Reduce 1, local frequencies are evaluated

for each pa�ern and a set of candidate pa�erns P including some

frequency information are wri�en to disk. In Map 2 graphs and

information about candidate pa�erns are read from disk. For some

partitions, local pa�ern frequencies may be unknown at this stage.

�us, they are re�ned by subgraph-isomorphism testing. In Reduce

2, re�ned pa�ern frequencies are summed up, �ltered and wri�en

to disk.

4.2 Cost Comparison
Table 4 shows a comparison of upper bounds for the three stated

dimensions. We consider our way of comparing iterative and non-

iterative methods as valid since with regard to upper bounds every

step can be considered as the union of all k-edge results, e.g., P =

P1 ∪ .. ∪ Pk .

Disk access: I-FSM uses the most voluminous data structure of

full subgraphsS. Additionally, these subgraphs are read and wri�en

twice. �us, I-FSM clearly has the highest cost for disk access. MR-

FSE uses embedding mapsM as it’s main data structure, which

is with regard to vertex- and edge labels an irredundant version

of S that describes subgraphs by pa�erns and embeddings (see

Section 2.2). �is map is wri�en once and read twice. Additionally,

pa�erns P are read and wri�en once. �us, MR-FSE is superior to

I-FSM. F&R reads graphs twice but writes no intermediate results

despite rather small pa�ern information. Since the volume of G

roughly corresponds to the one of S1
or M1

, F&R requires the

lowest disk access of the three MapReduce approaches. However,

DIMSpan further reduces disk access to a minimum as it is based on

a distributed in-memory system. In particular, graphs are read only

once from disk before the iterative part and pa�erns are wri�en

only once to disk a�erwards.

Network tra�c: Since I-FSM shu�es the complete set of sub-

graphs twice, it clearly causes the most network tra�c. All other

approaches only exchange pa�ern information. However, since

MR-FSE is neither partition-based like F&R nor uses a combine op-

eration like DIMSpan, a record for each pa�ern and graph (|G| · P)

may be shu�ed among physical machines. With regard to network

tra�c, F&R and DIMSpan are comparable to each other, especially

since both are using compression to further reduce the volume of

the few exchanged records.

Isomorphism resolutions: All of the four compared approaches

resolve the subgraph isomorphism problem in di�erent ways and

with di�erent cardinalities. �e respective steps are highlighted

by bold font in Table 3. I-FSM calculates a (in [10] not further

speci�ed) canonical label from scratch for each grown subgraph

and, thus, the isomorphism problem is resolved with maximum

cardinality |S|. MR-FSE is using DFS codes like DIMSpan but in

[19] it is clearly stated that no veri�cation is performed at any time.

Instead, false positives are detected by enumerating all DFS code

permutations of each distinct edge set (subgraph) to choose the

minimal one. Consequently, isomorphisms among DFS codes are

in fact resolved |S| times, too. F&R is facing the problem in two

steps. First, when running FSM for each partition (w · |P |) and,

second, when counting pa�erns by a priori like subgraph isomor-

phism testing in the re�nement step. Since the local frequency of

each pa�ern must be known for at least on partition, the upper

bound is not fully |G| · |P |. For this dimension, DIMSpan is clearly

superior because no a priori like operations are applied at any time

and every pa�ern is veri�ed only once.

Summary: DIMSpan shows the lowest costs with regard to all of

the stated dimensions. Besides this, DIMSpan is the only approach

that provides source code to the public, supports directed multi-

graphs and already applies �rst pruning steps in a preprocessing

(see Section 3.6).

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

243

5 EVALUATION
In this section we present the results of a performance evaluation

of DIMSpan based on a real molecular dataset of simple undirected

graphs and a synthetic dataset of directed multigraphs. We evaluate

scalability for increasing volume of input data, increasing result

sizes (decreasing minimum support) and variable cluster size. For

all experiments, we evaluate the improvement gained by our op-

timizations. Furthermore, we analyze the impact by adding and

omi�ing single optimizations and show their dependency on each

other.

5.1 Implementation
We evaluate DIMSpan using Java 1.8.0 102, Apache Flink 1.1.2 and

Hadoop 2.6.0. More precisely we use Flink’s DataSet API
4

for all

transformations and its bulk iteration for the iterative part. We

further use the Simple16 implementation from JavaFastPFOR
5

for

compression. �e source code is available on GitHub
6

under Apache

licence, version 2.0 (Alv2). To show the impact of our optimiza-

tions, we made them con�gurable. In all evaluations, the term

baseline refers to a con�guration without preprocessing, without

compression and pa�ern veri�cation at reporting, i.e., resolving

isomorphism |G| · |P | times. We use Flink’s aggregation to count

pa�ern frequencies (lines 5,6 of Algorithm 1). To disable the com-

bine step, we would have had to re-implement aggregation using

the external API and this would have signi�cantly blurred a po-

tential comparison. �us, also the baseline contains the combine

operation.

5.2 Datasets
We evaluate three data-related dimensions that impact the runtime

of a distributed FSM algorithm: structural graph characteristics,

input size |G| and result size |F |. To show scalability for one of

these dimensions, the other two need to be �xed. While |F | can

be increased by decreasing the minimum support threshold, vary-

ing the other two dimensions separately is less trivial. �us, we

decided to use two base datasets with divergent structural charac-

teristics and just copy every graph several times to increase |G|

under preservation of structural characteristics and |F | .

�e �rst base dataset is yeast-active7
, in the following denoted by

molecular, a real dataset from anti-cancer research. It was chosen

to represent molecular databases because structural characteris-

tics among them do not fundamentally di�er due to the rules of

chemistry. For example, all molecular databases describe simple

undirected graphs with only few di�erent edge labels (e.g., single

and double bond) and most frequent pa�erns are paths or trees

[21]. �e base dataset contains around 10K graphs (9567) and is

scaled up to datasets containing around 100K to 10M graphs. We

did not use an optimized version of DIMSpan for undirected graphs

but provide an according parameter. If the parameter is set to undi-

rected, the direction indicator (see Section 3.3) will just be ignored.

Dedicated application logic is only used when it is unavoidable,

for example, an 1-edge DFS code desribing a non-loop edge with

4
h�ps://ci.apache.org/projects/�ink/�ink-docs-release-1.2/dev/batch/index.html

5
h�ps://github.com/lemire/JavaFastPFOR

6
h�ps://github.com/dbs-leipzig/gradoop; org.gradoop.examples.dimspan

7
h�ps://www.cs.ucsb.edu/∼xyan/dataset.htm

Table 4: Cost comparison of DIMSpan and approaches based
on MapReduce.

Pre M1 R1 M2 R2 Post
disk access

I-FSM ↑ S ↓ S ↑ S ↓ S

MR-FSE ↑ M, P ↓ M ↑ M ↓ P

F&R ↑ G ↓ P ↑ G, P ↓ P

DIMSpan ↑ G ↓ P

network traffic

I-FSM S S

MR-FSE w · P |G | · P

F&R w · P w · P
DIMSpan 2w · P

isomorphism resolution

I-FSM |S |

MR-FSE |S |

F&R w · |P | (|G | − 1) · |P |
DIMSpan |P |

w: number of worker threads (partitions, w = |W |)
P : set of all grown pa�erns

G : set of input graphs (G � P)

M : all grown pa�erns and their embeddings (M � G)

S : all grown subgraphs (unit of pa�ern and embedding, S > M)

two equal vertex labels (automorphism) leads to two embeddings

in undirected mode.

�e second category of datasets, in the following denoted by

synthetic, was created by our own data generator
8
. It generates

unequally sized connected directed multigraphs where each 10th

graph has a di�erent size ranging from |V | = 10, |E | = 14 to |V | =
91, |E | = 140. �ere are 11 distinct vertex and 5 + |G|/1000 distinct

edge labels. �e result is predictable and contains 702 frequent

pa�erns with 1 to 13 edges for each min support decrement of

10% (i.e., 702 for 100%, 1404 for 90% , ..). �e pa�erns contain

loops, parallel edges (in and against direction), di�erent subgraph

automorphisms (e.g., ”rotated” and ”mirrored”) separately as well

as in all combinations. �e data generator was not only designed

for the comparative evaluations but also for testing the correctness

of implementations. To verify the number of contained frequent

pa�erns we implemented a simple pruning-free brute-force FSM

algorithm and manually veri�ed all pa�erns of sizes 1..4, 12,13.

5.3 Experimental Results
All experiments are performed on our in-house cluster with 16

physical machines equipped with an Intel E5-2430 2.5 Ghz 6-core

CPU, 48 GB RAM, two 4 TB SATA disks and running openSUSE

13.2. �e machines are connected via 1 Gigabit Ethernet.

Input Size: Figure 4 shows measurement results for increas-

ing input size |G| for both datasets under �xed minimum support

thresholds on a cluster with 16 machines and 96 worker threads

(|W | = 96). To compare runtimes for di�erent input sizes the

charts show the average time to process a single input graph for the

molecular (4a) and the synthetic dataset (4b). �is time is constantly

decreasing with an increasing input size for both workloads. �e

reason is our optimization strategy that veri�es DFS codes a�er

counting (see Section 3.5) which makes the number of isomorphism

8
org.gradoop.�ink.datagen.transactions.predictable

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

244

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/batch/index.html
https://github.com/lemire/JavaFastPFOR
https://github.com/dbs-leipzig/gradoop
https://www.cs.ucsb.edu/~xyan/dataset.htm

Figure 4: Scalability for varying input size.

(a) Molecular dataset
|W | = 96, smin = 5%

(b) Synthetic dataset
|W | = 96, smin = 70%

dataset molecular synthetic

tb / |G | (input size) 100K 1M 10M 100K 1M 10M

baseline runtime total tb (sec) 153 1124 9902 275 2148 19315

optimized runtime total to (sec) 105 712 6193 142 1045 9076

tb / |G | (ms) 1.5 1.1 1.0 2.8 2.1 1.9

to/ |G | (ms) 1.1 0.7 0.6 1.4 1.0 0.9

improvement (tb − to)/tb 31% 37% 37% 48% 51% 53%

Figure 5: Scalability for varying result size.

(a) Molecular dataset
|W | = 96, |G| = 1M

(b) Synthetic dataset
|W | = 96, |G| = 1M

dataset molecular synthetic

smin (minimum support) 10% 5% 3% 90% 70% 30%

|F | (result size) 1270 4660 12807 1404 2808 5616

baseline runtime total tb (sec) 458 1124 3166 1198 2148 3478

optimized runtime total to (sec) 288 712 2010 519 1045 2115

tb / |F | (ms) 361 241 247 853 765 619

to/ |F | (ms) 227 153 157 370 372 377

improvement (tb − to)/tb 37% 37% 37% 57% 51% 39%

resolutions only dependent on the result size, which is �xed in this

benchmark. For the same reason the improvement of our optimized

con�guration in comparison to the baseline (last row of the table

in Figure 4) is slightly increasing for larger data sets. �is out-

come con�rms the positive e�ect of minimizing the total number

of isomorphism resolutions.

Result Size : Figure 5 shows measurement results for decreas-

ing minimum support, i.e., increasing result size |F |, for both

datasets under �xed input size on a cluster with 16 machines. �e

charts show the average time to extract a single frequent pa�ern

for the molecular (5a) and the synthetic dataset (5b). Except for

small result size on the molecular dataset, this time is constant for

the optimized version on both workloads, while the baseline time

is decreasing for increasing input size. �is shows, that the total

runtime of the optimized version only depends on the result size,

which is a desirable behavior. In contrast to the molecular dataset,

the improvement on the synthetic workload is decreasing for larger

results. �e reason is, that due to its label diversity a relatively large

part of the input data can be pruned during the preprocessing for

the synthetic dataset while rather rare as well as extremely frequent

Figure 6: Horizontal scalability for varying cluster size.

(a) Molecular dataset
|G| = 1M , smin = 5%

(b) Synthetic dataset
|G| = 1M , smin = 70%

dataset molecular synthetic

physical machines 1 2 4 8 16 1 2 4 8 16

worker threads |W | 6 12 24 48 96 6 12 24 48 96

baseline runt. (sec) 14292 7521 4437 2054 1124 35586 14538 7540 4022 2148

optimized runt. (sec) 8588 4394 2354 1293 712 16470 6829 3599 1909 1045

improvement 40% 42% 47% 37% 37% 54% 53% 52% 53% 51%

baseline speedup 1.0 1.9 3.2 7.0 12.7 1.0 1.9 3.6 6.8

optimized speedup 1.0 2.0 3.6 6.6 12.1 1.0 1.9 3.6 6.5

Table 5: Impact of single optimization techniques.
molecular synthetic

con�guration modi�cation runtime improv. runtime improv.

baseline 1124 2148

optimized 712 37% 1045 51%

baseline with preprocessing 1594 -42% 1606 25%

optimized without preprocessing 717 36% 2566 -19%

baseline with compression 984 12% 2050 5%

optimized without compression 1235 -10% 1511 30%

baseline post counting veri�cation 1191 -6% 3402 -58%

optimized pre counting ver�cation 1345 -20% 1369 36%

|W | = 16, |G | = 1M , mol.: smin = 5%, syn.:smin = 70%

pa�erns in the molecular database contain the same atoms (vertex

labels) and bonds (edge labels).

Cluster Size : Figure 6 shows measurement results for a vari-

able cluster size, i.e., increasing number of worker threads |W |,
for both datasets with �xed input size and under �xed minimum

support thresholds. �e charts show the speedup gained over one

machine for the molecular (6a) and over two machines for the

synthetic (6b) dataset. �e la�er was chosen since we achieved a

superlinear speedup from 1 to 2 machines. Similar e�ects occur

for 10K and 100K synthetic graphs as well as for di�erent mini-

mum support thresholds. We cannot explain these e�ects and thus

a�ribute them to Apache Flink’s program execution. For larger

cluster sizes, we see that DIMSpan scales sligtly sublinear but still

achieves notable speedups on both datasets for an increasing num-

ber of machines. �e slight decreases compared to an optimal

speedup is in�uenced by the fact that the baseline already contains

our e�cient data structure and a combine operation for counting

that minimizes network tra�c. Further on, the number of shu�ed

records in the counting phase is smaller for the baseline since false

positives are veri�ed before sending them over the network.

Single Optimizations : Table 5 shows the impact of adding

the individual optimizations to the baseline and omi�ing single

optimizations from the optimized con�guration while all of the

previously varied dimensions are �xed.

�e parameter preprocessing enables removing vertices and edge

with infrequent labels (see Section 3.6) and applying the merge

strategy in pa�ern growth (see Section 3.4). Within the measured

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

245

minimum support thresholds there were nearly no infrequent la-

bels in the molecular dataset. �us, adding a preprocessing to the

baseline even lead to a slowdown and is just balanced by the merge

strategy for omission. For the synthetic dataset, we see a notable

speedup for addition and an immense slowdown for omission.

Compression leads to smaller records and, thus, to fewer network

tra�c and faster counting. We see that omission leads to a larger

slowdown than the addition’s speedup. �e reason is, that due to

the post counting veri�cation the optimized version counts and

shu�es more records than the baseline.

Moving veri�cation behind counting lead to a slowdown for

addition and omission on both workloads. �e addition slowdown

is originated by the missing compression, i.e., the increased time

for counting and shu�ing is higher than the time saved by fewer

isomorphism resolutions. On the other hand, moving veri�cation

before counting lead to an even greater slowdown, which again

con�rms the positive e�ect of this strategy.

In summary, we observed that the e�ects of our optimizations

highly depend on each other as well as on dataset characteristics.

6 CONCLUSIONS AND FUTUREWORK
We proposed DIMSpan, the �rst approach to parallel transactional

FSM that combines the e�ective search space pruning of a leading

single-machine algorithm with the technical advantages of state-of-

the-art distributed in-memory data�ow systems. DIMSpan is part of

Gradoop [14, 24], an open-source framework for distributed graph

analytics. Our experimental evaluation showed the high scalability

of DIMSpan for large datasets, low minimum support thresholds

and increasing cluster size. We found that di�erent optimizations

depend on each other and should be chosen with regard to data

set characteristics. A functional comparison to approaches based

on MapReduce (Section 4) has shown that DIMSpan is superior in

terms of network tra�c, disk access and the number of isomor-

phism resolutions. Additionally, it is the only approach to frequent

subgraph mining on shared nothing clusters that supports directed

multigraphs and that is available for practical application.

In future work, we will use DIMSpan as the basis for advanced

graph mining techniques on shared nothing clusters such as gener-

alized and multi-dimensional frequent subgraph mining [23].

7 ACKNOWLEDGMENTS
�is work is partially funded by the German Federal Ministry of Ed-

ucation and Research under project ScaDS Dresden/Leipzig (BMBF

01IS14014B).

REFERENCES
[1] C. C. Aggarwal and J. Han. Frequent pa�ern mining. Springer, 2014.

[2] S. Aridhi, L. D’Orazio, M. Maddouri, and E. Mephu. A novel mapreduce-based

approach for distributed frequent subgraph mining. In Reconnaissance de Formes
et Intelligence Arti�cielle (RFIA), 2014.

[3] M. A. Bhuiyan and M. Al Hasan. An iterative mapreduce based frequent sub-

graph mining algorithm. Knowledge and Data Engineering, IEEE Transactions on,

27(3):608–620, 2015.

[4] C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant

substructures of molecules. In IEEE International Conference on Data Mining
(ICDM), pages 51–58, 2002.

[5] B. Bringmann and S. Nijssen. What is frequent in a single graph? In PAKDD,

pages 858–863. Springer, 2008.

[6] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas.

Apache �ink: Stream and batch processing in a single engine. Data Engineering,

page 28, 2015.

[7] R. Cyganiak, A. Harth, and A. Hogan. N-quads: Extending n-triples with context.

W3C Recommendation, 2008.

[8] J. Dean and S. Ghemawat. Mapreduce: simpli�ed data processing on large

clusters. volume 51, pages 107–113. ACM, 2008.

[9] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. Grami: Frequent

subgraph and pa�ern mining in a single large graph. Proceedings of the VLDB
Endowment, 7(7):517–528, 2014.

[10] S. Hill, B. Srichandan, and R. Sunderraman. An iterative mapreduce approach

to frequent subgraph mining in biological datasets. In Proc. ACM Conf. on
Bioinformatics, Computational Biology and Biomedicine, pages 661–666, 2012.

[11] J. Huan, W. Wang, and J. Prins. E�cient mining of frequent subgraphs in the

presence of isomorphism. In IEEE Int. Conf. on Data Mining (ICDM), pages

549–552, 2003.

[12] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining

frequent substructures from graph data. In European Conference on Principles of
Data Mining and Knowledge Discovery, pages 13–23. Springer, 2000.

[13] C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algo-

rithms. �e Knowledge Eng. Review, 28(01):75–105, 2013.

[14] M. Junghanns, A. Petermann, N. Teichmann, K. Gómez, and E. Rahm. Analyzing

extended property graphs with apache �ink. In Proc. ACM SIGMOD Workshop
on Network Data Analytics, pages 3:1–3:8, 2016.

[15] R. Kessl, N. Talukder, P. Anchuri, and M. Zaki. Parallel graph mining with gpus.

In BigMine, pages 1–16, 2014.

[16] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In IEEE Int. Conf.
on Data Mining (ICDM), pages 313–320, 2001.

[17] D. Lemire and L. Boytsov. Decoding billions of integers per second through

vectorization. So�ware: Practice and Experience, 45(1):1–29, 2015.

[18] W. Lin, X. Xiao, and G. Ghinita. Large-scale frequent subgraph mining in

mapreduce. In International Conference on Data Engineering (ICDE), pages 844–

855. IEEE, 2014.

[19] W. Lu, G. Chen, A. Tung, and F. Zhao. E�ciently extracting frequent subgraphs

using mapreduce. In IEEE Int. Conf. on Big Data, pages 639–647, 2013.

[20] R. R. McCune, T. Weninger, and G. Madey. �inking like a vertex: a survey of

vertex-centric frameworks for large-scale distributed graph processing. ACM
Computing Surveys (CSUR), 48(2):25, 2015.

[21] S. Nijssen and J. N. Kok. �e gaston tool for frequent subgraph mining. Electronic
Notes in �eoretical Computer Science, 127(1):77–87, 2005.

[22] S. Nijssen and J. N. Kok. Frequent subgraph miners: runtimes don’t say every-

thing. MLG 2006, page 173, 2006.

[23] A. Petermann et al. Mining and Ranking of Generalized Multi-Dimensional

Frequent Subgraphs. In IEEE Int. Conf. on Digital Inf. Management (ICDIM), 2017.

[24] A. Petermann, M. Junghanns, S. Kemper, K. Gómez, N. Teichmann, and E. Rahm.

Graph mining for complex data analytics. In IEEE Int. Conf. on Data Mining
Workshops (ICDMW), pages 1316–1319, 2016.

[25] A. Petermann, M. Junghanns, R. Müller, and E. Rahm. Graph-based Data Inte-

gration and Business Intelligence with BIIIG. PVLDB, 7(13), 2014.

[26] S. Ranu and A. K. Singh. Graphsig: A scalable approach to mining signi�cant

subgraphs in large graph databases. In IEEE Int. Conf. on Data Engineering (ICDE),
pages 844–855. IEEE, 2009.

[27] A. Stratikopoulos et al. Hpc-gspan: An fpga-based parallel system for frequent

subgraph mining. In IEEE Int. Conf. on Field Programmable Logic and Applications
(FPL), pages 1–4, 2014.

[28] C. H. Teixeira et al. Arabesque: a system for distributed graph mining. In Proc. of
the 25th Symposium on Operating Systems Principles, pages 425–440. ACM, 2015.

[29] L. T. �omas, S. R. Valluri, and K. Karlapalem. Margin: Maximal frequent

subgraph mining. ACM Transactions on Knowledge Discovery from Data (TKDD),
4(3):10, 2010.

[30] B. Vo, D. Nguyen, and T.-L. Nguyen. A parallel algorithm for frequent subgraph

mining. In Advanced Computational Methods for Knowledge Engineering, pages

163–173. Springer, 2015.

[31] M. Wörlein et al. A quantitative comparison of the subgraph miners mofa,

gspan, �sm, and gaston. In European Conference on Principles of Data Mining
and Knowledge Discovery, pages 392–403. Springer, 2005.

[32] X. Yan and J. Han. gspan: Graph-based substructure pa�ern mining. In IEEE
International Conference on Data Mining (ICDM), pages 721–724, 2002.

[33] X. Yan and J. Han. gspan: Graph-based substructure pa�ern mining. In Technical
Report UIUCDCS-R-2002.2296, 2002.

[34] X. Yan and J. Han. Closegraph: mining closed frequent graph pa�erns. In KDD,

pages 286–295. ACM, 2003.

[35] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In Proc. of the 9th USENIX conference on Networked
Systems Design and Implementation, pages 2–2, 2012.

[36] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching

in search engines. In Proceedings of the 17th international conference on World
Wide Web, pages 387–396. ACM, 2008.

Session: Big Data and Distributed Systems BDCAT’17, December 5-8, 2017, Austin, Texas, USA

246

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Distributed Dataflow Model
	2.2 Frequent Subgraph Mining
	2.3 Related Work

	3 Algorithm
	3.1 Concept
	3.2 Distributed Dataflow
	3.3 Canonical Labels for Directed Multigraphs
	3.4 Constrained Pattern Growth
	3.5 False Positive Verification
	3.6 Preprocessing and Dictionary Coding
	3.7 Data Structures and Compression

	4 Comparison to Approaches based on MapReduce
	4.1 Methodical Comparison
	4.2 Cost Comparison

	5 Evaluation
	5.1 Implementation
	5.2 Datasets
	5.3 Experimental Results

	6 Conclusions and Future Work
	7 Acknowledgments
	References

