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Abstract

Object matching (also referred to as duplicate identification, record linkage, entity
resolution or reference reconciliation) is a crucial task for data integration and data
cleaning. The task is to detect multiple representations of the same real-world object.
This is a challenging task particularly for objects that are highly heterogeneous
and of limited data quality, e.g., regarding completeness and consistency of their
descriptions.
To gain a better overview about the current state of the art in object matching,
we survey the existing frameworks and their evaluations. According to the defined
criteria, we review various frameworks published in the literature. We characterize
them in some detail and compare them with each other and with our own framework,
FEVER.
With FEVER we introduce a new generic and comprehensive framework for object
matching and comparative object matching evaluation. FEVER offers numerous
operators for constructing non-learning as well as learning-based match workflows.
Moreover, FEVER allows match approaches to be automatically executed and eval-
uated under different parameter configurations. Therefore FEVER sets the platform
for conducting a comparative evaluation on the relative effectiveness and efficiency
of alternate match approaches.
Despite the huge amount of recent research efforts on object matching there has not
yet been such an evaluation. With FEVER we fill this gap and present an evaluation
of existing implementations on challenging real-world match tasks. We use the
FEVER framework to automatically execute the approaches and to find favourable
parameter settings in a comparable way. We consider approaches both with and
without using machine learning to find suitable parameterization and combination of
similarity functions. In addition to approaches from the research community we also
consider a state-of-the-art commercial object matching implementation. Our results
indicate significant quality and efficiency differences between different approaches.
We also find that some challenging matching tasks such as matching product offers
from online shops are not sufficiently solved with conventional approaches based on
the similarity of attribute values.
Furthermore, this thesis addresses the product offer matching problem. Product of-
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fer matching is a special case of object matching that is needed to identify equivalent
offers referring to the same real-world product. The thesis proposes a tailored overall
approach for the product offer matching problem. The approach supports category-
specific match strategies based on two pillars: a comprehensive preprocessing and
machine learning. The preprocessing extracts and cleans new attributes usable for
matching. In particular, the approach extracts and uses so-called product codes
to identify products and distinguish them from similar product variations. After
the preprocessing machine learning is employed to semi-automatically determine a
match strategy utilizing several attributes and similarity functions.

6



Contents

I Introduction 11

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Scientific contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Object matching approaches 19

2 Preliminaries 21

2.1 Object matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Requirements for object matching frameworks . . . . . . . . . . . . . 27

3 Blocking 29

3.1 Blocking evaluation measures . . . . . . . . . . . . . . . . . . . . . . 30
3.2 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Disjoint blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Overlapping blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Further approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Matchers 39

4.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7



CONTENTS

4.2 Context matchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Combination of matchers 49

5.1 Numerical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Rule-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Learning-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Workflow-based approaches . . . . . . . . . . . . . . . . . . . . . . . 53

III Comparison of object matching approaches 55

6 Comparison of existing object matching frameworks 57

6.1 Frameworks without training . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Learning-based frameworks . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Hybrid frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Functional comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Evaluation comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 FEVER - A framework for object matching 75

7.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4 Training selection operators . . . . . . . . . . . . . . . . . . . . . . . 83
7.5 Match workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.6 Configuration strategies for comparative object matching evaluation . 90
7.7 Implementation and use . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.8 Functional comparison with competitive frameworks . . . . . . . . . . 95

8 Comparative evaluation of object matching approaches with
FEVER 97

8.1 Evaluation match tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Evaluation of non-learning workflows . . . . . . . . . . . . . . . . . . 100

8



CONTENTS

8.3 Evaluation of learning-based workflows . . . . . . . . . . . . . . . . . 107
8.4 Comparative evaluation of match approaches and frameworks . . . . 114

IV Product offer matching 129

9 The product offer matching problem 131
9.1 Problem outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Special challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10 Tailored product offer matching approaches 135
10.1 Overall product offer matching workflow . . . . . . . . . . . . . . . . 135
10.2 Product offer classification . . . . . . . . . . . . . . . . . . . . . . . . 137
10.3 Manufacturer cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.4 Product code extraction . . . . . . . . . . . . . . . . . . . . . . . . . 142

11 Evaluation of product offer matching 145
11.1 Evaluation dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.2 Evaluation of product offer classification . . . . . . . . . . . . . . . . 147
11.3 Evaluation of product code extraction . . . . . . . . . . . . . . . . . . 150
11.4 Evaluation of match quality . . . . . . . . . . . . . . . . . . . . . . . 151

V Closing 155

12 Summary 157

13 Future directions 159

References 161

9





Part I

Introduction

11





1
Introduction

1.1 Motivation

The recent explosion of data produced and circulated by organizations on and be-
yond the internet coincides with an increase of data quality problems. As clean
data are a key factor for all business critical analysis and business intelligence tasks,
poor data quality can seriously hinder or damage the efficiency and effectiveness of
organizations and businesses.
Multiple representations of the same real-world object in the data are particularly
problematic. Examples of such so-called duplicates include multiple managed cus-
tomers, different representations of the same product within an online catalogue,
and single type proteins stored in many different scientific databases. Duplicates
decrease the usability of data, causing unnecessary expenses, customer dissatisfac-
tion and, incorrect performance indicators. In short they decrease data quality.
Data cleaning [117, 6, 104], also termed data cleansing or scrubbing, deals with de-
tecting and removing errors and inconsistencies from data in order to improve its
quality. Object matching (also referred to as duplicate identification, record linkage,
entity resolution or reference reconciliation) is a crucial task for data integration and
cleaning. It is a particularly challenging task for objects that are highly heteroge-
neous and of limited data quality, e.g., regarding the completeness and consistency
of their descriptions.
The object matching problem was originally defined by Newcombe et al. [107] in
1959 and was formalized by Fellegi and Sunter [54] ten years later. It has since then
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CHAPTER 1. INTRODUCTION

been considered under various facets and within different communities, including the
artificial intelligence research community, the database research community, and
industry. Numerous approaches and frameworks have been proposed for object
matching especially for structured data.
The high number and diversity of different object matching approaches make it dif-
ficult for a user to decide when to choose which approach. Comparative evaluations
of different schemes could provide guidance and support the user in his decision.
Unfortunately, to date most object matching approaches have been evaluated indi-
vidually using diverse methodologies, configurations, and test problems making it
difficult to assess the overall quality of each approach, let alone their comparative
effectiveness and efficiency. Only few attempts for comparative evaluations of some
sub-approaches have been made, e.g., evaluation of different string similarity metrics
[38] and of blocking approaches [7]. Some benchmark proposals for object matching
have been made [106, 140] but they have not yet been implemented or applied.
A difficulty when comparing object matching algorithms is that they require differ-
ent parameters to be set such as the similarity functions for comparing attribute
values or similarity thresholds to be exceeded by matching entities. Many proposed
approaches also make use of machine learning algorithms requiring specific param-
eters such as the size and characteristics of training data. Obviously, the chosen
algorithm configuration is one of the predominant factors for the resulting match
quality and in many published evaluation results significant details of it (e.g., on the
used training data) remain unspecified.
This thesis deals with the topic of comparing, evaluating, and improving object
matching approaches. It introduces a generic, customizable and scalable framework
for object matching approaches and comparative object matching evaluation. The
framework provides support for non-learning as well as learning-based approaches. It
allows match approaches to be automatically executed and evaluated under different
parameter configuration. It sets a platform for conducting a comparative evaluation
on the relative effectiveness and efficiency of alternate match approaches and conduct
such an evaluation on challenging real-word match tasks.
Furthermore, this thesis focuses on the product offer matching problem. Product
offer matching is a special case of object matching that is needed to identify equiv-
alent offers referring to the same real-world product. Product offer matching for
e-commerce websites introduces several specific challenges that make this problem
much harder than other forms of object matching, e.g., to match objects repre-
senting references of scientific publications. In particular, there is a huge degree of
heterogeneity since offers come from thousands of merchants using different names
and descriptions of the products. Furthermore, product offers frequently have miss-
ing or wrong values and are mostly not well structured but mix different product
characteristics in text fields such as product name or description [72].
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CHAPTER 1. INTRODUCTION

1.2 Scientific contributions

Focusing on the open problems discussed above, the thesis makes a number of con-
tributions, which can be grouped into the following four areas:

Survey of match approaches and frameworks: To obtain a better overview
about the current state of the art in object matching and object matching
evaluation, we survey the existing frameworks and their evaluations. Accord-
ing to the defined criteria, we review various frameworks published in the
literature. We characterize them in some detail and compare them with each
other.

Framework for object matching: We introduce FEVER, a generic, customiz-
able and comprehensive framework for object matching and for evaluating
object matching approaches. Based on an open multi-component architecture
it provides high flexibility for extension and adaptation. The framework offers
the following key features:

• FEVER supports the flexible construction and comparative evaluation
of many different object matching workflows based on so-called opera-
tor trees. Operator trees support the combined application of different
blocking and match algorithms in order to achieve a high effectiveness
(precision, recall). Individual operator implementations can be based on
virtually any previously proposed algorithm, e.g., for blocking or object
matching, so that these can be evaluated with FEVER.
• An important aspect of the FEVER framework is the support of learning-

based match approaches. FEVER includes several learning-based ap-
proaches and methods to (semi-)automatically generate training data for
object matching. Hence, FEVER can be used to compare non-learning
and learning-based approaches for object matching. We specifically ana-
lyze the effectiveness for small training sizes which incur only a modest
effort for labeling.
• FEVER allows each match approach to be automatically executed and

evaluated under different parameter configurations. We first use this fea-
ture to determine the necessary effort for training and parameter tuning
(e.g., finding suitable similarity thresholds) to obtain a reasonable match
quality. This way we can conduct a comparative comparison of different
object matching algorithms under comparable tuning effort. Hence, an
approach A with better effectiveness than approach B is only superior if
it does not incur a substantially higher configuration effort.
• FEVER can also be used to fine-tune match approaches by letting the

system automatically evaluate a large number of parameter settings for
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CHAPTER 1. INTRODUCTION

test data. The best performing configuration can then be used for sub-
sequent match tasks on similar and larger input data.

Comparative evaluation of match approaches and frameworks: In this the-
sis we present a comparative evaluation on the relative effectiveness and effi-
ciency of alternate object matching approaches. Main characteristics of our
evaluation are:

• The approaches are uniformly evaluated on four real-world e-commerce
and the bibliographic match tasks. In particular we consider matching of
product objects from different web shops.
• We consider individual algorithms as well as frameworks offering differ-

ent approaches. Furthermore we study approaches that do and do not
require training data. In addition we consider a state-of-the art commer-
cial object matching approach. More than 20 different approaches are
evaluated under different parameter settings.
• Our evaluation considers both match quality in terms of precision, recall,

and F-measure, as well as efficiency in terms of runtime.
• We use the FEVER framework to automatically execute the approaches

and to find favourable parameter settings in a comparable way. In par-
ticular, we always apply the same blocking method to reduce the search
space and use a uniform approach for providing training to the machine-
learning approaches. For the approaches not based on machine learning
we spend the same effort for optimizing parameters such as similarity
thresholds.

Product offer matching: To address the product offer matching challenge we
present an overall approach for matching product offers. It supports
category-specific match strategies and is based on machine learning to semi-
automatically determine a match strategy utilizing several attributes and sim-
ilarity functions. We propose the use of tailored approaches for product offer
matching based on a preprocessing of product offers to extract and clean new
attributes usable for matching. In particular, we propose a new approach to
extract and use so-called product codes to identify products and distinguish
them from similar product variations.

Parts of the thesis have been published in refereed conferences, workshops and jour-
nals. In particular, the survey of object matching frameworks and evaluations is
presented in [84]. Compared to the journal article we include two additional frame-
works (DuDe [50] and FRIL [70]) in our evaluation. The architecture of the FEVER
framework has been introduced as a demo for the VLDB conference [85]. The
learning-based approaches are described in [83, 87]. The comparative evaluation
on the relative effectiveness and efficiency of existing approaches and frameworks

16



CHAPTER 1. INTRODUCTION

is presented in [86]. The approach for matching product offers is published in [82].
Compared to the conference article we provide more details on the categorization
and preprocessing steps and further evaluate the categorization approach.

1.3 Outline

The thesis is structured in five parts. In this first part of the thesis, Part I, we intro-
duced the problem of object matching and motivated the need for semi-automatic
support to solve the task. We then discussed the open issues in the current state of
the art and gave an overview about the main contributions of the dissertation.
The rest of the thesis is organized in the four following parts:
In Part II – Object matching approaches – we give a short overview over the state of
the art in object matching. We survey and discuss relevant literature. The overview
is structured into the following chapters:

Chapter 2 defines basic terms of object matching. It provides a definition of ob-
ject matching and introduces standard evaluation measures to capture the
effectiveness and efficiency of object matching. Furthermore requirements for
object matching frameworks are defined.

Chapter 3 introduces the blocking concept. Blocking is needed for large inputs
to reduce the search space for object matching from the Cartesian product
to a small subset of the most likely matching object pairs. The chapter de-
fines measures to capture blocking effectiveness and outlines the most popular
blocking approaches.

Chapter 4 gives an overview over different matchers. Object matching requires a
way to determine whether two objects are alike enough to represent the same
real-world entity. A matcher is an algorithm specifying how the similarity
between two objects is computed.

Chapter 5 reviews approaches for combining several matchers. Due to the large
variety of data sources and objects to match there is no single “best” solution.
Instead it is often beneficial and necessary to combine several matchers to
improve the effectiveness of object matching.

Part III - Comparison of object matching approaches - deals with the evaluation
and comparison of object matching approaches. The description is organized into
the following chapters:

Chapter 6 analyzes and compares the functionality and evaluation of several ob-
ject matching frameworks. The study considers both frameworks which do
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CHAPTER 1. INTRODUCTION

or do not utilize training data to semi-automatically find an object matching
strategy to solve a given match task. It considers the support for blocking,
matching and the combination of different match algorithms as introduced in
the previous three chapters. We further study how the different frameworks
have been evaluated. The study aims at exploring the current state of the art
in research prototypes of object matching frameworks and their evaluations.

Chapter 7 introduces the ideas and concepts of our framework FEVER for object
matching and object matching evaluation. It focuses on the concept of ob-
ject matching workflows modeled as operator trees and offers methods for the
comparative evaluation of object matching approaches.

Chapter 8 first presents several real-world scenarios for object matching. We de-
scribe datasets within each scenario that we use for the evaluation of our
own approaches as well as for the comparative evaluation of competitive ap-
proaches. We conduct a comparative evaluation of our own non-learning and
learning-based workflows implemented within FEVER as well as of existing
match approaches and frameworks.

Part IV - Product offer matching - deals with product offer matching as a special
case of object matching. The part comprises the following chapters:

Chapter 9 outlines the product offer matching problem as a challenging variation
of object matching to identify representations and offers referring to the same
product. We point out the particular challenges that have to be mastered.

Chapter 10 proposes the use of tailored approaches for product offer matching
based on a preprocessing of product offers to extract and clean new attributes
usable for matching. In particular, we propose a new approach to extract and
use so-called product codes to identify products and distinguish them from
similar product variations.

Chapter 11 evaluates the effectiveness of the proposed approaches with challeng-
ing real-life datasets with product offers from online shops. We also show that
the UPC information in product offers is often error-prone and can lead to
insufficient match decisions.

Part V concludes the thesis by summarizing the main contributions made and dis-
cussing relevant directions for future research.
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2
Preliminaries

In order to provide readers with an understanding of the problem, this chapter
defines the basic terms. A definition of object matching is provided in Section 2.1.
Section 2.2 introduces standard evaluation measures to capture the effectiveness and
efficiency of object matching. Having formally defined the problem we address, we
then discuss requirements for object matching frameworks in Section 2.3.

2.1 Object matching

Object matching is the process of determining whether two objects are referring
to the same entity or two different entities. Objects to be resolved may reside
in distributed, typically heterogeneous data sources or may be stored in a single
data source, e.g., in a database or search engine store. They may be physically
materialized or dynamically be requested from sources, e.g., by database queries or
keyword searches.
The high importance and difficulty of the object matching problem has triggered
a huge amount of research on different variations of the problem. Numerous ap-
proaches have been proposed especially for structured data. There exist several
surveys [59, 142, 53] as well as books [103, 34].
In the research literature the problem was first called record linkage and since then
has been studied under various different names:
deduplication [119], duplicate detection [18], duplicate record elimination [22], entity
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object title manufacturer price

o1 HP Photosmart 6510 HP 113.37

o2 HP Photosmart 6510 e-All-in-One Hewlett-Packard 116.50

o3 Nikon Coolpix S3100 14 MP Digital Camera Nikon 54.72

o4 Nikon Coolpix S4100 14 MP Digital Camera Nikon 52.72

o5 Coolpix S4100 64.85

o6 Kyocera FS C5150DN Kyocera 273.89

o7 Kyocera FS C5150DN Color Laser printer - 21 ppm - 300 sheets 264.90

o8 Kyocera FS C5150DN Kyozera 274.00

Table 2.1: Single source object matching problem for objects representing product
offers

identification [92], entity matching [84], entity reconciliation [43], entity resolution
[12], fuzzy duplicate identification [26], identity resolution [69], object identification
[124], object matching [46], object consolidation [28], record linkage [54], reference
matching [94], or reference reconciliation [48].
In this thesis, we refer to the problem as object matching.

Definition 2.1 Object
An object o is an instance of a real-world entity. It is defined and described through
a set of attributes. An object o is represented as

o = {{A1, v1} , . . . , {An, vn}} .

The attribute-value pair {Ai, vi} denotes the value vi for the attribute Ai. The value
vi can be elemental or set-valued.

Table 2.1 gives an example for objects representing product offers. The objects are
characterized by three attributes: title, manufacturer and price.
Obviously the example set contains several offers referring to the same real-world
product. For example, the objects o1 and o2 are offers for the same printer. To
identify all objects referring to the same real-world entity, the objects have to be
matched against each other. The example set also illustrates that object matching
is challenging. Objects are often highly heterogeneous and of limited data quality,
e.g., regarding completeness and consistency of their descriptions. The objects in the
above example contain numerous quality problems such as missing and erroneous
values as well heterogeneous manufacturer denominations.
The next step is to provide a formal definition of object matching. For this definition
the concept of similarity measure has to be introduced.

Definition 2.2 Similarity Measure
Let O = {o1, . . . , on} be a set of n objects, n <∞.
A real-valued function s : O ×O → [0,∞[ is called a similarity measure, if
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1. s(oi, oj) = s(oj, oi), for all oi, oj ∈ O

2. s(oi, oj) ≤ s(oi, oi), for all oi, oj ∈ O.

Additionally it is often required that

• s(oi, oj) ≥ 0 and s(oi, oi) = 1, for all oi, oj ∈ O

The object matching problem can now be formally defined as follows:

Definition 2.3 Object Matching
Object matching is the process of identifying all objects O of a particular semantic
entity type referring to the same real-word entity.
The objects in O are taken from data sources. Let SA, SB be data sources.
The input to the process is either a single set of objects OA ⊆ SA (single source
case) or two sets of objects OA ⊆ SA and OB ⊆ SB (double source case). In the
double source case we consider SA to be duplicate free.
O = OA in case of a single object set OA, while for two sets OA and OB it applies
O = OA ∪OB.
The output of the match process is either:

1. a mapping M
A mapping is a set of correspondences

M = {(oi, oj, si,j)|oi ∈ SA, oj ∈ SB, s(oi, oj) ∈ [0, 1]}.

A correspondence c = (oi, oj, si,j) ∈M interrelates two objects oi and oj. The
objects originate either from the same source SA = SB or from two different
sources SA 6= SB. An optional similarity value si,j = s(oi, oj) ∈ [0, 1] indicates
the similarity or strength of the correspondence between the two objects.

or

2. a set of clusters C = {C1, . . . , Cn}.
Ci is a set of objects Ci = {oi,1, . . . , oi,k} where the objects are deemed to
represent the same real-word entity.

The process is a sequence of several steps called a match strategy. A match
strategy consists of the application of an optional blocking step and one or several
matchers. A matcher m uses a similarity measure s(·, ·) to determine the similarity
between two objects oi and oj.
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object title author venue year

oA,1
A survey of approaches to auto-
matic schema matching

Erhard Rahm, Philip A. Bernstein VLDB Journal 10 (4) 2001

oA,2
A survey of schema-based
matching approaches

Pavel Shvaiko, Jérôme Euzenat J. Data Semantics IV 2005

(a) Clean bibliographic reference source SA

object title author venue year citation
count

oB,1
A survey of approaches
to automatic schema
matching

Rahm, E.; Bernstein, P.A. VLDB J. 2001 3183

oB,2
A survey of approaches
to automatic schema
matching

AB Philip 17

oB,3
A survey of approaches
to automatic schema
matching

PA Bernstein VLDB Journal 2001 17

oB,4
A survey of schema-
based matching ap-
proaches

P Shvaiko Journal on Data Seman-
tics IV

2005 1113

(b) Bibliographic source with citation counts SB

Table 2.2: Double source object matching problem for two bibliographic sources

The example in Table 2.1 illustrates the single source case. An example for the
double source case is given in Table 2.2. The objects in this case are references for
scientific papers from two sources. The task is to collect all citations of publications
for a citation analysis. We have a clean reference source with publications for which
we want to determine the citations counts. On the other hand, we have a source
providing references with citations counts. The references in the second source con-
tain numerous quality problems such as misspelled author names, different ordering
of authors, heterogeneous venue denominations, etc. Since the reference source has
no duplicates the object matching result between the two sources can also be used
for determining the duplicates in the second source. This is because all entries from
the second source matching the same publication from the reference source can be
considered duplicates.
A mapping is a symmetric relation. If two objects are duplicates, then the order
of expressing identicalness does not matter. To say that object oi is identical to
object oj is the same as saying that oj is identical to oi. It is therefore sufficient to
store only one of the two correspondences (oi, oj) and (oj, oi) in the result mapping.
Without loss of generality we store the correspondence (oi, oj) with i < j.

The maximum number of correspondences is |OA| |OA|−1
2 for matching objects within

a single source. That is the case when all objects refer to the same real-world
entity. When we match two sources the resulting mapping can at most contain |OB|
correspondences assuming that the reference source is duplicate free.
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A plausible object matching result for our single source example problem illustrated
in Table 2.1 would return the following mapping:

M = {(o1, o2), (o4, o5), (o6, o7), (o6, o8), (o7, o8)}.
For our double source example problem illustrated in Table 2.2 we would obtain the
following mapping:

M = {(oA,1, oB,1), (oA,1, oB,2), (oA,1, oB,3), (oA,2, oB,4)}.

If we are interested in all representations of a real-world entity the cluster represen-
tation of the matching result is more suitable.
The cluster representation can be obtained from the mapping result by applying the
transitive closure over the set of correspondences.
For our single source example problem illustrated in Table 2.1 the cluster represen-
tation of the match result consists of four clusters:

C = {{o1, o2} , {o3} , {o4, o5} , {o6, o7, o8}} .

For our double source example problem illustrated in Table 2.2 the cluster represen-
tation of the match result consists of two clusters:

C = {{oA,1, oB,1, oB,2, oB,3} , {oA,2, oB,4}} .
The cluster representation provides a compact and space saving representation of
the match result. The cluster assignment can be added as an additional attribute
to each object representation. However, the similarities between the objects are not
preserved and a later refinement of the match result is not possible. The advantage
of the mapping representation is that similarities are stored. This allows to further
process the mapping result, e.g., to combine it with other mappings computed by
different approaches or to refine it. Clusters can be derived from a mapping but
not vice versa. In this thesis we therefore prefer the mapping representation to the
cluster representation.
The optional blocking step within a match strategy reduces the search space for
object matching from the Cartesian product to a subset of the most likely matching
object pairs. We introduce diverse strategies in Chapter 3. In Chapter 4 we de-
scribe various similarity measures and approaches that can be used by a matcher to
compute the similarity between objects based on the attribute values as well as on
context information. There are various possibilities for combining multiple matchers
within a match strategy. We discuss different approaches in Chapter 5.

2.2 Evaluation measures

The goal is to develop approaches that effectively and efficiently perform object
matching in a scalable way. To measure effectiveness and efficiency several measures
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can be employed. In the following subsections we introduce common effectiveness
and efficiency measures.

2.2.1 Effectiveness measures

The effectiveness describes the quality of the match result. The match quality of
an object matching algorithm is typically evaluated by running it on a dataset and
comparing the results to a gold standard. The gold standard is an object matching
result that is assumed to be correct. In many cases, the gold standard is manually
determined by a group of human experts.
Precision, recall and F-measure are common measures to assess the effectiveness.
To better illustrate the different measures, we employ again the single source object
matching problem depicted in Table 2.1.
Let us assume that the mapping result MR of some approach is

MR = {(o1, o2), (o4, o5), (o6, o8)}.

The gold standard mapping MG is

MG = {(o1, o2), (o4, o5), (o6, o7), (o6, o8), (o7, o8)},

Based on the comparison of the correspondences in the mappings MR and MG

precision Pr and recall Re can be calculated.
Precision calculates the proportion of the identified actual matches as share of all
identified matches. It is thus a measure for accuracy, it measures how precise an
approach is in identifying actual matches. It is defined as:

Pr = |MR ∩MG|
|MR|

(2.1)

For the example mapping MR all of the three identified correspondences are con-
tained in the gold standard mapping MG. Thus the precision is:

Pr = 3
3 = 1.0.

Recall measures the proportion of the identified actual matches as share of all actual
matches. It is thus a measure for completeness. It is defined as:

Re = |MR ∩MG|
|MG|

(2.2)
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For the example mapping MR three of the five correspondences from the gold stan-
dard mapping MG have been identified. Thus the recall is:

Re = 3
5 = 0.6.

However, neither precision nor recall alone can accurately assess the match effec-
tiveness. In particular, recall can easily be maximized at the expense of a poor
precision by returning as many correspondences as possible. On the other side, a
high precision can be achieved at the expense of a poor recall by returning only few
but correct correspondences.
To weigh the tradeoff between precision and recall, the F-measure is often used. It
is defined as the harmonic mean of precision and recall:

F-measure = 2Pr ·Re
Pr +Re

(2.3)

For our example the F-measure can be calculated as:

F-measure = 2 · 1 · (3/5)
1 + (3/5) = 0.75.

2.2.2 Efficiency measures

The efficiency of an object matching approach is defined by an analysis or measure
of its computational/time complexity. The time complexity correlates with the effi-
ciency: the lower the complexity, the more efficient the approach. Analysis consists
of a theoretical time complexity analysis examining the best, worst, or average case.
The time complexity of an object matching approach is typically measured in terms
of the number of required object comparisons and the corresponding runtime.

2.3 Requirements for object matching frameworks

In the following, several requirements and desiderata for a comprehensive support
of object matching are discussed.

Effectiveness: The main goal of object matching is to achieve a high-quality match
result with respect to recall and precision, i.e. all real corresponding objects
but no others should be included in the result. Achieving this goal for different
match tasks typically requires the flexible combination and customization of
different match methods. A key concern will thus be which match approaches
are supported and how they can be combined.
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Efficiency: Object matching should be fast even for voluminous datasets. For very
large datasets this typically prescribes the use of blocking methods to reduce
the search space for object matching (see next section).

Scalability: With the ever increasing amount of data, the ability to handle very
large input sets is an important aspect for object matching frameworks.

Genericity: A general framework should support methods applicable to different
match tasks from various domains (e.g., enterprise data, product data, life
science data) and for different data models (e.g., relational, XML).

Offline/online matching: Furthermore, an object matching framework should be
applicable to offline and online match tasks. Online match tasks arise for
interactive data integration steps such as mediated queries or data mashups
based on specific user input. Offline object matching is less time-critical than
online matching which can thus better deal with large datasets and may allow
for more match algorithms to be applied. Object matching during the ETL
(extract, transform, load) process of data warehouses is a sample case for
offline matching.

Low manual effort / self-tuning: The manual effort to employ an object match-
ing framework should be as low as possible, in particular for selecting the
methods for blocking and matching, their parameters and their combination.
Ideally, the framework is able to solve these tasks automatically in a self-tuning
manner, e.g., with the help of machine learning methods utilizing training data.
On the other hand, selecting and labeling training data may also incur manual
effort which should therefore be low.

A key challenge in developing a successful object matching framework is that some
of the posed requirements are in conflict with each other, e.g., effectiveness and
efficiency or genericity and ease-of-use. For example the use of blocking methods
improves efficiency by reducing the search space. However, this may eliminate some
relevant object pairs from consideration and thus reduce effectiveness (recall) of ob-
ject matching. On the other hand, the combined use of several match algorithms
may improve effectiveness but will typically lead to increased computational over-
head and thus reduce efficiency. Successfully resolving entities in diverse domains
with the help of a generic object matching framework is more difficult than for only
one domain. Non-generic frameworks may thus incur a reduced manual effort to
provide training or to find a suitable combination and customization of algorithms.
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Blocking

The standard (naive) approach to find matches in n input objects is to compare each
object with every other object. This requires |OA| |OA|−1

2 comparisons for a single
input set OA. Similarly, for two input sets OA and OB containing |OA| and |OB|
objects, |OA|·|OB| comparisons are needed. This means that the complete Cartesian
product (OA ×OB) is examined.
The resulting quadratic complexity of O(n2) results in infeasible execution times in
particular for large input sets. Therefore, an initial step in the matching process
called blocking is commonly applied to reduce the search space to a small subset
of the most likely matching object pairs. Numerous blocking algorithms have been
proposed in the past years (see [35, 7, 49] for overviews and comparisons). They
typically use a key to partition the objects to be matched into groups (blocks).
Matching of an object can then be restricted to the objects in the same block.
In this chapter we introduce some of the most popular blocking approaches discrim-
inating between disjoint and overlapping methods. We focus on the approaches that
have been implemented within the frameworks we are going to evaluate in Chapter 6
and are also provided within our own framework FEVER. Before detailing disjoint
and overlapping methods in Section 3.3 and Section 3.4 we introduce in Section
3.1 measures to evaluate the effectivensess of blocking techniques and describe the
general ideas of blocking in Section 3.2. Section 3.5 gives an overview over some
further approaches. We conclude the chapter by giving some concluding remarks in
Section 3.6.

29



CHAPTER 3. BLOCKING

3.1 Blocking evaluation measures

For the evaluation of blocking techniques three measures have been proposed: pairs
completeness, reduction ratio and F-score.
Pairs completeness (PC) indicates which share of the truly matching object pairs
are preserved after blocking. PC thus corresponds to a recall measure and a high
value is important for effectiveness.
The reduction ratio (RR) measure indicates the fraction of all possible object pairs
which is eliminated by blocking; it indicates how far the search space is reduced and
thus efficiency is improved.

RR = 1− c

pn
(3.1)

where c is resulting number of candidate object pairs after blocking and pn is the
number of all possible combinations (pn = |OA| |OA|−1

2 for A = B or pn = |OA×OB| =
|OA| · |OB| for A 6= B).
F-score combines pairs completeness (PC) and reduction ratio (RR) via a harmonic
mean,

FScore = 2 · PC ·RR
PC +RR

(3.2)

3.2 General idea

Blocking approaches semantically partition the input data into blocks of similar
objects and restrict object matching to objects of the same block.
The partitioning into blocks is usually done with the help of blocking keys based
on the objects’ attribute values. Blocking keys utilize the values of one or several
attributes, e.g., product manufacturer (to group together all products sharing the
same manufacturer) or the combination of manufacturer and product type. Often,
the concatenated prefixes of a few attributes form the blocking key. The blocking
key is typically determined manually. Few approaches exist to derive the key (semi-
)automatically based on training data [17, 98].
The definition of the key is a critical issue with all blocking methods. A subopti-
mal choice may lead to over-selection of many dissimilar object pairs that impedes
efficiency, or, worse, sorting out true matching object pairs thus decreasing match
quality. A strategy to diminish the influence of poor blocking keys (e.g., due to dirty
data) is to repeatedly execute a blocking method using different blocking keys. This
is called a multi-pass strategy.
For most blocking techniques, an inverted index [143] can be used. The blocking
key values will become the keys of the inverted index, and the record identifiers of
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all records that have the same blocking key value will be inserted into the same
inverted index list.
When matching objects from two sources, either a separate index data structure is
built for each source, or a single data structure with common key values is generated.
For the second case, each object identifier needs to include a flag that indicates from
which source the object originates.

3.3 Disjoint blocking

Disjoint blocking builds mutually exclusive blocks by assigning each object into one
block only (assuming a single blocking key definition). The default implementation
is called traditional or standard blocking and is detailed in the following subsection.

3.3.1 Traditional or standard blocking

This technique has been used in record linkage since the 1960s [54]. The imple-
mentation uses an inverted index to build the blocks. All objects with the same
blocking key value (BKV) are inserted into the same block, and only objects within
the same block are then compared with each other. Figure 3.1 illustrates an example
execution for blocking keys based on manufacturer values.
While this approach does not have any explicit parameters, the way blocking keys are
defined will influence the quality and number of candidate pairs that are generated.
A major drawback is that it is sensitive regarding errors and variations in the object
values used to generate the blocking keys. True matching object pairs are missed
when they are assigned to the different blocks due to heterogeneous blocking key
values. This leads to a decrease of pairs completeness. A second drawback is that
the sizes of the blocks generated depend upon the frequency distribution of the
BKVs, and thus it is difficult in practice to predict the total number of candidate
pairs that will be generated.
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Figure 3.1: Example objects with manufacturer values and the first two consonants
as BKVs, and the corresponding inverted index data structure as used for traditional
blocking

3.4 Overlapping blocking

Overlapping methods may result in overlapping blocks of objects; implementations
include the (multi-pass) sorted neighborhood approach [63], bi-gram indexing [7],
canopy clustering [94] and iterative blocking [141]. These methods can require an
object to be matched against multiple blocks (increased overhead) but may lead to
a higher pairs completeness value than disjoint methods.

3.4.1 Sorted Neighborhood

The Sorted neighborhood (SN) [63] first sorts the objects according to their blocking
key K. A window of a fixed size w is then moved over the sorted objects and in
each step objects within the window, i.e., objects within a distance of w − 1, are
compared.
Figure 3.2 illustrates by an example the execution of SN for a window size of w = 3.
The objects (o1− o9) are first sorted by their blocking keys (1, 2, or 3). The sliding
window then processes the first block (o1, o4, o2) resulting in the three pairs (o1, o4),
(o1, o2), and (o4, o2) for later comparisons. The window is then moved by one step
to cover the block (o4, o2, o5). This leads to two additional pairs (o4, o5) and (o2, o5).
This procedure is repeated until the window has reached the final block (o3, o7, o9).
Figure 3.2 lists all pairs generated by the sliding window.
SN reduces the complexity from O(n2) (matching n input objects without blocking)
to O(n) +O(n · log2 n) for blocking key determination and sorting and O(n ·w) for
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Figure 3.2: Example execution of sorted neighborhood with window size w = 3
adapted from [81]

matching. Thereby matching large datasets becomes feasible and the window size w
allows for a dedicated control of the runtime. The SN approach is able to compare
objects with a different (but similar) blocking key and can therefore compensate a
suboptimal choice of the blocking key.
As an extension the Multi-Pass approach [64] has been proposed. It supports a
repeated execution with multiple independent blocking keys.
In [51] the Sorted Blocks method is proposed as a generalization of the standard
blocking and the sorted neighborhood approach. The basic idea is to first sort
all objects so that duplicates are close in the sort sequence, then partition the
objects into disjoint sorted subsets, and finally to overlap the partitions. The size
of the overlap can be defined using u, e.g., u = 3 means that three objects of each
neighbouring partition are part of the overlap, which hence has a total size of 2u.
Within the overlap, a fixed size window with size u+ 1 is slid across the sorted data
and all objects within the window are compared.
[147] introduces two adaptive approaches to dynamically set the window size. In-
crementally Adaptive-SNM (IA-SNM) is an algorithm that incrementally increases
the window size as long as the distance of the first and the last object in the cur-
rent window is smaller than a specified threshold. The increase of the window size
depends on the current window size. Accumulative Adaptive-SNM (AA-SNM) cre-
ates windows with a single overlapping object. By considering transitivity, multiple
adjacent windows can then be grouped to one block, if the last object of a window
potentially matches with the last object in the next adjacent window. Both algo-
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Figure 3.3: Example execution of q-gram based indexing with q = 2 and t = 0.8

rithms have after the enlargement of the windows a retrenchment phase, in which
the window is decreased until all records within the block are potential duplicates.

3.4.2 Q-gram Based Indexing

The basic idea of this approach is to generate variations of each blocking key by
converting it into a list of q-grams (sub-strings of length q). Sub-lists of the q-
gram list are then computed. This is controlled by a threshold parameter t, which
designates the fraction of the shortest sub-lists to be generated relative to the length
of the q-gram list. The concatenated q-grams in the resulting q-gram sub-lists are
then used as keys in an inverted index. Each object is inserted into several blocks
according to how many index keys have been generated from its blocking key. With
t = 1.0, only one q-gram sub-list is generated per blocking key value. Thus each
object is only inserted into a single list resulting in a disjoint blocking with mutually
exclusive blocks.
Figure 3.3 illustrates q-gram based indexing for three example objects, q = 2 (bi-
grams), and a threshold t = 0.8. The BKV Rahm of the first object (o1), for
example, contains three (k = 3) bigrams: ra, ah, hm (assuming all letters have been
converted into lower case beforehand). The length l of the shortest sub-lists for
this value can be calculated as l = b3 · 0.8c = 2. Therefore, one sublist with three
bigrams and three sub-lists each containing two bigrams will be generated for this
BKV: [ra,ah,hm], [ra,ah] [ra,hm], and [ah,hm]. Each of the sub-lists containing two
bigrams is generated by removing one of the three original bigrams. The bigrams in
the generated sub-lists are concatenated to form the actual key values used in the
inverted index, as is shown in Figure 3.3. Object o1 will be inserted into the four
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inverted index lists with key values ’raahhm’, ’raah’, ’rahm’, and ’ahhm’. With an
even lower threshold (t < 0.75), sublists of length one would be generated recursively
from the sub-lists of length three.
The advantage of this approach is that it can overcome errors and variations in the
blocking key values. Objects that are true matches are more likely inserted into the
same block resulting in a higher pairs completeness and thus an improved matching
quality. The drawback is that a large number of sub-list are generated. The recursive
generation of sub-lists is computationally expensive, especially for long blocking key
values and threshold values.

3.4.3 Canopy Clustering

This blocking technique inserts objects into one or more overlapping clusters, called
canopies [94, 39], based on the similarities between the BKVs [143, 39, 30]. Com-
monly used similarity measures to compute the similarities between the BKVs are
Jaccard and TFIDF. Further details on these two measures can be found in Sec-
tion 4.1.
With Canopy Clustering overlapping clusters are iteratively generated repeating the
following steps:

1. Initially all objects are inserted into a candidate list.

2. One object is randomly picked and removed from the candidate set. This
object becomes the centroid of a new canopy cluster.

3. All objects that have a similarity value above a loose threshold tl are inserted
in the canopy cluster.

4. All objects that have a similarity value above a tight similarity threshold tt
(with tt ≥ tl) are removed from the candidate list.

Steps 2 to 4 are repeated until the candidate list is empty.
We illustrate the approach by means of an example with six objects O =
{o1, o2, o3, o4, o5, o6}. Table 3.1 indicates the similarity values between the BKVs of
the objects. We choose tl = 0.8 and tt = 0.9. We pick o1 as the centroid of the first
cluster and remove it from the candidate set. As s1,2 = 0.8 > tl and s1,3 = 0.95 > tl
the objects o2 and o3 are inserted into the cluster. As s1,3 = 0.95 > tt we can remove
o3 from the candidate set. We pick o2 as the centroid of the second cluster and remove
it from the candidate set. As s2,4 = 0.91 > tl, s2,5 = 0.97 > tl, and s2,6 = 0.75 > tl
the objects o4, o5 and o6 are inserted into the cluster. We can remove object o4.
We pick o5 as the centroid of the third cluster, remove it from the candidate set
and insert o6 into the cluster as s5,6 = 0.98 > tl. Object o6 is removed from the
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candidate set as s5,6 = 0.98 > tt. The candidate set is now empty and the algorithm
terminates. The final set of cluster is C = {{o1, o2, o3}, {o2, o4, o5, o6}, {o5, o6}}

o1 o2 o3 o4 o5 o6

o1 1 0.8 0.95 0.5 0.6 0.7

o2 0.8 1 0.9 0.91 0.97 0.75

o3 0.95 0.9 1 0.5 0.6 0.7

o4 0.5 0.91 0.5 1 0.5 0.7

o5 0.6 0.97 0.6 0.5 1 0.98

o6 0.7 0.75 0.7 0.7 0.98 1

Table 3.1: Similarity matrix for Canopy Clustering example

In [31] a nearest neighbour based approach is proposed as a variant. Instead of two
global threshold parameters two nearest neighbour parameters are introduced: nl
and nt. nl is the number of closest objects to the randomly chosen centroid object
(according to the similarities of their blocking key values) that will be inserted into
the canopy cluster, and of these the nt closest objects will then be removed from the
pool of candidate objects (with nt ≤ nl). This approach results in blocks of similar
sizes, with the maximum size known beforehand as nl. This not only prevents very
large blocks, but also allows an estimate of the number of object pairs generated, as
the number of blocks (canopy clusters) corresponds to n/nt, with n being the total
number of different blocking key values.

3.5 Further approaches

In the previous sections we introduced the most popular blocking approaches. How-
ever, many more approaches have been proposed. In this section we briefly mention
some recent developments.
The basic idea of suffix based blocking [2] is to insert the blocking key values and
their suffixes into a suffix array-based inverted index. A suffix array contains strings
or sequences and their suffixes in an alphabetically sorted order.
In [141] an iterative blocking approach is proposed where the correspondences de-
tected within one block are reflected to subsequently processed blocks. Blocks are
iteratively processed until no block contains any more matching objects.
There is a smooth transition from blocking approaches to search space reduction
techniques for similarity computation. A large amount of work has also been con-
ducted on reducing the search space for similarity measures such as edit distance
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or Jaccard. For instance, LIMES [108] utilizes the mathematical characteristics of
metric spaces to filter out a large number of those instance pairs that do not suffice
a given minimal similarity threshold.

3.6 Concluding remarks

There exist a few comparative studies of different blocking approaches: [7, 31, 35].
The experimental results in these studies showed that there are large differences in
terms of pairs completeness regarding the different techniques. Moreover several ap-
proaches are rather sensitive towards changes in the parameter setting. The variety
of parameters that have to be set by an user, and the sensitivity of some of them
(especially global thresholds) with regard to the candidate record pairs generated,
makes it somewhat difficult to give a general recommendation, as parameter settings
depend both upon the quality and characteristics of the input objects.
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4
Matchers

Object matching requires a way to determine whether two objects are alike enough
to represent the same real-world entity. A matcher applies a similarity measure to
specify how the similarity between two objects is computed.
In Section 4.1 we discuss various similarity measures that have been used for object
matching throughout the literature. In Section 4.2 we describe context matchers
that consider the context or semantic relationships of different objects for similarity
computation. .

4.1 Similarity measures

Matchers use a similarity function and apply it on the values of a pair of corre-
sponding attributes or attribute concatenations of the input datasets. They typi-
cally return a value between 0 and 1 indicating the degree of similarity between two
entities.
Numerous similarity functions may be employed, in particular generic string sim-
ilarity measures (see [38] and [53] for a comprehensive comparison). Similarity
computation may also utilize different kinds of auxiliary information, such as dictio-
naries, thesauri or domain-specific lookup tables [27], e.g., to deal with synonyms,
homonyms, abbreviations, acronyms, or geographic name variations. In offline data
integration, e.g., for data warehousing, such auxiliary sources are often used by
separate data cleaning steps to resolve representational differences before object
matching begins.
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In the following, we discuss various similarity measures that have been used for
object matching throughout the literature. In our discussion, we distinguish different
classes of measures. We focus on the measures that have been implemented within
FEVER.

4.1.1 String similarity measures

We distinguish character-based, token-based, and hybrid measures. Character-based
measures compute string similarity by viewing strings as contiguous sequences of
either characters or tokens. Token-based measures, on the other hand, do not view
strings as contiguous sequences but sets of tokens. Hybrid measures combine both
approaches.

Character-based similarity measures

Edit Distance : The edit distance between two strings σ1 and σ2 is the minimum
number of character insertions, deletions, and replacements needed to trans-
form the string σ1 into σ2. In the simplest form, each edit operation has cost
1. This version of edit distance is also referred to as Levenshtein distance [91].
Given two strings σ1 and σ2, their Edit Distance similarity can be calculated
as:

EditDistance(σ1, σ2) = 1−
(

dist(σ1, σ2)
max(|σ1|, |σ2|)

)

The basic dynamic programming algorithm [105] for computing the edit dis-
tance between two strings takes O(|σ1| · |σ2|) time for two strings of length |σ1|
and |σ2|, respectively.
Several variants of the edit distance have been proposed, including the con-
strained edit distance [112] and the normalized edit distance [93].

Example 4.1.1.1 Edit Distance
As an example, consider the two strings σ1 = "Hewlett Packard" and σ2 =
"Hewlet Peckard". The edit distance of these two strings dist(σ1, σ2) is 2, as
we need to (i) delete the t in σ1 and (ii) replace the first a in σ1 by an e.
Thus the Edit Distance similarity is

EditDistance(σ1, σ2) = 1−
( 2

15

)
≈ 0.866

Jaro-Winkler : The Jaro comparison value is:

Jaro(σ1, σ2) = 1
3

(
c

|σ1|
+ c

|σ2|
+ c− t/2

c

)
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where c is the number of common characters and t is the number of transposi-
tions of common characters. Common are all the characters σ1[i] and σ2[j] for
which σ1[i] = σ2[j] and |i−j| ≤ 1

2 min {|σ1|, |σ2|}. A transposition occurs when
the common character at position i of string σ1 is not equal to the common
character at position i of string σ2.
Jaro-Winkler distance uses a prefix scale p which gives more favourable ratings
to strings that match from the beginning for a set prefix length `. Given two
strings σ1 and σ2, their Jaro-Winkler similarity is:

JaroWinkler(σ1, σ2) = Jaro(σ1, σ2) + (` · p(1− Jaro(σ1, σ2)))

Example 4.1.1.2 Jaro-Winkler
Let σ1 = "Hewlett Packard" and σ2 = "Hewlet Peckard". These two strings
have 13 common characters. The common prefix "Hewlet" is of length ` = 6.
There are no permutations of characters, thus it follows that Jaro(σ1, σ2) ≈
0.932. Assuming a scaling factor of p = 0.1 the Jaro-Winkler similarity is
equal to:

JaroWinkler(σ1, σ2) = 0.932 + 6 · 0.1 · (1− 0.932) = 0.9728

Token-based similarity measures

Token-based similarity measures split strings into pieces called tokens. Intuitively,
tokens correspond to substrings of the original string. A simple tokenization splits
a string into tokens based on whitespace characters. The advantage of token-based
similarity measures is their robustness towards natural word moves and swaps as
they do not regard the word order (e.g., "Erhard Rahm" is equivalent to "Rahm
Erhard"). The disadvantage is that typographical errors within tokens are not cap-
tured, especially if they are pervasive and affect many tokens of the strings. For ex-
ample, the strings "Hewlett Packard" and "Hewlet Peckard" will have zero similarity.
An exception is the Q-Gram similarity measure that splits strings into q-grams.

Q-Gram : Q-grams are short character substrings of length q [132, 131]. Given a
string σ, its q-grams are obtained by "sliding" a window of length q over the
characters of σ. Since q-grams at the beginning and the end of the string can
have fewer than q characters, the string is conceptually extended by "padding"
the beginning and the end of the string with q − 1 occurrences of a special
padding character, not in the original alphabet.
Positional q-grams [127] also consider the position of the q-gram in the string.
Given two sets of q-grams similarity is computed using the Dice’s coefficient
[44]:

QGram(σ1, σ2) = 2|Tσ1 ∩ Tσ2|
|Tσ1 |+ |Tσ2|
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Example 4.1.1.3 Q-Gram
Let σ1 = "Hewlett Packard" and σ2 = "Hewlet Peckard". We compute 3-grams
(also called trigrams). We use underscore (_) to represent a whitespace. The
padding characters at the beginning and the end of a string are denoted as #.
The respective sets of trigrams are

Tσ1 = {"##H", "#He", "Hew", "ewl", "wle", "let", "ett", "tt_", "t_P",
"_Pa", "Pac", "ack", "cka", "kar", "ard", "rd#", "d##"}

and

Tσ2 = {"##H", "#He", "Hew", "ewl", "wle", "let", "et_", "t_P",
"_Pe", "Pec", eck", "cka", "kar", "ard", "rd#", "d##"}.

Thus the Trigram similarity is

Trigram(σ1, σ2) = 2 · 12
17 + 16 = 0.727

[58, 57] showed how to efficiently compute positional q-gram similarity within
a relational database.

Jaccard : The Jaccard coefficient [66, 67] measures similarity between token sets,
and is defined as the size of the intersection divided by the size of the union
of the token sets:

Jaccard(σ1, σ2) = |Tσ1 ∩ Tσ2 |
|Tσ1 ∪ Tσ2 |

Example 4.1.1.4 Jaccard
Let σ1 = "Hewlett Packard" and σ2 = "Hewlett Peckard". The respective to-
ken sets are Tσ1 = {"Hewlett", "Packard"} and Tσ2 = {"Hewlett", "Peckard"}.
There is one token in the intersection of the two sets Tσ1 ∩ Tσ2 = {"Hewlett"}
and a total of three tokens that appear in Tσ1 or Tσ2 or both, Tσ1 ∪ Tσ2 =
{"Hewlett", "Packard", "Peckard"}. Thus the Jaccard similarity is

Jaccard(σ1, σ2) = 1
3 = 0.333

Cosine : The cosine similarity is a well known measure from information retrieval.
It computes the cosine of the angle α between the two d-dimensional vectors
~σ1 and ~σ2 of the two strings σ1 and σ2. The d dimensions of these vectors
correspond to all d distinct tokens that appear in any string in a given finite
domain. For example, we assume that σ1 and σ2 originate from the same
attribute A. The vector for a string σ is ~σ1 = [a1σ, a2σ, . . . , adσ]T , where
aiσ = 1 if string σ contains the token ai.

Cosine(σ1, σ2) = ~σ1 · ~σ2

‖ ~σ1‖ · ‖ ~σ2‖
=

∑d
i=1 aiσ1aiσ2√∑d

i=1 ai
2
σ1

√∑d
i=1 ai

2
σ2
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Example 4.1.1.5 Cosine
Let σ1 = "Hewlett Packard" and σ2 = "Hewlett Peckard". We obtain the
vectors ~σ1 = [1, 1, 0]T and ~σ1 = [1, 0, 1]T . Thus the Cosine similarity is

Cosine(σ1, σ2) = 1.0 · 1.0√
1.02 + 1.02 ·

√
1.02 + 1.02

= 0.5

TFIDF The TFIDF similarity measure is an extension of the Cosine similarity
measure. It considers the frequency of a token within the attribute value of
an object as well as across all values of all objects to be matched. The weight
vector for string σ is ~σ1 = [w1σ, w2σ, . . . , wdσ]T , where

wt,σ = tft,σ · log2
|Σ|

|{σ′ ∈ Σ | t ∈ σ′}|

and

• tft,σ is the token frequency of token t in string σ

• log2
|Σ|

|{σ′∈Σ | t∈σ′}| is the inverse token frequency. |Σ| is the total number
of strings across all objects; |{σ′ ∈ Σ | t ∈ σ′}| is the number of strings
containing the token t.

The TFIDF similarity of two strings σ1 and σ2 is calculated as:

TFIDF(σ1, σ2) = ~σ1 · ~σ2

‖ ~σ1‖ · ‖ ~σ2‖
=

∑d
i=1wiσ1wiσ2√∑d

i=1wi
2
σ1

√∑d
i=1wi

2
σ2

Example 4.1.1.6 TFIDF
Let σ1 = "Hewlett Packard" and σ2 = "Hewlett Peckard". Table 4.1a shows ten
objects representing manufacturers. We consider theses objects for calculating
the inverse string frequency values. We observe that any token occurs at most
once in a value of attribute Name, so the token frequency tft,σ is either 0 or
1. We further observe that among the ten attribute values, four contain the
token "Hewlett" so log2

|Σ|
|{σ′∈Σ | t∈σ′}| = log2

10
4 . Based on these values, we obtain

wHewlett,σ = 1 · log2
10
4 ≈ 0.4, wPackard,σ = 1 · log2

10
1 = 1.0, and wPeckard,σ =

1 · log2
10
1 = 1.0. We obtain the following vectors ~σ1 and ~σ1 as depicted in

Figure 4.1b.

TFIDF(σ1, σ2) = 0.4 · 0.4√
0.42 + 1.02 ·

√
0.42 + 1.02

≈ 0.14
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Object Name

o1 Apple Inc.

o2 Microsoft Corp.

o3 Lenovo Inc.

o4 Lenovo Corp.

o5 Hewlett Packard

o6 Hewlett Peckard

o7 Hewlett Packart

o8 Hewlett Peckart

o9 Leonovo Inc.

o10 Microsoft
(a) Example objects

Token ~σ1 ~σ2

Apple 0 0

Corp 0 0

Hewlett 0.4 0.4

Inc 0 0

Lenovo 0 0

Leonovo 0 0

Microsoft 0 0

Packard 1 0

Peckard 0 1

Packart 0 0

Peckart 0 0
(b) Weight vectors

Table 4.1: Example computation of TFIDF

Hybrid measures

Hybrid techniques combine multiple string similarity techniques. For example
TFIDF can be extended to additionally consider the similarity between individ-
ual tokens. This approach is called Soft-TFIDF [38]. Based on the same principal
is the Monge-Elkan similarity measure.

Monge-Elkan : The measure proposed by Monge and Elkan [102] uses an internal
similarity function sim′(t1, t2) to measure the similarity between two individual
tokens t1 and t2. Given two strings σ1 and σ2, with |Tσ1| and |Tσ2| being their
respective number of tokens, and an external inter-token similarity measure
s′, the Monge-Elkan measure is computed as follows:

MongeElkan(σ1, σ2) = 1
|Tσ1 |

|Tσ1|∑
i=1

max
j=1,...,|Tσ2 |

s′(tiσ1 , tjσ2
)

Example 4.1.1.7 Monge-Elkan
Let σ1 = "Hewlett Packard" and σ2 = "Hewlet Peckard". We use as internal
measure s′ Edit Distance similarity .
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σ1 = "Hewlett Packard"; t1σ1 = "Hewlett"; t2σ1 = "Packard"
σ2 = "Hewlet Peckard"; t1σ2 = "Hewlet"; t2σ2 = "Peckard"

s′(t1σ1 , t1σ2) ≈ 0.8571; s′(t1σ1 , t2σ2) = 0
s′(t2σ1 , t1σ2) = 0; s′(t2σ1 , t2σ2) ≈ 0.8571

MongeElkan(σ1, σ2) =1
2(max(s′(t1σ1 , t1σ2), s′(t1σ1 , t2σ2))+

max(s′(t2σ1 , t1σ2), s′(t2σ1 , t2σ2)))

=1
2(0.8571 + 0.8571) = 0.8571

4.1.2 Other measures

The measures discussed above are the most widely used for object matching. In this
section, we summarize similarity measures for two further cases.

• Phonetic similarity: Phonetic similarity measures consider the sounds of
spoken words, which may be very similar despite large spelling differences.
For example, Kageonne is phonetically similar to Cajun despite the different
spelling. Soundex [23] is the most common phonetic coding scheme. Soundex
assigns identical code digits to phonetically similar groups of consonants.

• Numeric similarity: The existing approaches for comparing numerical data
are rather primitive. Often, numbers are treated as strings. However, none
of the previously discussed string similarity measures yield satisfactory results
when applied to numerical data. A more reasonable approach is for to measure
the absolute or relative difference of numbers.

4.2 Context matchers

Context matchers consider the context or semantic relationships of different ob-
jects for similarity computation. Context matchers commonly represent contextual
information (e.g., semantic relationships, hierarchies) in a graph structure, see for
example [29, 71, 14, 13, 28, 41, 48, 123]. The graph structure allows the propagation
of similarity information (e.g., represented as weighted edges or auxiliary nodes) to
related entities. For example to disambiguate several persons with the same name
one may additionally consider contextual information such as their affiliations or
co-authors.
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A special case of contexts are hierarchies such as they appear in data warehouse
dimensions or XML data. [3] introduces an approach for data warehouses utilizing
hierarchical dimensions. A geographical dimension with levels city, state and country
exemplifies the approach. Even though we might conclude that the countries USA
and Great Britain are duplicates due to their similar spelling (USA, UK), an equality
can be excluded when considering the other levels of the dimensions.
In [139] an approach for XML data is presented. It compares XML elements not
only based on their content but also by taking into account the similarity of the
parents and children nodes. This is a common approach in schema and ontology
matching. A similar approach can be found in [24] and in [89].
In [121] constraints are used to express relationships between objects. For example
when resolving authors the list of co-authors can be utilized to reconcile persons.
Another approach is to use machine learning [114, 123, 41, 125]. The context infor-
mation is modelled by conditional random field, markov logic or relation probability
models. Based on these models probabilities for the equality of objects are deduced
and are then considered as similarity values.
A further possibility to consider context information is to enrich objects with asso-
ciated information. In [95, 96, 97] attributes of associated objects from other data
sources (secondary sources) are added to the original object information from the
primary source. An example is the look up and complementation of area codes with
the help of the address. This improved the comparison of telephone numbers.
The MOMA framework [130] provides a special context matcher called neighborhood
matcher. We provide more details on this approach in the following subsection.

4.2.1 Neighborhood matcher

In [130] the authors propose a so-called neighborhood matcher. The neighborhood
matcher utilizes association mappings to generate same-mappings. An association
mapping interrelates objects of two different semantic types, e.g. venues and publi-
cations whereas a same-mapping is a mapping between objects of the same semantic
type. The neighborhood matcher requires as input two association mappings of in-
verse semantic mapping type (e.g., Venue-Publication and Publication-Venue) and
a same-mapping. The matcher is a sequence of two compose operations. The first
step is the composition of the first association mapping and the same-mapping. In a
second step the resulting mapping is composed with the second association mapping.
Figure 4.1 illustrates a concrete example for the execution of the neighborhood
matcher. We assume a same-mapping for publications between source S1 and source
S2 as well as association mappings of type publications of venue. Starting from a
venue of source S1 we can then traverse to the associated publications of source
S1, utilize the same-mapping to find the corresponding publications of source S2,
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Figure 4.1: Example for the application of the neighborhood matcher

map1

v1,S1 p1,S1 1

v1,S1 p2,S1 1

v1,S1 p3,S1 0.6

v2,S1 2,S1 0.6

v2,S1 p3,S1 1

@Asso2

p1,S1 v1,S2 1

p2,S1 v1,S2 1

p3,S1 v2,S2 1

compose

v1,S1 v1,S2 0.8 = 2 · (1 + 1)/(3 + 2)

v1,S1 v2,S2 0.3 = 2 · 0.6/(3 + 1)

v2,S1 v1,S2 0.3 = 2 · 0.6/(2 + 2)

v2,S1 v2,S2 0.67 = 2 · 1/(2 + 1)

Table 4.2: Example execution of compose operator

and traverse the association mapping to reach the venue of source S2. Thus, the
neigborhood matcher allows to generate a venue same-mapping by composing the
association mappings with the publication same-mapping. For the second compo-
sition the similarity function Relative is applied to prefer correspondences reached
via multiple compose paths.
Table 4.2 illustrates the execution of the second composition. Consider the result
correspondence between venues v1,S1 and v1,S2 which can be reached via two pub-
lications p1,S1 and p2,S1 . Both compose paths contribute with their path similarity
of min(1, 1) = 1. The Relative function divides twice the sum of all path similarity
values, i.e. 2 ·2 = 4, by the number of correspondences for v1,S1 in map1 (the result-
ing mapping after composing the first association mapping and the same mapping )
(=3) and the number of correspondences of v1,S2 in @Asso2 (the second association
mapping) (=2). Hence, we obtain a final similarity value of s = 4/(3 + 2) = 0.8.
The example illustrates that the Relative similarity function takes into account the
number of compose paths as well as the sum of the compose path similarity values.
In the example, the output correspondence (v1,S1 , v1,S2) receives a higher similarity
value than (v1,S1 , v2,S2) since it is supported by more compose paths (2 matching
publications vs. 1).
Although both venues from source S1 have correspondences to both venues from
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source S2, the similarity values indicate the confidence of such correspondences.
The Relative combination function thus prefers correspondences reached via multiple
compose paths and reduces the influence of wrong correspondences in the underlying
publication same-mapping. Therefore a threshold-based selection could be applied
afterwards to determine the desired venue mapping.
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5
Combination of matchers

There are many possibilities for combining multiple matchers within a match strat-
egy. In general, the combination may be expressed by a decision function which
applies matchers from a given set of matchers to determine for each pair of objects
whether or not the objects match.
In this chapter we outline different combination approaches. In Section 5.1 we
review numerical approaches. Rule-based approaches are discussed in Section 5.2
and learning-based approaches in Section 5.3. In Section 5.4 we introduce workflow-
based approaches.

5.1 Numerical approaches

Numerical approaches combine the similarity values of object pairs (oi, oj) deter-
mined by different matchers m1,m2, etc. by a numerical combination function f .
The combination function determines how the similarity values smk(oi, oj) should be
combined for the merged correspondence (oi, oj, s). Typical combination functions
are average, minimum and maximum [130]. The resulting numerical value computed
by the combination functions is mapped to a match or non-match decision usually
with the help of a selection step. Selections are typically specified by constraints on
the similarity values, e.g., a Threshold constraint returns all correspondences above
a given similarity value. Additionally the selection step can consider domain-specific
constraints, e.g., to require that the publication year of matching publications should
not differ by more than one year.
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5.2 Rule-based approaches

Rule-based approaches derive the match decision by a logical combination (or pred-
icate) of match conditions. A match condition can be a threshold condition defined
on the similarity value computed by a single matcher m: C = m(oi, oj) > t, or
by several matchers (e.g., using a numerical combination function f) or express a
hard constraint (e.g., every paper has a single publisher) [45, 121]. A simple match
rule R consists of the logical conjunction of n match conditions: R = ∧n

i=1Ci. For
example, two books may be considered to match if the string similarities of their
title and author attributes both exceed certain thresholds. Such simple match rules
consisting only of threshold conditions for single attribute value matchers have also
been called similarity joins; their restricted structure permits an efficient execution
in many cases [4]. Complex match rules allow the combination of multiple simple
match rules, e.g., by disjunction ∨ni=1Ri. Many approaches, e.g. [63, 88, 5], require
a human expert to specify such match rules declaratively.

5.3 Learning-based approaches

Key decisions to be made for the specification of a combination strategy expressed
as a numerical combination function, match rules, or a match workflow include se-
lecting and configuring the matchers to be used. The chosen configuration can have
a large impact on the overall quality but even experts will find it difficult and time-
consuming to determine a good selection. The use of supervised (learning-based)
approaches or learners aims at automating the process of object matching to reduce
the required manual effort. Learning-based approaches, e.g., Naive Bayes [119], lo-
gistic regression [115], Support Vector Machine (SVM) [20, 18, 100, 119] or decision
trees [149, 60, 119, 128, 129, 135] have so far been used for some subtasks, e.g., deter-
mining suitable parameterizations for matchers or adjusting combination functions
parameters (weights for matchers, offsets). However, learning-based approaches re-
quire suitable training data and providing such data typically involves manual effort.
Furthermore, some decisions (e.g., selection of the similarity functions and attributes
to be evaluated) may still have to be determined manually. Hence it is important to
analyze for learning-based approaches which tasks still require manual decisions. In
the following subsections we describe in more detail the learning-based approaches
that have been implemented within FEVER.

5.3.1 Decision Tree

A decision tree specifies which matchers are to be applied and in what order (see
Figure 5.1). Each node of the tree contains a test whether or not a certain similarity
threshold is exceeded for a selected matcher. The match decision is reached by
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Figure 5.1: Example of learning-based matcher combination with decision tree

starting with the test of the root node and continuing with the further tests until
a leaf node is reached. A decision tree is created by determining the most useful
matchers to classify examples. A measure called information gain measures how
well a matcher divides the given set of training examples by their classification
(match/non-match). Creating a decision tree is an iterative process, where the
matcher with the greatest information gain is chosen at each level [101].

5.3.2 Logistic Regression

Logistic Regression uses a weighted sum of the similarity values of the individual
matchers to determine a probability whether two entities match. The combination
corresponds to a function of the form:

Pr(y = 1|x1, . . . , xk) =
exp(β0 +∑k

j=1 βjxj)
1 + exp(β0 +∑k

j=1 βjxj)

where x1, . . . , xk are the similarity values given by the selected matchers, βj, j =
1, . . . , k are weights for the similarity values and β0 is a constant. The following
equation is an example for a combination determined by Logistic Regression for a
bibliographic match task (with attributes for publication title and authors):

fLogisticRegression(a,b)=

{
match if exp(10.3−10.9·Trigram(titlea,titleb)−3.9·Cosine(authorsa,authorsb))

1+exp(10.3−10.9·Trigram(titlea,titleb)−3.9·Cosine(authorsa,authorsb))>0.5

non-match otherwise

The strategy combines k = 2 matchers: Trigram is applied to the title values and
Cosine to the authors values. The resulting similarity values for Trigram and Cosine
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are weighted with coefficients determined by the learner (10.9 for Trigram, 3.9 for
Cosine). The constant β0 is 10.3. For two objects a ∈ A and b ∈ B a probability
is calculated according to the formula and the entities are assumed to match if the
probability exceeds a threshold of 0.5.

5.3.3 Support Vector Machine (SVM)

For the SVM the k selected matchers span a k-dimensional space. The matching
and non-matching object pairs from the training set are represented as coordinates
in this space. The basic idea of the Support Vector Machine (SVM) is to seek
an optimal hyperplane that separates the coordinates representing matching object
pairs from the coordinates representing non-matching object pairs with maximum
distance. SVM solves the problem that in some cases there is no linear separating
hyperplane. It therefore maps the coordinates to a higher dimension space using a
kernel function, and seeks a hyperplane in that space. The hyperplane is defined as

H = {x| 〈w, x〉+ b = 0}

where w is normal to the hyperplane, |b|/||w|| is the perpendicular distance of the
hyperplane to the origin (offset or bias), and ||w|| is the Euclidean norm of w. The
vector w and the offset b define the position and orientation of the hyperplane in the
input space. After the optimal parameters w and b are found, the learned object
matching strategy is a function of the form:

f(x) = sgn

(
k∑
i=1

wixi + b

)

That is we determine a weighted sum of similarity values and assume a match (non-
match) if the sum is positive (negative).
A combination strategy generated with the SVM might look like the following:

fSVM(a,b)=

{
match if 0.8·Trigram(titlea,titleb)+0.5·TFIDF(authorsa,authorsb)−1.1)>0

non-match otherwise

The strategy combines k = 2 matchers: Trigram is applied to the title attribute
values and TFIDF to the authors values. The resulting similarity values for Trigram
and for TFIDF are weighted with weight w1 = 0.8 and weight w2 = 0.5. The offset
b is −1.1. For two entities a ∈ A and b ∈ B the weighted sum is calculated and the
entities are assumed to match if the sum is positive.
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5.3.4 Multiple Learning

In machine learning there exists a large body of work on how to combine several
learners for improving classification accuracy. In [76] the authors proposed various
combination strategies.
Majority voting is one of the most popular strategies. With this strategy a combined
decision is derived from the majority consensus of several basic learners. The moti-
vation for the combined learning is to compensate weaknesses of individual learners
and to thus improve the overall match quality and robustness.
Let M = {M1, . . . ,Mk} be the set of mappings computed by n basic learners. Then
majority voting determines the result mapping from the n input mapping as

Mmajority voting =
{

(oi, oj)|(oi, oj) ∈Mj ∀j ∈ J ⊂ {1, . . . , k}, |J | ≥
k

2

}
.

That means the resulting mapping contains all correspondences that appear in at
least half of the input mapping determined by the k base learners.
Other popular approaches to combine multiple learners include Bagging, Boosting
and Stacking [148, 29].
In Bagging (short for bootstrap aggregating) several learners are parallel trained on
different training examples and the learned models are combined by voting. On the
other hand, Boosting learns the base learners sequentially. The examples that are
classified incorrectly by a previous learner will be given a higher weight when training
the new learner in order to improve the new learner on these difficult examples.
Bagging and boosting are designed to combine multiple learners of the same type,
while Stacking can combine different types of learners. The basic idea of Stacking
[144] is to first train several base-level learners and then train a meta-level learner
on the predictions of the base-level learners.

5.4 Workflow-based approaches

A Workflow-based combination of matchers allows almost arbitrary complex com-
binations of matchers, e.g., to apply a sequence of matchers to iteratively refine a
match result or to combine the results of independently executed matchers. For
schema matching, Rahm distinguishes in [116] between a sequential, parallel or
mixed combination of matchers. This classification can be transferred to object
matching. Figure 5.2 illustrates the three combination possibilities. In the se-
quential approach the matchers are executed consecutively and the results of initial
matchers are used as input by subsequent matchers. In the parallel matcher strategy,
individual matchers are autonomous and can be executed independently from each
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(a) Sequential matchers (b) Parallel independent
matchers

(c) Mixed strategy

Figure 5.2: Workflow-based combination following [116]

other. This offers a high flexibility to select matchers for execution and combination.
Furthermore, these matchers may also physically be executed in parallel, e.g. on
multi-core or multi-server hardware. On the other hand, the autonomy of individual
matchers may introduce redundant computations, e.g. of attribute similarities to be
used for matching. The mixed strategy supports the combination of sequential and
parallel matcher execution and is thus most complex.
The MOMA framework [130] supports such a flexible workflow-based combination.
The match process is a workflow consisting of a sequence of steps. Each workflow
step consists of two parts: matcher execution and mapping combination. The com-
bination of mappings in a step is processed by a specific mapping combiner. A
combiner is specified by a mapping operator followed by an optional selection. The
mapping operator specifies how the resulting correspondences are determined from
the input mappings, e.g. by a merge or compose operation. The selection step filters
the correspondences to restrict the mapping to the most similar instances.
In [62] the authors study the composition of mappings in general, i.e., for arbitrary
mapping topologies and paths of arbitrary length. The study is conducted in the
related field of link discovery. The authors propose different methods to select and
combine composed mappings along different paths. They further propose a link-
based composition approach for selecting and composing individual links instead of
entire mappings. The evaluation on real-world link discovery problems shows that
focusing on the most effective mapping paths / links is a good strategy to produce
mappings of high quality in very short execution times. For scenarios with only few
mapping paths one can apply a selection strategy or the all strategy to create new
mappings. For more complex networks with a large number of possible paths the
link-based strategy is most promising.
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6
Comparison of existing object matching

frameworks

In this chapter we compare twelve proposed frameworks for object matching (Table
6.1 and Table 6.2). The comparison has been published in [84]. Compared to
the journal paper the comparison has been extended by two additional frameworks
(DuDe [50] and FRIL [70]).
Our selection tries to cover a broad spectrum of different approaches.
We focus on research prototypes but do not consider the more general system ap-
proaches on data cleaning and data integration, such as AJAX [55], HumMer [21]
and Potters’s Wheel [118]. We also exclude commercial systems such as Choice-
Maker, DataCleanser (EDD), Merge/Purge Library (Sagent/QM Software) or Mas-
terMerge (Pitney Bowes) from our discussion since they are not widely available and
their algorithms are not described in the public literature.
We have selected five frameworks that need no training and seven training-based
frameworks. We focused on those frameworks which allow the combined use of
several match algorithms and for which evaluation results have been published.
We believe that our methodology to compare different frameworks can be used to
evaluate further systems or to update the characteristics when frameworks improve
or new evaluations become known.
In the following sections we focus on the functionality of the different frameworks
and discuss specific features of the twelve frameworks. In Section 6.1 we start with
the five approaches that do not require training. The learning-based frameworks
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are highlighted in Section 6.2 and hybrid frameworks supporting both combination
strategies are considered in Section 6.3. In Section 6.4 we first compare the frame-
works by comparing their, we then analyze in Section 6.5 their published evaluation
results. In Section 6.6 we summarize and discuss the results.

6.1 Frameworks without training

6.1.1 BN

Leitão et. al. [89] propose a framework for matching XML entities based on a
Bayesian network (BN) model. Bayesian networks provide a graph-based formalism
to explicitly represent the dependencies among the entities of a domain. This model
is derived from the structure of the XML entities to be matched. The approach
numerically combines the similarity for direct attributes value of two XML entities
as well as the similarity for descendant XML entities. The user has to specify a
match probability threshold above which entities are considered matches.

6.1.2 MOMA (mapping-based object matching)

MOMA [130] is a domain-independent framework for object matching providing an
extensible library of matchers, both attribute value and context matchers. To solve
a particular match problem MOMA allows the specification of a workflow of several
matchers and combination operators. Each matcher and workflow step determines
a so-called same-mapping (set of corresponding object pairs) that can be refined by
additional matchers and steps. The final mapping determined by a match workflow
is stored in a mapping repository and can be re-used in other workflows. A so-called
neighborhood matcher implements a context-based match approach and utilizes se-
mantic relationships between different entities, such as publications of authors or
publications of a conference. MOMA supports compose and merge operators to
combine different mappings for the same match problem. Different combination
functions (avg, min, max, weighted, prefer) can be used to derive a combined simi-
larity value for input correspondences to be combined into a merged correspondence.
MOMA does not explicitly offer blocking methods. However, a blocking-like reduc-
tion of the search space could be implemented by a liberal attribute matching within
a first workflow step whose result is then refined by further match steps.

6.1.3 SERF (Stanford Entity Resolution Framework)

The SERF project [10] develops a generic object matching infrastructure with the
focus on improving the efficiency of object matching. The authors do not study the
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internal details of matchers (similarity functions) but view them as "black boxes"
to be invoked by the object matching engine. Different algorithms are provided to
minimize the number of invocations to these potentially expensive black boxes by
keeping track of previously compared values thus avoiding redundant comparisons.
Multiple matchers can be combined by a disjunction of manually defined simple
match rules.

6.1.4 DuDe (duplicate detection toolkit)

The duplicate detection toolkit DuDe [50] provides multiple methods and datasets
for duplicate detection and consists of several components with interfaces that can
be served with individual code. The toolkit offers two overlapping blocking meth-
ods: The Sorted-Neighborhood Method (SNM) and a variant of this method that
dynamically changes the window size depending on whether the last returned pair
was interpreted as a duplicate or not. Multiple matchers can be combined by so-
called multi-comparators. At present, multi-comparators for the calculation of the
minimum or maximum value, the weighted average, and the harmonic mean are
supported. Multi- comparators can also be nested.

6.1.5 FRIL (Finegrained Record Integration and Linkage Tool)

FRIL [70] is a Java-based tool that incorporates a collection of record distance
metrics, search methods, and analysis tools. Along its workflow, FRIL provides a
set of user-tunable parameters augmented with graphic visualization tools to assist
users in understanding the effects of parameter choices. Sorted Neighborhood is the
only blocking method provided. Four string matchers are available: Edit Distance,
Soundex, Q-gram, and equality. Normalized weighted sum is provided to combine
multiple matchers.

6.2 Learning-based frameworks

6.2.1 Active Atlas

The Active Atlas system proposed by Tejada et. al. [128, 129] allows the learning-
based determination of match rules by utilizing a combination of several decision tree
learners. Training selection is semi-automatic to minimize the number of required
training examples. This is achieved by letting the decision tree learners vote on
the most informative example to be classified next by a user ("active learning").
Attribute value matchers use a variant of TF-IDF that allows considering a variety
of additional information (e.g., stemming, abbreviations) to determine the common
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tokens of two attribute values. A disjoint blocking strategy based on hashing is
supported.

6.2.2 MARLIN (Multiply Adaptive Record Linkage with INduc-
tion)

MARLIN [18, 19] employs a learning-based approach for combining multiple match-
ers using the SVM at two levels. At the first level attribute value matchers are tuned.
At the second level the SVM is applied to determine a combination of the tuned
matchers from the previous step. MARLIN utilizes the canopies clustering method
using Jaccard similarity for overlapping blocking. Two methods for semi-automatic
training selection are supported: Static-active and weakly-labeled negative selec-
tion. Static-active selection compares the entities to be resolved with some string
similarity measure and selects only pairs that are fairly similar according to this
measure to find near-duplicate object pairs for training. For "legacy" datasets with
few duplicate entries the weakly-labeled negative training selection is proposed. It
randomly selects object pairs with few shared tokens for training; these pairs are
thus likely non-duplicates.

6.2.3 Multiple Classifier System

In [148] a multiple classifier system approach is proposed that employs a variety of
supervised learners for combining matchers, including decision trees, 1-rule, Naïve
Bayes, linear and logistic regression, back propagation neural network, and k-nearest
neighbors. Furthermore, meta-combination approaches for combining several super-
vised learners are supported, namely cascading, bagging, boosting, and stacking.
While bagging and boosting combine multiple supervised learners of the same type,
cascading and stacking are used to combine supervised matchers of different types
(e.g., logistic regression and decision tree learning). Blocking support is not explic-
itly mentioned, but the evaluation suggests that some blocking method has been
applied.

6.2.4 Operator Trees

Chaudhuri et al. [25] specify object matching strategies by operator trees which
correspond to the union (disjunction) of multiple similarity joins. Manually labeled
training samples are used to construct the operator trees by a recursive divide and
conquer strategy. The maximum number of similarity joins in an operator tree and
the maximum number of similarity functions per similarity join can be restricted
by the user. Blocking is not explicitly supported. However, the authors state that
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the canopies clustering method using Jaccard similarity is applied in the evaluation.
In their evaluation their compare the operator tree approach to a numeric matcher
combination utilizing the SVM is considered.

6.3 Hybrid frameworks

6.3.1 TAILOR

TAILOR [52] is a toolbox for record linkage supporting numerical and rule-based
combination approaches for multiple matchers without training as well as learning-
based. Five similarity functions are provided for attribute value matching, namely
hamming distance, edit distance, Jaro’s algorithm, q-grams and soundex. For
learning-based combination the user can choose among three probabilistic ap-
proaches for numerical combination and two rule-based approaches utilizing decision
tree learning. Training data must be manually provided by the user. Disjoint as
well as overlapping blocking methods are supported.

6.3.2 FEBRL (Freely Extensible Biomedical Record Linkage)

FEBRL [33, 32] is a hybrid framework supporting a learning-based numerical combi-
nation approach utilizing the SVM as well as numerical approaches without training.
FEBRL is the only one of the considered frameworks that is freely available on the
web under an open source software license. It was originally developed for object
matching in the biomedical domain (hence the name). A large selection of 26 differ-
ent similarity measures is available for attribute value matching. FEBRL supports
one disjoint as well as three overlapping blocking methods. Besides manual training
selection two strategies for automatic training are supported [32]: threshold- and
nearest-based. Both methods select object pairs automatically and do not require
manual labeling by a user. To determine matching / non-matching training exam-
ples the threshold method selects object pairs whose similarity values are within a
certain distance to exact similarity or total dissimilarity for all considered match-
ers. The nearest method sorts the similarity vectors of the object pairs according
to their distances from the vectors containing only exact similarities and only total
dissimilarities, respectively, and then selects the nearest object pairs for training.

6.3.3 Context Based Framework

The Context Based Framework [29] is a graph-based hybrid framework supporting
a two stage learning-based numerical combination approach. The first stage tunes
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attribute value and context matchers using mainly SMOreg, a support vector re-
gression approach. At the second level a second learner, e.g., Logistic Regression is
applied to determine a combination of the tuned matchers from the previous step.
The Context Based Framework utilizes a canopy-like technique for blocking. Meth-
ods for training selection are not supported. Manually labeled training samples have
to be provided for both stages of the combination approach.

6.4 Functional comparison

In this section we focus on the functionality of the different frameworks. In the next
section, we analyze published evaluation results for the frameworks. We compare
the frameworks regarding to the following comparison criteria:

• Object type

• Blocking methods

• Matchers

• Combination of matchers

• Training selection

Table 6.1 and Table 6.2 compare the twelve selected frameworks for object matching
within three groups. The first group includes (five) frameworks that do not utilize
training data, while the (four) frameworks of the second group depend on training
data. The third group includes hybrid approaches which support supervised matcher
combinations as well as the manual specification of object matching strategies with-
out training. For each group, the frameworks are listed in chronological order of
their year of publication. Exept for DuDe all other inspected frameworks support
only one type of entities either relational (eleven frameworks) or XML (one frame-
works). All frameworks focus on offline matching, i.e. they do not yet cover online
matching. Online matching has been addressed to some extent in [15] and [16]. Five
of the twelve frameworks operate without training; three of the seven learning-based
frameworks, the Context based framework [29], FEBRL [33, 32], and TAILOR [52],
also support the manual specification of object matching strategies without train-
ing (hybrid frameworks). Four of the learning-based frameworks expect the users
to provide suitable training data manually, while Active Atlas [128, 129], MAR-
LIN [18, 19], and FEBRL [33, 32] have also investigated (semi-)automatic training
methods.
Most learning-based frameworks provide explicit support for blocking based on dis-
joint or/and overlapping object partitioning. This seems to be influenced by the fact
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that the trained methods to determine matches, such as SVM or decision trees, are
computationally expensive so that blocking is mandatory to reduce the search space
even for small-sized match tasks. Canopy-like clustering and sorted neighborhood
are the most common blocking techniques. The definition of the blocking key is
not yet derived from training data but has to be specified manually in all learning-
based frameworks. This is a serious limitation for the optimization potential of
learning-based methods.
All frameworks support attribute value matchers utilizing a large variety of string
similarity functions. Table 6.3 and Table 6.4 indicate which similarity functions
have been used in the evaluations). Three frameworks additionally provide context
matching but only one of the learning-based frameworks. All frameworks support the
combination of multiple matchers. Most frameworks support (complex) match rules,
numerical combination functions, or both approaches. Three frameworks MOMA
[130], DuDe [50], and FRIL [70] allow the definition of match workflows.
Six of the seven learning-based frameworks (Active Atlas [128, 129], Context Based
Framework [29], MARLIN [18, 19], Multiple Classifier System [148], Operator Trees
[25], TAILOR [52]) utilize training for learning match rules, mostly by employing
decision tree algorithms. Training data is utilized to automatically determine the
order in which different matchers are applied as well as threshold conditions on
the similarity values computed by the matchers. Another approach pursued by
six learning-based frameworks (Context Based Framework [29], MARLIN [18, 19],
Multiple Classifier System [148], Operator Trees [25], FEBRL [33, 32], TAILOR [52])
is to utilize training for automatically determining a numerical combination function
f . The combination function is determined through the choice of the employed
supervised learning algorithm. The most often employed learner for this task is the
SVM. The Context Based Framework [29], the Multiple Classifier System [148] and
FEBRL [33, 32] frameworks consider other supervised learners besides the SVM
(e.g., Logistic Regression) for determining a combination function. All learning-
based frameworks optimize the combination of a manually predetermined set of
matchers, i.e. they do not explicitly select which attributes or similarity functions
should be used.

6.5 Evaluation comparison

In this section we compare the published evaluations of the considered frameworks.
Table 6.3 and Table 6.4 summarize the evaluations.
To compare the evaluations of object matching frameworks we consider the following
criteria:

• Type of test problems: Test problems may involve real-world data sources
or may be artificially generated.
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• # Domains/# Sources/# Tasks: How many domains, sources and match
tasks are considered?

• Semantic object types: What kinds of match problems have been solved?

• Min/Max # entities: What is the minimum/maximum number of entities
involved in a match task?

• Min/Max # attributes: What is the minimum/maximum number of at-
tributes used for solving a match task?

• Used Matchers: Which matchers (similarity functions) have been used?

• # Training examples: How many examples were used for training?

• Blocking performance measures: Which measures as described in Section
3.1 were used for the evaluation of blocking techniques?

• Effectiveness measures (achieved max. values): Which measures as
described in Section 2.2 have been used to determine effectiveness?
The values in parentheses in Table 6.3 and Table 6.4 give the maximum re-
ported values for the considered effectiveness measures.

• Efficiency measures: The efficiency is commonly determined in terms of the
execution time (ET ). For learning-based approaches the training time (TT )
has to be considered additionally.
The values in parentheses in Table 6.3 and Table 6.4 give the reported value
ranges for the considered efficiency measures.

Table 6.3 and Table 6.4 give a summary about the evaluations of the considered
frameworks as reported in the corresponding research papers. All frameworks offer
a selection of matchers and combination approaches resulting in a huge number of
possible configurations. Since it is impossible to exhaustively explore the configura-
tion space, the reported evaluations cover only a restricted choice of configurations.
The summarized results indicate a substantial diversity between the different stud-
ies. The evaluations employ up to seven test problems from one to five domains.
Popular domains for evaluation are the bibliographic, E-commerce and personal data
domains. Some test problems from the RIDDLE repository (e.g., Cora, Restaurant)
are used in the evaluations of five frameworks (Dude, Active Atlas, MARLIN, Oper-
ator Trees, FEBRL). Most test problems are small and deal only with a few hundred
entities; the largest test problem used in the evaluations matches 1,26 million enti-
ties. All frameworks are evaluated on real-world test problems; the evaluations of
BN, FEBRL and TAILOR additionally utilized artificially created test problems.
While the use of real datasets is important to test for real-life conditions it is diffi-
cult to determine a perfect match result for them, especially for very large datasets.
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Moreover, real datasets are highly different in match difficulty making it problematic
to generalize findings to other datasets. Artificially created match problems allow
for more controlled test conditions for arbitrary many entities. However, artificially
introduced errors are not domain-specific, do not necessarily cover all error types,
and their distribution might be unrealistic.
Up to 18 attributes are considered for solving a given object matching task. Most
commonly the used attribute value matchers are based on the string similarity mea-
sures edit distance, (exact) equality, Jaro-Winkler and TF-IDF. From the large
selection of 26 different similarity measures available for attribute value matching
with FEBRL only two are used in the evaluation. For the evaluation of TAILOR it is
unclear which of the five supported similarity measures are applied in the evaluation.
The effectiveness of the frameworks is commonly evaluated in terms of precision,
recall, and F-measure. The weaker accuracy measure has been used in the evalua-
tions of Active Atlas, the Multiple Classifier System and TAILOR. As expected the
reported effectiveness values are typically high. However these values do not allow
a representative comparison of the relative effectiveness of the frameworks due to
the high diversity of the test problems and employed evaluation methodology (e.g.,
different measures, training sizes, etc.).
Efficiency is evaluated for seven of the twelve frameworks, mostly by measuring
the execution times for matching (SERF, Dude, FRIL, Multiple Classifier System,
Operator Trees, FEBRL, Context Based System). For three learning-based frame-
works (Context Based System, Multiple Classifier System, Operator Trees) the time
needed for training is reported.
The evaluations concerning blocking methods are rather unsatisfying so far. Only
for FEBRL and TAILOR different blocking methods are compared in terms of reduc-
tion ratio, pairs completeness and F-score on artificial test problems. Experimental
comparisons of blocking algorithms on real world test problems are missing.
The influence of training selection is an important issue in evaluating learning-based
frameworks. Unfortunately, some evaluations provide few details on the selection
(Context Based System, Multiple Classifier System, Operator Trees, TAILOR) and
size of training data (FEBRL). Three of the seven learning-based frameworks (Ac-
tive Atlas, FEBRL, MARLIN) have investigated the issue of training selection and
evaluated (semi-)automatic approaches. The influence of different training set sizes
is investigated for Active Atlas, MARLIN, Operator Trees, and TAILOR. In the
evaluation of the Multiple Classifier System a relatively large amount of training
data is used thus favoring good match quality at the expense of a high manual effort
for labeling.
In the following, we briefly discuss selected evaluation details for each framework. A
summary of the effectiveness performance is given for those frameworks where the
evaluation reported F-measure values.
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Frameworks without training

BN: The evaluation considered artificial as well as real-world datasets on movies
and CDs (IMDB, IMDB+FilmDienst, FreeDB). The evaluation investigated
the impact of the choice of the threshold on effectiveness, the impact of data
quality on effectiveness, i.e., how errors (e.g., typos or missing data) and error
frequencies affect the result, and a comparison to DogmatiX [139], a previously
proposed XML object matching framework. In the evaluation all attribute
values are considered as textual strings and edit distance is used for similarity
computation. The framework reported high precision and recall values in all
cases.

MOMA (mapping-based object matching): The authors evaluated the frame-
work on match tasks from the bibliographic domain. The evaluation considered
three data sources (Google Scholar, DBLP, ACM Digital Library) and match-
ing tasks for publications, authors, and venues. The combination of several
matchers and mappings was shown to compensate weaknesses of individual
strategies; the neighborhood matcher (see 4.2.1) proved to be very valuable.

SERF (Stanford Entity Resolution Framework): The evaluation regarded com-
parison shopping and hotel datasets from Yahoo. Two manually defined match
strategies were used for the evaluation. The evaluation considered the effi-
ciency in terms of the runtimes of the match strategies. The runtime results
mainly depend on the number of attribute value comparisons. The most dom-
inant factor of the runtime for any algorithm compared in the evaluation turns
out to be the total time for comparing string values.

DuDe (duplicate detection toolkit): The evaluation only considered the effi-
ciency in terms of the number of comparisons compared to Febrl on two match
tasks (restaurants and CDs from the Riddle repository). DuDe states to take
less time than Febrl for both match tasks (6.5 sec vs. 95 sec, 21 sec. vs. 65
sec.).

FRIL (Finegrained Record Integration and Linkage Tool): The evaluation
regarded linking personal date in a database of birth defects to a birth cer-
tificate database. Four manually defined match strategies using equality and
edit distance matchers on five attributes were used for the evaluation. The
evaluation considered the effectiveness in terms of precision and recall and the
efficiency in terms of runtime.

Learning-based frameworks

Active Atlas: The evaluation considered three datasets involving restaurants,
companies and airports. The evaluation compared decision tree learning for
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rule-based matcher combination with two baseline combination approaches
without training. For training selection a random approach and the semi-
automatic active learning were compared. The experimental results show that
the learning-based approaches achieve higher accuracy values than the manu-
ally specified baseline object matching strategies utilizing no training. Active
learning required fewer labeled examples than random training selection.

MARLIN: The evaluation compared the performance of support vector machines
(SVM) to decision trees revealing that SVM significantly outperform decision
trees when training data is limited. Further experiments demonstrate the com-
parative utility of static-active, weakly labeled negative and random training
selection using TF-IDF and edit distance for attribute value matching and
SVM as the learner. The highest performance was achieved when training
data is a mix of examples selected using the static-active strategy and ran-
domly chosen object pairs. In situations where human labeling of negatives
is expensive or infeasible (e.g., due to privacy issues), using weakly-labeled
non-duplicates is found to be valuable for automatic acquisition of negative
examples.

Multiple Classifier System: The evaluation of the system is rather limited. It is
restricted to a single dataset (airline passengers) from a single domain. The
dataset consisted of 25,000 passenger pairs of which 5,000 where matching
pairs. Various experiments compare accuracy, training time and matching
time of different learning-based combination approaches. For training a rel-
atively large amount of training data is used (66% of the 25,000 examples)
thus favoring good match quality however at the expense of a high manual
overhead for labeling.

Operator Trees: The evaluation considered several datasets from different do-
mains: organization names and addresses, personal data of hurricane evacuees,
and three datasets from the RIDDLE repository (Cora, Restaurant, Bird).
The approach is compared with a domain specific address cleansing solution
as well as with the SVM. On the evacuees dataset the SVM offers better recall
at higher precision. However, at lower precision the recall of operator trees is
close to that of SVMs. Therefore the authors propose to use operator trees
as an efficient filter (with low target precision) before invoking SVMs. On
the smaller RIDDLE datasets, the recall values achieved by operator trees are
comparable to that of the SVM at the same precision. For the Bird dataset,
significantly better recall values are obtained. The efficiency evaluations illus-
trate that a DBMS-based operator tree implementation executes significantly
faster than SVM models, even if they employ blocking.
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Hybrid frameworks

TAILOR: The evaluation compares various string similarity measures (Bigrams,
Trigrams, EditDistance, Jaro) for attribute value matching, disjoint (sorting)
and overlapping (sorted neighborhood) blocking, and matcher combination
strategies utilizing training (probabilistic, decision tree, hybrid) and without
training. The blocking evaluation showed no clear advantage for overlapping
approaches with larger window size over disjoint methods with short key sizes.
Maximum pairs completeness and reduction ratios of about 0.95 are achieved.
The other evaluation results show that (i) attribute value matchers based on
Jaro’s algorithm perform better than the other attribute value matchers. (ii)
learning-based approaches outperform approaches without training.

FEBRL: In [7] two disjoint (sorting, sorted neighborhood) and two overlapping (bi-
gram indexing, canopy clustering) blocking methods are compared in terms of
reduction ratio, pairs completeness and F-score on artificial test problems with
varying object sizes. Both bigram indexing and canopy clustering outperform
the two disjoint blocking methods with the right parameter settings. Pairs
completeness with the two disjoint methods had a maximum of about 0.96,
whereas the maximum for canopy clustering with TFIDF is 0.98. Canopy clus-
tering also achieved the best reduction ratio of 0.9 and best F-score of over 0.98.
However, the method seems highly dependent on the choice of the threshold.
With a suboptimal choice pairs completeness drops to 0.8. The evaluation in
[32] evaluates the threshold and the nearest-based training selection methods.
The evaluations showed that a SVM-based matcher combination with auto-
matic training selection is often better than a numeric matcher combination
without training.

Context Based Framework: The evaluation considered match tasks from two
domains, personal webpages and bibliographic references (publications, au-
thors, departments and organizations). The authors compare various attribute
value and context matchers (eTFIDF, connection strength), matcher combi-
nation strategies utilizing training (mainly SMOreg, Logistic) and manually
configured strategies. The evaluation shows that matcher combination strate-
gies considering context and utilizing training can outperform manually con-
figured combined strategies. Effectiveness performance measured in terms of
F-measure range between 0.599 and 0.89 on the personal webpages task. Train-
ing times differ depending on the utilized learner from 0.11 s to 53.66 s . The
application times range from less then 1 s to less than 5 s depending on the
size of the dataset.
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6.6 Summary and discussion

Object matching frameworks allow the combined use of blocking and multiple
matcher algorithms to effectively solve diverse match tasks. They have to meet
challenging and partly contradicting requirements, in particular high effectiveness,
efficiency, genericity and low manual effort. To assess the current state of art we
comparatively analyzed the functionality and published evaluation results of eleven
proposed research prototypes for object matching. The comparisons are based on a
common set of criteria. Criteria for the functional comparison include the supported
choices for blocking methods, matchers, combination of matchers, and training se-
lection. Criteria for the evaluation comparison consider the used test problems,
applied match strategies and the achieved effectiveness and efficiency performance.
The proposed criteria have value beyond the systems considered here but should
enable to categorize and comparatively assess further object matching frameworks
and their evaluations.
Our study indicates a research trend towards using supervised (learning-based) and
hybrid approaches to semi- automatically determine an object matching strategy for
a given match task. Most of the considered frameworks including Operator Trees
and the Context Based Framework employ supervised learners to derive numerical
combination functions or match rules specifying how multiple matchers should be
combined for deriving a match decision. Hybrid frameworks provide the largest
scope of methods for solving object matching tasks, in particular for blocking and
the combined use of several matchers. Among the considered hybrid frameworks,
FEBRL offers the largest selection of different blocking strategies and attribute
value matchers, while the Context Based Framework supports the largest number
of learners as well as context matching. Unfortunately, the flexibility of the hybrid
frameworks comes at the price of an increased complexity for users to choose an
appropriate method (selection of matchers to be considered, size and selection of
training data) - despite the use of supervised machine learning approaches.
All frameworks focus on offline matching, i.e., they do not yet cover online match-
ing. The definition of the blocking key is not yet derived (semi-)automatically
from training data but has to be specified manually in all considered frameworks.
While attribute value matchers are well supported the combination of context and
attribute matchers is not and should be further studied. Learning-based object
matching frameworks should provide more support for (semi-)automatic selection
of suitable training data with low labeling effort. So far learning-based approaches
only helped to optimize some decisions, e.g., determining parameters for matchers
(e.g., similarity thresholds) and combination functions (e.g. weights for matchers)
while other decisions (e.g., selection of the similarity functions and attributes to be
evaluated) still have to be determined manually.
The published framework evaluations used diverse methodologies, measures, and
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test problems making it difficult to assess the effectiveness and efficiency of each
single system. While the reported evaluation results are usually very positive, the
tests so far mostly dealt with small match problems so that the scalability of most
approaches is unclear. Hence, scalability to large test cases needs to be better ad-
dressed in future frameworks. Some recent work regarding scalability has focused
on computational aspects of string similarity computation [120, 4, 61, 145] and
time-completeness trade-offs [90]. Furthermore, we see a strong need for compara-
tive performance evaluations of different frameworks and object matching strategies.
Standardized benchmarks for object matching are needed for comparative investiga-
tions; first proposals exist [106, 140] but have not yet been implemented or applied.
Published evaluation results should also be reproducible by other researchers, ideally
by providing the prototype implementations and test data.
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7
FEVER - A framework for object

matching

The analysis of existing frameworks in the previous part revealed several shortcom-
ings regarding the support of training-based approaches, product matching and the
evaluation of different approaches. This motivated us to develop a novel comprehen-
sive framework for object matching - FEVER. The framework supports a wide-range
of the previously introduced methods for blocking, matchers and the combination
of matchers. Furthermore FEVER offers methods for the comparative evaluation of
match approaches and frameworks.
In this chapter we give an overview of our generic object matching framework
FEVER (Framework for EValuating Entity Resolution).
After introducing the architecture and illustrating the overall match process in Sec-
tion 7.1, we introduce in Section 7.2 the data structures within FEVER. In Sec-
tion 7.3 we define and describe the various operators that are provided to design
object matching workflows. An important aspect of the FEVER framework is the
support of training selection methods. Operators for training selection are intro-
duced in Section 7.4. In Section 7.5 we introduce example workflows for non-learning
as well as learning-based match approaches. In Section 7.6 we discus configuration
strategies for comparative object matching evaluation. In Section 7.7 we illustrate
the implementation and use of the graphical user interface. Finally, we compare in
Section 7.8 the functionality of FEVER with the competitive frameworks analyzed
in Chapter 6.
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Figure 7.1: Architecture of FEVER

7.1 System architecture

Figure 7.1 illustrates the architecture of FEVER consisting of three layers, the Core
Components to handle match-related data and providing a library of operators for
specifying match workflows, the Workflow Editor to configure matchers and match
workflows, and the Runtime Engine to control the execution of match workflows.
FEVER supports match processing as a workflow of several match steps.
A FEVER workflow specification has three parts: input data definition, operator
tree, and configuration specification. All parts can be edited in the GUI-based
workflow editor.
The input data includes the objects of one or two data sources to be resolved, and the
perfect match result for evaluating the effectiveness of the object matching workflow.
For training-based match approaches, the training data also needs to be provided.
The actual match workflow is declaratively described in terms of an operator tree.
Operator trees are a common modeling concept for numerous database problems
(e.g., query optimization) and have previously also been used to model object match-
ing approaches [25]. We build on those previous approaches and extend the idea to
a flexible method for defining match workflows. The input data sources form the
leaves of the tree and non-leaf nodes are operators. The output of the root operator
is the final match result specifying the identified correspondences within a so-called
mapping (see next section). FEVER provides an extensible operator library with a
variety of operators for training selection, blocking, matching, and mapping combi-
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nation. Operators define their expected input and delivered output as well as their
mandatory and optional parameters. The tree is executed in a post-order traversal
sequence and the results of the child operators are input to the father operator. An
operator tree is well formed if all operators are provided with their necessary input
and mandatory parameters are set.
The operator tree concept provides a high flexibility to specify a tailored workflow for
a given match task and supports its comparative evaluation with other approaches.
In particular, it allows the selection and combination of several match approaches.
Developed operator trees can be saved as building blocks and can then be reused as a
sub-tree in other workflow definitions. The operator tree concept and the supported
operators are described in the following section.
The third workflow component specifies the execution of the operator tree according
to a configuration strategy defining the parameter settings of all operators of the tree.
For evaluation purposes the operator tree is usually executed multiple times with
different parameter settings. This way the effectiveness of the match workflow for
different settings can be evaluated and the effort to find an effective configuration can
be determined. Configuration strategies are explained in more detail in Section 7.6.
Specified workflows are stored in a repository and can be executed by the FEVER
Runtime execution (upper part of Figure 7.1). The match result of each operator
tree execution can be automatically evaluated with the help of the given perfect
result and, thus, evaluation measures such as precision, recall, and F-measure can
be determined. In addition, performance indicators are recorded, e.g., execution
runtime and used main memory. The calculated quality measures are stored and
can be compared to the effort of configuring the parameter setting. Hence, FEVER
not only allows an evaluation of the match quality, but also facilitates an analysis of
the effort expended to reach the respective match quality. As a consequence, FEVER
aims at supporting a comparative evaluation of match algorithms by comparing the
match quality reached under the same effort. For smaller datasets the execution of a
match workflow can be started from the GUI and the results interactively inspected
via the build-in plotter. For larger datasets the match workflow can be modelled
within the GUI and then executed in batch mode. The FEVER implementation is
written in Java and uses the Rapid Miner [99] library of machine learners.

7.2 Data structures

FEVER distinguishes between two principal data structures: object set and map-
ping.
An object set OA represents as set of objects from a defined data source A (e.g.,
DBLP or Amazon). Objects are of a particular semantic type (e.g., publication or
product). They are represented by a set of attribute values.
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Objects are interconnected by so-called mappings.
Like [73] we represent mappings by a mapping table with three columns. Each row
represents a correspondence consisting of the ids of the domain and range entities
and the corresponding similarity value.
We distinguish three kinds of mappings: generated, perfect and training mappings.
A Generated Mapping MG is the result of an object matching process. Here the
similarity value of a correspondence represents the algorithm’s confidence that the
two objects represent actual the same real-world entity.
A Perfect Mapping MP is needed to evaluate the effectiveness of an object matching
approach, i.e., to calculate evaluation measures such as precision, recall, and F-
measure. A Perfect Mapping only contains true correspondences and, thus, the
similarity value is equal to 1 for all correspondences.
A Training MappingMT represents training data and is needed as input by training-
based object matching approaches. A Training Mapping contains correspondences
that represent true duplicates (oi, oj, 1) as well as true non-duplicates (oi, oj, 0).

7.3 Operators

FEVER’s operator library offers a variety of operators. The main operator types
for blocking, matching and training selection generate mappings as operator output.
The uniform mapping data structure is the foundation for the flexible combination
of operators within trees. Some previous match approaches represent their results as
clusters of entities that are considered to be the same. FEVER can also support such
methods by interpreting clusters as a mapping containing pairwise correspondences
between all objects of the cluster.
The supported operators can be divided into five classes. The five classes with all
corresponding operators are listed in Table 7.1 and are described in the following.
Operators for training selection are in more detail discussed in Section 7.4:
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Name Input Parameters

Attribute operators

setAttribute (OA)
AttrA: attribute name
v: attribute value

Blocking operators

standardBlocking (OA), (OA, OB)
AttrA: attribute name
AttrB: attribute name

sortedNeighborhood (OA)
AttrA: attribute name
AttrB: attribute name w:
window size

qGramIndexing (OA), (OA, OB)

AttrA: attribute name
AttrB: attribute name
q: q gram length
t ∈ [0, 1]: threshold

canopyClustering (OA), (OA, OB)

AttrA: attribute name
AttrB: attribute name
tl ∈ [0, 1]: loose threshold
tt ∈ [0, 1]: tight threshold
s ∈ {Jaccard,TFIDF}: similarity
measure

Match operators

simJoin (OA), (OA, OB), (MG)

AttrA: attribute name
AttrB: attribute name
s ∈ {EditDistance, JaroWinkler,
MongeElkan, Cosine, Jaccard,
Q-Gram, TFIDF, Numeric}:
similarity measure
t ∈ [0, 1]: threshold

Operators for combining matchers

Workflow-based combination
union (MG) f : combination function
intersect (MG) f : combination function
vote (MG) f : combination function
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Name Input Parameters

Filter operators
threshold (MG) t: threshold
maxN (MG) n: maxN
maxDelta (MG) d: tolerance value

Learning-based combination
svm (MT ) M = {m}: set of matchers
logisticRegression (MT ) M = {m}: set of matchers
decisionTree (MT ) M = {m}: set of matchers
modelApplication (OA), (OA, OB), (MG)

Training selection operators

random (OA), (OA, OB), (MG)
n: number of training pairs
t ∈ [0, 1]: minimal threshold
s: similarity measure

ratio (OA), (OA, OB), (MG)

n: number of training pairs
t ∈ [0, 1]: minimal threshold
r ∈ [0, 0.5]: ratio
s: similarity measure

Table 7.1: Overview over FEVER operators

7.3.1 Attribute operators

Attribute operators manipulate attribute values of objects. With the help of the at-
tribute operator setAttribute attributes can be generated and changed. Attribute
operators expect as input a single set of objects OA.
The operator setAttribute has a parameter AttrA specifying the name of the at-
tribute that should be added or changed if it already exists. The parameter at-
tributeValue defines the value of the attribute. The value can be a static value or
an expression using the existing attribute values of the object. For example, for a
product object we can calculate a new attribute lump sum price as the sum of the
retail price and the shipping costs. the attribute that should be deleted within all
objects.
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7.3.2 Blocking operators

Blocking operators realize blocking approaches as introduced in chapter 3. They
reduce the search space to a subset of the most likely matching object pairs. Blocking
operators expect as input either a set of objects OA from a single source or two sets of
objects OA and OB from two sources. As result they return a mapping M . FEVER
supports disjoint as well as overlapping blocking methods. All blocking operators
have to specify a blocking key. The blocking key is given as an attribute and can be
generated beforehand with the available attribute operators. Additional parameters
such as the window size for the sorted neighborhood operator might be required.

7.3.3 Match operators

FEVER supports a generic attribute value matcher that takes as input either a
set of objects OA from a single source or two sets of objects OA and OB from two
sources or a mapping M . Parameters include the (string) similarity measure to be
applied and the threshold above which objects are considered to match. Currently
the seven string similarity functions discussed in Section 4.1 are implemented as well
as a numeric function for comparing numerical values. For two numbers a and b this
function calculates the similarity as s(a, b) = min(a,b)

max(a,b) .

7.3.4 Operators for combining matchers

Operators for combining matchers combine the result mappings from multiple
matchers. FEVER supports two kind of combination operators: Workflow-based
and Training-based. Workflow-based combination operators combine mappings gen-
erated by independently executed matchers while training-based combination oper-
ators utilize machine learning algorithms for the combination.

Workflow-based combination

FEVER supports the following set operators for combining mappings generated by
independently executed matchers:

• union: This operator unions the correspondences from all input mappings.
Thus, a high recall is achieved. This may lead to a reduction of precision as a
correspondence only has to appear in one of the input mappings.

• intersect: This operator is very restrictive. It determines only those cor-
respondences that appear in all input mappings. This way the precision is
increased at the expense of recall.
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• vote: This operator realizes a majority vote. It determines all correspondences
that appear in more than half of the input mappings.

All three operators obtain a set of n, (n ≥ 2) mappings M = {M1, . . . ,Mn} of the
same semantic object type as input.
A required parameter of all three operators is a combination function f determining
the resulting similarity value s(oi, oj) for a correspondence between object oi and
object oj from the similarity values si of the input correspondences (oi, oj, sm) ∈Mm.
Consecutively we define all available functions.

• Max: This strategy returns the maximal similarity value of any matcher. It
is optimistic, in particular in case of contradicting similarity values. Further-
more, matchers can maximally complement each other.

sMax(oi, oj) = max
m∈M

sm(oi, oj)

• Weighted: This strategy determines a weighted sum of similarity values of the
individual matchers and needs relative weights which should correspond to the
expected importance of the matchers.

sWeighted(oi, oj) =
∑
m∈M

wm · sm(oi, oj)

• Average: This strategy represents a special case of Weighted and returns the
average similarity over all matchers, i.e., considers them equally important.

sAverage(oi, oj) = 1
|M |

∑
m∈M

sm(oi, oj)

• Min: This strategy chooses the lowest similarity value of any matcher. As
opposed to Max, it is pessimistic.

sMin(oi, oj) = min
m∈M

sm(oi, oj)

Filter operators select all correspondences of a mapping that fulfill a given filter
condition. The following operators are supported:

• threshold: This strategy selects all correspondences with a similarity value
above a given threshold t.

• maxN: This strategy selects for each source object the n correspondences with
maximal similarity.

• maxDelta: This strategy selects for each source object the correspondence with
the maximal similarity plus all correspondences with a similarity differing at
most by a tolerance value d, which can be specified either as an absolute or
relative value.
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Learning-based combination

In FEVER a learning-based combination is realized by two kind of operators. So-
calledmodel generator operators utilize a supervised learning algorithm to determine
an effective combination of several input matchers. Currently FEVER offers the
choice between three different operators named after the underlying learning algo-
rithms: Support Vector Machine (svm), Logistic Regression (logisticRegression),
and Decision Tree (decisionTree).
All model generator operators require a training mapping that contains manually
labeled correspondences representing examples for matching (similarity value equals
1) and non-matching (0) objects. Furthermore, they expect as a parameter a list
of attribute matcher specifications M = {m} indicating which similarity measure
should be evaluated on which entity attributes. The learned combination is returned
as a model. In case of SVM and Logistic Regression the model is a numerical
combination function, whereas for Decision Tree it is a decision tree. The learned
model can then be applied by the model application operator to one or two object
sets or an input mapping to determine the match correspondences.
FEVER also supports a multiple learning approach by combining the mapping re-
sult of several base learners (SVM, Logistic Regression or Decision Tree) using the
vote operator. This approach thus derives its match decisions from a set of base
learning’s majority consensus (two entities match if at least half of the base learn-
ers vote for the match). The motivation for combined learning is to compensate
for individual learning’s weaknesses and thus improve overall match quality and ro-
bustness. This comes with the highest execution cost because Fever must execute
the match strategies the three basic learners have determined before it can combine
their results.

7.4 Training selection operators

The effectiveness of a learning-based combination critically depends on the size and
quality of the available training data. For object matching it is important that the
training data is representative for the objects to be matched and exhibit the variety
and distribution of errors observed in practice. Furthermore, the training data
should allow the observation of differences between the available matchers so that
an effective combination of different matchers can be learned. This requires that the
training data contain a sufficient number of both matching as well as non-matching
object pairs. On the other hand, it is important to limit the manual overhead for
labeling. Hence, we wish to keep the number of training object pairs to be labeled
manually as low as possible.
Most previous studies on training-based object matching have provided little details
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on the selection and size of training data and have not studied the influence of
different training sets [18, 37]. In other cases, the authors used a relatively large
amount of training data thus favoring good match quality, however at the expense
of a high manual overhead for labeling [25, 100, 115].
A naive method for training selection is to randomly choose objects from the sets
of objects to be resolved for labeling. However, this way it cannot be guaranteed
that we obtain representative training data. This is because for a given object from
the first dataset, most objects from the second dataset are most likely non-matches
while only few will match. Hence, a random selection of object pairs will result in an
imbalanced training set where the non-matching object pairs will heavily outnumber
the matching pairs. This phenomenon is known as the class imbalance problem and
often reported as an obstacle to the generation of good classifiers by supervised
machine learning algorithms [68].
A better training strategy is the so-called static-active selection of object pairs pro-
posed in [19]. This method compares the entities to be resolved with some state-
of-the-art string similarity measure and selects only pairs that are fairly similar
according to this measure, i.e. their similarity value meets a certain threshold. By
asking the user to label those object pairs a training sample with a high proportion
of matching pairs can be obtained. At the same time, non-matching object pairs
selected using this method are likely to be "near-miss" negative examples that are
more informative for training than randomly selected pairs most of which tend to
be "easy" non-matches. The idea is easy to implement and seems a reasonable way
to obtain representative training data.
In this thesis we propose different generic methods for automatically selecting train-
ing data to be labeled. These methods are provided in FEVER by TrainSelect oper-
ators. They select correspondences from one or two object sets or an input mapping
and prompt users to label them interactively as match or non-match. By doing
so the correspondences are annotated with similarity 0 (non-match) or 1 (match)
and, thus, a training mapping is compiled. Labeled correspondences are addition-
ally stored in a repository to avoid repeated labeling of the same correspondence.
The interactive labeling can be renounced if there is a perfect mapping available.
In this case the selected correspondences are aligned against the perfect mapping to
automatically annotate it with similarity 0 or 1. The chosen TrainSelect operator
determines the resulting training mapping of a specified size. They support a fair
comparison of learning-based matchers by ensuring that learners are provided with
training data of the same size and quality.
Currently, FEVER offers two operators for training selection: Random and Ratio.
Both approaches are discussed in the following.
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7.4.1 Random training selection

This strategy selects n object pairs randomly among the ones satisfying a given
minimal threshold t applying a similarity measure m. This approach is very simple
but may be prone to the class imbalance problem, e.g. for lower (higher) thresholds
the number of non-matching (matching) pairs may dominate the training.
Algorithm 1 shows the pseudo-code for the proposed strategy for a single set of
objects OA. Similarly, he invocation for two sets of objects OA and OB or a mapping
M can be carried out. The pseudo-code refers to the following functions:

• random_select: calculates a mapping based on the specified similarity mea-
sure m and the threshold t and then randomly chooses n object pairs from
this mapping.

• label_pairs: labels the selected object pairs. If a perfect mapping is available
the labeling is obtained by alignment against this mapping. Otherwise the
chosen object pairs are presented the user for labeling.

7.4.2 Ratio training selection

The ratio method is an extension of random that aims at a certain ratio of match-
ing and non-matching object pairs in the training data. It uses a ratio parameter
from the range 0 to 0.5, indicating the minimal percentage of both matching and
non-matching pairs. The ratio 0 corresponds to the random strategy enforcing no
restrictions on the share of matching or non-matching pairs. For ratio values greater
than 0, the number of randomly selected object pairs is reduced so that either the
number of matching or non-matching object pairs satisfies the ratio restriction. For
example, a ratio of 0.4 guarantees that at least 40% of all training pairs are either
matching or non-matching — in other words, at most 60% are non-matching or
matching. By ensuring a minimum number of pairs, the ratio approach aims to en-
hance the training data’s discriminative value for learning effective match strategies.
Algorithm 2 shows the pseudo-code for the proposed strategy. Like for the random
approach the algorithm demonstrates the implementation for a single set of objects
OA. Similarly, the invocation for two sets of objects OA and OB or a mapping M
can be realized. The functions random_select for the initial random selection of
object pairs and random_select for determining the labeling of the selected object
pairs correspond to the same functions for the random selection approach as shown
in Algorithm 1. The function reduce_pairs reduces the selected and labeled object
pairs until the specified ratio of matching and non-matching pairs is achieved.
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Algorithm 1: Random training selection
1 OA: input object set;
2 n: number of training pairs;
3 t: minimal threshold;
4 s: similarity measure;
5 MT : training mapping;
6 MP : perfect mapping (optional);
7 RAND(i) : returns a uniformly distributed integer number between 0 and i− 1;
8 random_select(OA, n, t, s, MP )
9 MT ← select_pairs(OA, n, t, s);

10 MT ← label_pairs(MT , MP );
11 return MT

12 select_pairs(OA, n, t, s)
13 M ← {(oi, oj , si,j)|si,j = s(oi, oj) ≥ t; oi, oj ∈ OA};
14 MT ← ∅;
15 while |MT | < n ∧ |M | > 0 do
16 a← RAND(|M |);
17 (oi, oj , si,j)←M [a];
18 M ←M \ {(oi, oj , si,j)};
19 MT ←MT ∪ {(oi, oj , si,j)};
20 end
21 return MT

22 label_pairs(MT , MP )
23 if MP = ∅ then
24 present MT to user for labeling;
25 else
26 M∗

T ← ∅;
27 foreach (oi, oj , si,j) ∈MT do
28 if (oi, oj , 1) ∈MP then
29 M∗

T ←M∗
T ∪ {(oi, oj , 1)};

30 else
31 M∗

T ←M∗
T ∪ {(oi, oj , 0)};

32 end
33 end
34 end
35 MT ←M∗

T ;
36 return MT
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Algorithm 2: Ratio training selection
1 OA: input object set;
2 n: number of training pairs;
3 t: minimal threshold;
4 r: ratio;
5 s: similarity measure;
6 MT : training mapping;
7 MP : perfect mapping (optional);
8 ratio_select(OA, n, t, r, s, MP )
9 MT ← select_pairs(OA, n, t, s);

10 MT ← label_pairs(MT , MP );
11 MT ← reduce_pairs(MT , n, r);
12 return MT

13 reduce_pairs(MT , n,r)
14 TM ← ∅;
15 TN ← ∅;
16 foreach (oi, oj , si,j) ∈MT do
17 if si,j = 1 then
18 TM ← TM ∪ {(oi, oj , 1)};
19 else
20 TN ← TN ∪ {(oi, oj , 0)};
21 end
22 end
23 sM ← bn · rc; /* required number of matching pairs */
24 sN ← n− sM ; /* required number of non-matching pairs */
25 if |TM | < sM then
26 /* actual number of matching pairs is less than required */
27 rn← |TN | − b |T M |

r − |TM |c
28 ; /* number of non-matching pairs to be removed */
29 for i← 1 to rn ; /* remove non-matching pairs */
30 do
31 a← RAND(|TN |); /* choose random index */
32 (oi, oj , 0)← TN [a]; /* get non-matching pair at random index */
33 TN ← TN \ {(oi, oj , 0)}; /* remove selected non-matching pair */
34 end
35 else
36 if |TN | < sN then
37 /* actual number of non-matching pairs is less than required */
38 rm← b |T N |

1−r − |TN |c; /* number of matching pairs to be removed */
39 for i← 1 to rm ; /* remove matching pairs */
40 do
41 a← RAND(|TM |); /* choose random index */
42 (oi, oj , 1)← TM [a]; /* get matching pair at random index */
43 TM ← TM \ {(oi, oj , 1)}; /* remove selected matching pair */
44 end
45 end
46 end
47 MT ← TM ∪ TN ;
48 return MT
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7.5 Match workflows

In the following we show how non-learning as well as learning-based workflows can
be realized with the operator tree concept of FEVER. Figure 7.2 illustrates exam-
ple workflows for realizing a non-learning as well as a learning-based combination.
For both subfigures the operator tree is shown on the left, while relevant operator
parameters are shown on the right. The tree is executed in a post-order traversal
sequence and the results of the child operators are input to the father operator.

7.5.1 Non-learning workflow

Figure 7.2a shows how a non-learning match workflow is realized as an operator tree
within FEVER. The workflow consists of five operators: a blocking operator, two
match operators, a combination operator, and a filter operator. Input are two sets of
objects from two sources. The blocking operator produces as output a mapping that
is the input to both match operators. The resulting two mappings are combined by
the union operator. The filter operator threshold filters the correspondences to
restrict the mapping result from the union operator to the most similar instances.

7.5.2 Learning-based workflow

Figure 7.2b shows how a learning-based match workflow is realized as an operator
tree within FEVER.
The execution falls into two phases: model generation and model application. The
model generation (right part of the operator tree) requires a training mapping that
contains manually labeled correspondences representing matching (similarity value
equals 1) and non-matching (0) object pairs. The training mapping is obtained
from the training selection operator (in this case random). The training selection
operator (in this case random) semi-automatically chooses object pairs as training
examples. The corresponding label (match or non-match) is either obtained by
automatic alignment against a perfect mapping if such a mapping is available or
through interactive labeling by a user. The learning algorithm (in this case svm)
applies the specified matchers to the object pairs in the training mapping. The
learner then uses the resulting similarity values to automatically determine a match
strategy model, i.e. combination of the specified matchers to derive a match decision
for any object pair.
The second phase (root of the operator tree) applies the determined model for the
real match task (model application) to match a source and target dataset (or to find
duplicates within one dataset). A blocking operator is executed first to reduce the
search space to the most likely matching object pairs.
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(a) Fever match workflow realizing a non-learning combination

(b) Fever match workflow realizing a learning-based combination

Figure 7.2: Fever match workflows. We can see (a) the operator tree and (b) its
relevant configuration specification. 89
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7.6 Configuration strategies for comparative object
matching evaluation

An operator tree typically comprises several operators each having several parame-
ters that need to be specified in order to apply the operator tree to a match problem.
Typical operator parameters have been discussed above. Permissible parameter val-
ues can mostly be defined by a set of possible values, or by a range of real or integer
numbers. For example, the match operator simJoin (see Figure 7.3) has a set pa-
rameter to specify the similarity measure s to be applied and a range parameter
for the similarity threshold t. We further distinguish between bounded and free
parameters. A bounded parameter is already assigned a value through the user in
the operator tree definition. Parameters that are not bounded are called free pa-
rameters. They are treated as parameters of the operator tree and, thus, have to be
assigned a value dynamically according to a configuration strategy. For the exam-
ple in Figure 7.3, the names of the attributes to be compared are bound parameters
(manually provided) while the similarity function and threshold are free parameters.
An assignment of all free parameters of an operator tree with a valid value is called
a parameter setting. For operator trees without learning-based match operators the
parameter setting is sufficient for the configuration. Training-based operator trees
additionally require a training mapping for the configuration. To allow for com-
parative evaluations, we take an effort-based approach. We evaluate the quality of
an operator tree against the effort spent to determine the match configuration. We
consider both, the parameterization and the labeling effort. The parameterization
effort can be represented as the number of parameter settings that have been eval-
uated to identify the best setting, i.e., the setting for which the operator tree result
has the best quality (e.g., F-measure). For training-based workflows the labeling
effort regards the number of correspondences that have to be labeled by the user.
We can thus ensure a similar labeling effort for a comparative comparison of differ-
ent training-based approaches. Parameterization and labeling effort are considered
independently and are not set off into a single effort measure. This facilitates an

Figure 7.3: Graphical representation of an operator tree (left) incl. parameters for
selected similarity join operator (right)
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analysis of the reached match quality measured in terms of a quality measure (e.g.
precision, recall, F-measure) against the effort spent for parameterization as well as
for labeling.
The evaluation of an operator tree is subject to a specified maximal labeling effort
M and maximal parameterization effort N . Hence, for training-based operator trees
we restrict the user to label M training pairs. Additionally, we generate N different
parameter settings according to a specified configuration strategy and determine
from all obtained evaluation results the best ones. A configuration strategy takes
as input the free parameters of an operator tree and the maximal parameterization
effort N . To generate N different parameter settings FEVER currently supports
the following configuration strategies:

• UserDefined: In a user defined strategy the parameter settings are com-
pletely specified by the user. This manual strategy can be applied if a defined
set of parameter values should be evaluated, e.g., a threshold parameter value
varies from 0 to 1 in 0.05 steps.

• Random: The random strategy is a straightforward way that assigns pa-
rameter values out of their possible values randomly, i.e., N parameter settings
are selected by random assignment of parameter values.

• Grid: The grid strategy realizes a simple grid search, dividing the multidi-
mensional parameter space into a uniform grid. The coarseness of the grid is
controlled by the number of parameter settings N and, thus determines the
search efficiency and the quality of the solution.

• GradientDescent: The gradient descent strategy is more goal-oriented and
iteratively refines a parameter setting by considering the quality of previously
generated settings.

Note that all (except user-defined) strategies are independent from the match ap-
proach modeled by the operator tree. Thus the configuration strategies can be
applied to different match workflows.

7.7 Implementation and use

FEVER has been implemented entirely in Java. A user-friendly interface is essential
for the practicability and effectiveness of a match framework. The graphical user
interface of FEVER, implemented in Java Swing, provides the user with many ways
to interactively influence the match process. The user can configure the matchers to
be employed. He can then iteratively refine the proposed correspondences by adding
further operators. Furthermore, the user can manipulate the obtained match result.
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Figures 7.4 illustrate how to set up and configure a workflow within FEVER.
Figure 7.4a shows how to define required input data. Input data comprises the data
sources of the objects to be matched. FEVER allows to match objects from a single
data source as well as two sources. Additionally to the input object sources, input
mappings can be configured. When available a perfect mapping can be specified
to automatically evaluate the match quality. For training-based match workflows
a precomputed training mapping can be loaded if already available. FEVER can
import input data from various database systems and different file formats. The
figure illustrates importing objects from a MySQL database. This requires to specify
the connection parameters (e.g., connection url)
Figure 7.4b illustrates the specification of the actual match workflow as an operator
tree. The various operators supported by FEVER can be selected from the context
menu and added to the tree. The user can configure the operator specific parameters.
Figure 7.4c demonstrates how to configure the execution of an operator tree. FEVER
offers several configuration strategies to choose from.
Figures 7.5 illustrates the features for result inspection and manipulation offered by
FEVER.
Figure 7.5a shows the result of a match workflow with the identified correspondences.
The similarity values of the correspondences are highlighted in colour to indicate
the match probability. Green is used for a high similarity, while red is used for a low
similarity. Thus correspondences highlighted in green are very likely true matches,
while red correspondences might be false matches. The user can rework the result
by removing false correspondences or adding missing ones.
Figure 7.5b shows the evaluation details for several executions of a match workflow
with different parameter configurations. For each execution the table shows the
match quality in terms of precision, recall and F-measure. Furthermore, the column
duration indicates the required execution time. The corresponding operator trees
can be inspected by clicking on the magnifiers in the column configuration.
Figure 7.5c shows the graphical analysis feature of FEVER. It shows a graph com-
paring several training-based match strategies using different learning algorithms.
The x-Axis indicates the required effort in terms of the number of training examples,
while the y-Axis plots the F-measure values.
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(a) Input data specification

(b) Operator tree specification

(c) Configuration specification

Figure 7.4: Workflow specification in FEVER
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(a) Match result inspection

(b) Inspection of evaluation details

(c) Configuration specification

Figure 7.5: Result inspection in FEVER
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7.8 Functional comparison with competitive frame-
works

In the following we compare the functionality of FEVER to the competitive frame-
works analyzed in Section 6.4 regarding the five criteria: Entity type, blocking
methods, matchers, combination of matchers, and training selection. As FEVER
supports non-learning as well as learning-based approaches, FEVER ranks among
the hybrid frameworks.

• Entity type: FEVER supports only relational objects.

• Blocking methods: FEVER provides explicit support for blocking based on
disjoint as well as on overlapping object partitioning. It supports all four
most popular blocking approaches, namely Standard Blocking, Sorted Neigh-
borhood, Q-gram Indexing, and Canopy Clustering. Besides FEBRL, FEVER
offers the most comprehensive selection of blocking approaches.

• Matchers: FEVER supports seven string similarity measures and a numeric
measure for comparing numerical attribute values. This is more than most of
the competitive frameworks offer. However, FEBRL provides a even greater
selection of similarity measures. FEVER currently focuses on attribute value
matchers.

• Combination of matchers: FEVER provides the most comprehensive support
for combining multiple matchers. It supports numerical, rule-based, workflow-
based and training-based approaches.

• Training selection: FEVER provides explicit support for (semi-)automatic
training selection.
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8
Comparative evaluation of object

matching approaches with FEVER

In this chapter we use FEVER to evaluate several non-learning and learning-based
workflows for the real-world match problems summarized in Table 8.1.
We introduce the used evaluation match tasks in Section 8.1. To illustrate the
difficulty of finding an effective object matching strategy and thus the need for
learning-based approaches we extensively evaluated non-learning match workflows
and show some selected results for illustration in Section 8.2. The study of non-
matching workflows also includes the evaluation of a commercial object matching
system representing the current state of the art. We use FEVER to specify and
tune match strategies for this system. The results will also be used to determine a
baseline configuration for comparison with the learning-based workflows.
The evaluation of learning-based workflows in Section 8.3 investigates the effective-
ness and training effort of learning-based methods to semi-automatically determine
suitable match strategies. In particular, we study different approaches to select
training data and study how much training is needed to find effective combined
match strategies and their configuration.
In Section 8.4 we present a comparative evaluation of existing match approaches
and frameworks.
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Match task Source size Mapping size

(#entities) (#correspondences)

Domain Attributes Sources Source 1 Source 2 Full mapping Reduced mapping perfect result

(Cartesian product) (blocking result)

Bibliographic -title DBLP- 2,616 2,294 6 million 494,000 2,224

-authors ACM

-venue DBLP- 2,616 64,263 168.1 million 607,000 5,347

-year Scholar

E-commerce -name Amazon- 1,363 3,226 4.4 million 342,761 1,300

-description GoogleProducts

-manufacturer Abt- 1,081 1,092 1.2 million 164,072 1,097

-price Buy

Table 8.1: Overview of real-world evaluation match tasks

8.1 Evaluation match tasks

The evaluation match tasks comprises four match tasks of two semantic types (bib-
liographic and ecommerce data objects). Table 8.1 provides some statistics on these
tasks which are named after the involved web sources. For each of the seven data
sources we consider up to four attributes for matching. The number of objects per
source ranges from about 1,100 to more than 64,000; the size of the Cartesian prod-
uct for the four tasks ranges from about 1.2 million (Abt-Buy task) to 168 million
(DBLP-Scholar) object pairs. We use a fixed blocking strategy for all experiments
and evaluated systems to guarantee equal effectiveness and efficiency of the blocking
step. Thus blocking is not subject to our evaluation. The blocking strategy employs
Trigram on a low string similarity threshold to reduce the search space to the num-
bers shown in Table 8.1 (up to 607,000 pairs). To investigate the scalability of the
match approaches we evaluate the match runtimes not only on the blocking output
but also on the full Cartesian product.
To determine the match quality we further created the perfect match results with
the cardinalities as shown in Table 8.1. Selected attributes of the seven data sources
are also listed.
The match tasks were chosen to represent a spectrum of different data characteristics
and difficulty levels. The first task is expected to be of low difficulty as it deals with
publication references from two well-structured bibliographic data sources (DBLP,
ACM digital library) that are at least partially under manual curation.

8.1.1 Bibliographic match tasks

The bibliographic tasks match publication sets of three computer science bibliogra-
phies: the DBLP bibliography, ACM Digital Library (ACM) and Google Scholar
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Figure 8.1: Duplicate paper entities in Google Scholar

(Scholar). Each of them provides information about publications, authors and
venues but they are very different in terms of data quality, coverage and acces-
sibility.
Scholar maintains a huge collection of publication entries automatically extracted
from documents.
Figure 8.1 illustrates some of the problems on five duplicate entries for the same
paper.
The bibliographic objects have automatically been extracted from web pages or
PDF documents and contain numerous quality problems such as misspelled au-
thor names, different ordering of authors, heterogeneous venue denominations etc..
Google Scholar performs already an object matching by clustering references to the
same publication to aggregate their citations and fulltext sources. However as the
duplicates in the example show, the obtained results are far from perfect influenced
by the mentioned quality and heterogeneity problems. This illustrates that there
is a big potential for improving data quality by better object matching techniques.
This would be critical for tasks requiring the examination of all duplicates, e.g., to
collect all citations of publications for a citation analysis.
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DBLP and ACM focus on computer science publications and are manually main-
tained. Compared to Scholar they are of higher quality, especially DBLP. Since
DBLP has almost no duplicates the mapping result between Scholar and DBLP can
also be used for determining the duplicates in Scholar. This is because all Scholar
entries matching the same DBLP publication can be considered duplicates.
As shown in Table 8.1, our evaluation datasets cover 2,616 publications from DBLP,
2,294 publications from ACM and 64,263 publications from Google Scholar. We
thus have up to 169 million object pairs (DBLP-Scholar) in the Cartesian product
between these datasets.

8.1.2 E-commerce match tasks

The e-commerce tasks deal with sets of related product offers from the online retail-
ers Abt.com, Buy.com (Abt-Buy task), Amazon.com and the product search service
of Google accessible through the Google Base Data API (Amazon-GoogleProducts
task). In order to obtain the perfect match result we included only product entities
with a valid UPC (Universal Product Code) in our datasets which allows a unique
identification of a product. Of course, the match strategies to be evaluated could
not make use of these UPCs but only of the attributes listed in Table 8.1 (espe-
cially product name and description). This is because in reality many websites do
not provide the UPC information so that object matching cannot rely on these in
general.
The Abt, Buy, and Amazon datasets were created by selecting products from prede-
fined categories. Based on the Amazon products, the GoogleProducts dataset were
generated by sending queries on the product name.

8.2 Evaluation of non-learning workflows

For non-learning workflows the number of possible configurations grows with the
number of attributes and the number of matchers. For a given match problem with
n attributes and m provided matchers we can choose from n ∗ m single-attribute
matchers which need to be provided with a similarity threshold to determine whether
or not two entities match or not. Of course, the number of possible configurations
including threshold choices explodes when considering the combination of two or
more matchers.
We perform two experiments for the bibliographic match tasks. In a first experi-
ment we analyze the effectiveness of different similarity measures for matching on
one selected attribute (title). Figure 8.2 shows the F-measure results for different
similarity measure and threshold configurations we systematically evaluated with
the user defined parameterization strategy. As expected there are huge differences
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between the configurations, indicating the difficulty of choosing manually the right
similarity function and threshold. For example, Trigram achieved for both match
tasks the best F-measure overall (92% for DBLP-ACM and 81% for DBLP-Scholar)
for threshold 0.8 but appears highly dependent on the choice of the similarity thresh-
old. For a lower similarity threshold (0.5) Trigram was clearly outperformed by the
Jaccard and TF/IDF measures which appear less sensitive w.r.t. the choice of sim-
ilarity threshold.
In the second experiment we compare different match configurations for the two
problems DBLP-Scholar and DBLP-ACM. For each problem, we consider 18 con-
figurations using the trigram similarity measure for two threshold values (0.5 and
0.8) either on one attribute (title or authors), two attributes (3 combinations), three
attributes (3 combinations) or all four attributes. In case of multiple attributes we
require for a matching object pair that the similarity threshold is exceeded for each
attribute.
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(a) DBLP-ACM

(b) DBLP-Scholar

Figure 8.2: Match accuracy of manually configured single-attribute matcher for
DBLP-ACM and DBLP-Scholar
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Figure 8.3 shows the resulting F-measure results for the two match tasks. We ob-
serve that there are not only big differences between the configurations for each
of the problems but also between the problems. While some configurations using
multiple attributes outperform the single-attribute results it turns out to be quite
challenging to find the right attributes to consider jointly and to determine use-
ful similarity thresholds. For the DBLP-Scholar problem the quality limitations of
Scholar on years and venues render only two attributes useful: title and authors. But
even for the DBLP-ACM task we observe a poor performance for all configurations
using the venue attribute. A closer inspection of the data revealed large differences
in the venue names between ACM and DBLP (use of different abbreviations, etc.)
indicating that this attribute would need a large normalization overhead to become
useful for matching these sources. While for both object matching tasks the best
single attribute configuration is title similarity with threshold 0.8 the two-attribute
configurations differ already. For DBLP-Scholar the combined consideration of title
and authors with a lower threshold 0.5 performed best. For DBLP-ACM this config-
uration also performed well but was outperformed by the consideration of title and
year. The match workflow using trigram similarity on both title and authors with
a threshold of 0.5 performed reasonably well on both matching tasks (F-measure
91.4% for the DBLP-ACM task and 82.3% for DBLP-Scholar).
To better assess the quality of the learning-based match strategies we applied a
state-of-the-art object match system (referred to as COSY) to our match tasks.
Due to license restrictions we cannot provide the name of the evaluated system.
The approach has several parameters that need to be configured. The most impor-
tant parameter is the overall MinimumSimilarity threshold. An object pair will be
considered a match only if it has a similarity that is greater than or equal to the this
threshold. Additional attribute-level similarity thresholds can optionally be specified
for each attribute pair that should be considered in the computation of the object
similarity. Hence, the number of parameters grows with the number of attributes.
Figure 8.4 shows the precision, recall and F-measure results for the four match
tasks using either one or two attributes using the standard configurations (0.5 for
overall MinimumSimilarity, 0.0 for attribute MinimumSimilarity). For these tests
we used the first or first two attributes listed in Table 8.1 (publication title and
authors for the bibliographic tasks, product name and description for the ecommerce
tasks). Figure 8.4 reveals significant differences for the four match tasks. While
the first bibliographic match task could effectively be solved (F-measure > 92%)
the results for the three other tasks are much worse especially for the ecommerce
tasks. Furthermore, the default parameters result in a reduced match quality for
two attributes compared to only one attribute for all four tasks indicating a strong
need for manually finding better parameter settings.
However, finding suitable parameter settings is very challenging even for domain
experts due the large number of possible parameter combinations. To find a better
baseline results than using the default parameters we used FEVER on smaller sub-
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(a) DBLP-ACM

(b) DBLP-Scholar

Figure 8.3: Comparison of non-learning match workflows for DBLP-ACM and
DBLP-Scholar using Trigram

sets of the match tasks (500 randomly selected object pairs with a minimal string
similarity, analogous to the Random training selection approach (as described in
7.4.1) to find the best settings for the three similarity thresholds when using two
attributes for matching. For each of the three MinimumSimilarity thresholds we
considered 11 values (0 to 1 in 0.1 steps) resulting in a total of 1,331 configura-
tions that we evaluated for each of the four match tasks. For each task, we choose
the configuration with the highest F-measure as the baseline strategy. The cor-
responding results for the whole datasets are indicated in Figure 8.4 in the third
bar (“tuned” for 2 attributes) for each match task. We observe that the tuned
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threshold Cosine Jaccard TFIDF

0.1 1504.2 835.2 171.1

0.2 365.3 39 199.1

0.3 85.8 7.2 154.6

0.4 18.2 3.6 149.3

0.5 20.0 3.7 153.3

0.6 34.0 4.8 208.3

0.7 26.0 3.0 164.9

0.8 15.2 2.6 152.8

0.9 19.7 3.7 156.0

1.0 23.1 3.3 148.8

Table 8.2: Execution times for non-learning matchers for DBLP-Scholar

strategies always outperform the default configuration for two attributes and for
the three more challenging tasks also the default strategy on one attribute. The
high tuning effort spent indicates that the reported results are rather optimistic for
manually determined match strategies with state-of-the art implementations. The
fact that the absolute match effectiveness remains comparatively low especially for
the ecommerce tasks underlines that these are really challenging problems to deal
with.

8.2.1 Efficiency evaluation

The efficiency evaluation focuses on the DBLP-Scholar match task for the Cartesian
product. Table 8.2 shows the execution times for matchers based on four different
similarity measures, namely Cosine, Jaccard, and TFIDF, subject to the chosen
similarity threshold.
The implementation of the Cosine and Jaccard similarity measures are based on the
filtering techniques described in [146]. Thus matchers based on these two similarity
measures require less time for higher thresholds. The figure shows that matchers
based on Cosine or Jaccard are most efficient.
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.4: Match accuracy for a state-of-the-art approach (COSY) with default
and tuned configurations
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8.3 Evaluation of learning-based workflows

8.3.1 Random versus Ratio training selection

We compared random and ratio training selection considering the results for two
training sizes of 50 and 500 selected object pairs, representing a rather small-to-
moderate labeling effort. We varied the minimal similarity threshold for the TFIDF
similarity (on the first attribute listed in Table 8.1) from 0.3 to 0.8.
Figures 8.5 and 8.6 display the F-measure results for the four match tasks DBLP-
ACM, DBLP-Scholar, Abt-Buy, and Amazon- GoogleProducts and compares the
random and ratio training selections. Figure 8.5 shows the results for labeling effort
50 and Figure 8.6 the results for labeling effort 500. We obtained the F-measure
results with eight matchers and with SVM as the learner. For comparison, we also
show the F-measure results for the manually determined baseline match configura-
tions. The matchers used for learning operate on the same two attributes as the
baseline strategy but apply one of the four similarity measures (Cosine, Jaccard,
TFIDF, or Trigram) on them, resulting in eight matchers.
We first observe that even for the small training size of 50, the learned match
strategies mostly outperform the baseline strategies, especially for the more difficult
e-commerce tasks (about 14% improved F-measure values). Although the random
and ratio approaches perform largely similarly, random is consistently somewhat less
effective and more dependent on the chosen similarity threshold and training size.
For higher similarity thresholds (≥ 0.6), random mainly selects matching object
pairs and thus provides few nonmatching pairs, making it difficult to learn how to
identify nontrivial, nonmatches. Furthermore, the nonmatching object pairs selected
with a high threshold might be rare outliers, and we risk the learned model being
overfitted to those special cases, preventing it from classifying other object pairs
correctly.
The ratio approach is generally better than random because it maintains a better
balance between matching and nonmatching object pairs by eliminating entities from
a randomly selected set of pairs. Although this reduces the remaining number of
training data, our results show that this is more than offset by the better quality for
learning. We experimented with different values for the ratio parameter and found
rather stable results in the range from 0.2 to 0.5, with 0.4 as a good compromise
value. The results show that ratio is also relatively stable for similarity thresholds
between 0.3 and 0.6, even for smaller training sizes. For Abt-Buy, a similarity
threshold of ≥ 0.7 left almost no nonmatches due to a heterogeneous representation;
ratio thus became unable to retain a sufficient number of training pairs.
Based on this experiment, we conclude that the ratio approach is effective for se-
lecting training data for learning-based object matching.
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.5: Comparison of Random and Ratio training selection using SVM with 8
matchers and 50 training pairs
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.6: Comparison of Random and Ratio training selection using SVM with 8
matchers and 500 training pairs
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8.3.2 Learner evaluation

In this experiment, we want to evaluate the relative quality of the four learner
strategies for determining a combined object matching strategy: decision tree, lo-
gistic regression, SVM and the multiple learning approach. We used the same eight
matchers than in the previous experiment.
Figure 8.7 shows the F-measure results for the four match tasks achieved with the
four learners and different labeling efforts (x-axis). The labeling effort varies between
20 and 500 object pairs. We observe that all learners benefit from increasing the
training size especially for the DBLP-Scholar and Abt-Buy problems. For all match
tasks the baseline strategy could be clearly outperformed in most cases even for
very small training sizes of 20 or 50 labeled object pairs. For the maximal training
size of 500 the F-measure results could be improved to about 97% (vs. 94% for
the baseline strategy) for DBLP-ACM, 91% (vs. 83%) for DBLP-Scholar, 86% (vs.
66%) for Abt-Buy and 77% (vs. 62%) for Amazon- GoogleProducts.
We observe that the three basic learners perform differently for the four match tasks
so that no single basic learner consistently outperforms the others. For example,
decision tree performs worst for DBLP-ACM but best for Abt-Buy. The decision
tree and logistic regression approaches benefit most from more training data while
SVM performs relatively well even for small training sizes.
An important observation is that the rather simple multiple learning approach con-
sistently performs best for all match tasks and training sizes. This shows that it is
able to effectively combine the strengths of the individual basic learners and com-
pensate their weaknesses. The effectiveness of multiple learning approaches has also
been demonstrated in other areas than object matching [133].

8.3.3 Influence of match configuration

To examine the usefulness of using a greater selection of matchers we now compare
the performance of the four learners for two match configurations. For this compar-
ison we focus on the more challenging match task DBLP-Scholar. In addition to the
previously considered configurations with the eight matchers we now consider the
four similarity measures on three attributes (title, authors, and venue) resulting in
a total of 12 matchers.
Figure 8.8 contains a separate diagram for each of the four learners comparing the
F-measure results for the two match configurations and different training sizes. The
curves indicate that for small amounts of training examples the increased choice of
matchers does not significantly improve performance but mostly decreases perfor-
mance. This indicates that the learners need more training to effectively deal with
the much increased solution space for selecting, ordering and weighting the applica-
ble matchers. We therefore studied additional training sizes of up to 10,000 training
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.7: Comparison of different learners
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pairs for this experiment. With more training, all learners eventually benefit from
the increased number of matchers and outperform the object matching strategies
based on only eight matchers. The improvements are significant for all learners es-
pecially for 500 and more training samples. The decision tree learner achieves this
already for 50 training examples. It also benefits the most from increased training
sizes and achieves the absolute best F-measure (93.4% for n = 10, 000).
To summarize we observe that our tuning framework can utilize a large choice of
matchers to improve performance albeit at the expense of more training. The deci-
sion tree learner needs the least training data to utilize the increased optimization
potential.

8.3.4 Concluding remarks

We investigated the use of supervised learners to semi-automatically determine ef-
fective object matching strategies for web data. We showed that the automatically
found combinations of different matchers can clearly outperform manually tuned
matcher combinations using a state-of-the art commercial match implementation.
This is especially true for difficult match tasks such as matching heterogeneous prod-
uct entities of different web sources. The improvements are achieved even for very
small training sizes incurring a low manual effort compared to the high tuning effort
needed for non-learning-based match strategies.
Using our evaluation platform FEVER we evaluated two methods for selecting train-
ing data and found the so-called Ratio method a simple and effective approach
providing a balanced number of matching and non-matching training examples for
learning. For learning we devised a simple yet effective multiple learning approach
that is able to compensate weaknesses of basic learners even for small training sizes.

112



CHAPTER 8. COMPARATIVE EVALUATION OF OBJECT MATCHING
APPROACHES WITH FEVER

(a) Decision Tree (b) Logistic Regression

(c) SVM (d) MultipleLearning

Figure 8.8: Evaluation of different matcher selections
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8.4 Comparative evaluation of match approaches and
frameworks

Despite the huge amount of recent research efforts on object matching there has
not yet been a comparative evaluation on the relative effectiveness and efficiency of
alternate approaches. We therefore present int this chapter such an evaluation of
existing implementations on challenging real-world match tasks. We consider ap-
proaches both with and without using machine learning to find suitable parameter-
ization and combination of similarity functions. In addition to approaches from the
research community we also consider a state-of-the-art commercial object matching
implementation. Our results indicate significant quality and efficiency differences
between different approaches. We also find that some challenging resolution tasks
such as matching product entities from online shops are not sufficiently solved with
conventional approaches based on the similarity of attribute values.
The chapter is organized as follows: Section 8.4.1 describes the use of the FEVER
framework to perform the comparative evaluation. It introduces the considered non-
learning and learning-based match approaches and illustrates the FEVER operator
trees applied for the evaluation. The evaluation results are presented and discussed
in Section 8.4.2.

8.4.1 Evaluation setup

Non-learning match approaches

Figure 8.9a illustrates the FEVER operator tree that was applied in our evaluation
of non-learning match approaches. We first apply a blocking operator to reduce the
search space to the most likely matching object pairs. For comparability, we use a
fixed blocking strategy for all non-learning and learning-based match approaches,
i.e., blocking is not subject of the evaluation. The blocking result is input to the
non-learning match approaches to be evaluated. In this study all considered match
approaches are based on so-called attribute matchers that evaluate the similarity
of attribute values based on some similarity function (e.g., an approximate string
similarity). The approaches may evaluate only a single matcher (for a specific at-
tribute pair and similarity function) or multiple matchers using different attribute
pairs or similarity functions. In the latter case the approaches also need to support
a combination of the individual similarities to derive a match decision. In our eval-
uation, we will always use the same attributes for comparability. Furthermore, all
non-learning match approaches apply a threshold-based selection of the matching
object pairs and require the similarity threshold to be provided as a parameter.
For the similarity computation and the threshold-based match decision we used the
implementation of the following non-learning match approaches:
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(a) Workflow for evaluating non-learning ap-
proaches

(b) Workflow for evaluating learning-based ap-
proaches

Figure 8.9: FEVER match workflows for evaluating existing object matching ap-
proaches

• COSY: This is the state-of-the-art commercial system for object matching as
introduced in Section 8.2.

• PPJoin+ [146] is a single-attribute match approach (similarity join) using so-
phisticated filtering techniques for improved efficiency. The approach has two
parameters that need to be configured. The parameter function determines
the similarity function used for the join. We will evaluate both supported
implementations for the similarity function (Cosine, Jaccard). The parame-
ter threshold determines the threshold for the similarity values above which
entities are considered to match.

• FellegiSunter [54] is a non-learning approach from the FEBRL framework
[33]. For similarity computation we evaluate three of the similarity measures
provided by FEBRL (Winkler, Tokenset, Trigram). The approach has an
lower and upper similarity threshold that can be adjusted. Object pairs with
a similarity above the upper classification threshold are classified as matches,
pairs with a combined value below the lower threshold are classified as non-
matches, and those object pairs that have a matching weight between the two
classification thresholds are classified as possible matches. For our evaluation,
we set the lower threshold equal to the upper threshold as we only want a
classification into matching and non-matching object pairs.

FEVER allows a systematic evaluation of operator trees for different parameter set-
tings to help finding a suitable configuration. For this study we limit the number
of parameters to be set by applying a fixed blocking approach and manually pre-
selecting the attributes to be evaluated. We further evaluate the existing similarity
functions either on one or two attributes of the input datasets. In both cases we have
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to specify similarity thresholds on the single attribute or combined attribute simi-
larity. For comparability, we evaluate every match approach for a fixed maximum
number, N, of settings for the threshold parameters. FEVER supports several meth-
ods for selecting the parameter values such as manual (user-defined) and random.
For this evaluation, we use the gradient descent strategy that iteratively refines a
parameter setting by considering the quality of previously generated settings.

Learning-based match approaches

Figure 8.9b shows the FEVER operator tree applied for the evaluation of learning-
based approaches.
In our evaluation we will compare several existing training-based approaches for
model generation and application offered by the following frameworks:

• FEBRL [33] (Freely Extensible Biomedical Record Linkage) provides
a support vector machine (SVM) implementation for learning suitable matcher
combinations. For attribute matching we will evaluate the same three similar-
ity measures than for the non-learning matchers studied for FEBRL.

• MARLIN [18] (Multiply Adaptive Record Linkage with INduction)
offers two string similarity measures (Edit Distance and Cosine) and several
learners, specifically SVM and decision trees. The learners can be used in a
single step approach or can be employed for a two-level learning approach.
For the two-level approach string similarity measures are first trained for ev-
ery selected attribute so that they can provide accurate estimates of string
distance between values for that attribute. Next, a final decision is learned
from similarity metrics applied to each of the individual attributes.

The effectiveness of machine learning approaches is known to depend on the pro-
vision of sufficient, suitable, and balanced training data. On the other hand, the
number of object pairs to be labeled affects the manual tuning effort and should
thus be small. To address these issues we build upon our evaluation experiences and
only consider object pairs for labeling for which the similarity exceeds a specified
threshold t. This ensures that the training is not dominated by trivial non-matching
object pairs that are not useful to find effective matcher parameters and matcher
combinations. We use our Ratio training selection approach. We found that setting
r = 0.4 and t = 0.4 with TFIDF is a reliable and effective default configuration.
Our evaluation for learning-based matching will thus be based on this configuration.
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8.4.2 Evaluation results

We first present match quality and runtime results separately for non-learning and
learning-based approaches. Afterwards we briefly compare the two kinds of matchers
with each other. The runtime results are determined for a HP Z400 workstation with
2.66 GHz Intel Quad-Core Processor W3520 and 4GB of RAM running 64-bit Win-
dows 7. The evaluated match approaches are implemented in different languages:
PPJoin+ is implemented in C++, MARLIN in Java and FEBRL in Python.

Non-learning approaches

Figures 8.10 and 8.11 show the match quality (precision, recall, F-measure) results
for the four real world match tasks achieved with different non learning approaches.
Figure 8.10 shows the results for approaches operating on just a single attribute,
namely the first attribute listed in Table 8.1 (publication title for the bibliographic
tasks, product name for the e-commerce tasks). Figure 8.11 shows the results for
approaches combining the similarity for two attributes (the first two attributes listed
in Table 8.1). In both cases we optimized the threshold for the final match decision
while all other parameters of the approach were kept constant. Optimization was
done with the GradientDescent approach on a test set of 500 object pairs for each
match task. For the FellegiSunter approach from the FEBRL framework we consid-
ered three different similarity measures, namely Winkler, TokenSet, and Trigram.
FEBRL’s FellegiSunter approach sums the logarithms of the single similarities. For
the COSY approach it is not known how similarities are combined.
All simple and combined approaches could effectively solve the simple bibliographic
match tasks DBLP-ACM (F-measure> 91%), except for the FellegiSunter approach
with the Winkler measure which did not even reach an F-measure of 50% because
it suffers from a very low precision. The e-commerce match tasks turned out to be
much more challenging so that no approach could achieve an F-measure of more
than 62% (Amazon-GoogleProducts) or 70% (Abt-Buy). The COSY approach is
the top or among the top performing approaches for all match tasks. From the Fel-
legiSunter approaches the configuration using Trigram performed best for all match
tasks. Using two attributes (first two of Table 8.1) is not always more effective than
using one attribute because it is difficult to find a good similarity combination. All
approaches become worse for the easy bibliographic match task DBLP-ACM. COSY
becomes worse for DBLP-ACM, DBLP-Scholar, and ABT-BUY. PPJoin+ could not
be evaluated on two attributes because no combination approach is provided.
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.10: Performance results for simple non-learning approaches (1 attribute)
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.11: Performance results for non-learning combination approaches 2 at-
tributes)
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Table 8.3 lists the execution times for the considered non-learning approaches for the
blocked input as well as the Cartesian product of the considered match tasks. The
table shows significant differences between the approaches already for the blocked
input. The evaluation of the Cartesian product tests the scalability and leads to
huge differences. PPJoin+ and COSY achieved very fast execution times and could
even achieve acceptable run times for the Cartesian product. PPJoin+ implements
an intelligent pruning of the search space and is uniformly the fastest approach for
all match tasks with execution times between less than a second to at most seven
seconds. The small increase of at most a factor of 2 for evaluating the Cartesian
product proves the excellent scalability of PPJoin+. In this respect it also outper-
forms COSY that noticeably slows down for the Cartesian product evaluation of
DBLP-Scholar (almost 4 minutes vs. 9 seconds for the blocked input).
The considered FEBRL approaches were mostly much slower than COSY and
PPJoin+, on the Cartesian products by orders of magnitude. This may be in-
fluenced by the Python-based implementation of FEBRL. FellegiSunter using the
Winkler similarity turned out to be not only the least effective but also by far the
slowest of all non-learning match approaches. On the blocked input, FEBRL with
tokenset similarity is almost as fast as COSY.

Learning-based approaches

Figures 8.12, 8.13 and 8.14 show the F-measure results for the four real-world match
tasks achieved with different learning-based approaches from FEBRL and MARLIN
and different labeling efforts (x-axis). The labeling effort varies between 20 and 500
object pairs, i.e., we consider only comparatively small training sizes and thus a
limited amount of labeling effort. The F-measure results are averaged over 10 runs.
All results in Figures 8.12, 8.13 and 8.14 refer to matching on the first or the first
two attributes listed in Table 8.1 (publication title and authors for the bibliographic
tasks, product name and product description for the e-commerce tasks) with dif-
ferent similarity functions. Figure 8.12 shows the results for the SVM learner of
FEBRL that was applied for the same three similarity functions (TokenSet, Tri-
gram, and Winkler) as for the non-learning case. In addition we use the SVM for
two combined match strategies using all three similarity measures either on one or
on two attributes. Figures 8.13 and 8.14 show the results for MARLIN separated
by the employed learner, first for MARLIN’s decision tree implementation ADTree
(Figure 8.13) followed by the SVM results (Figure 8.14). For both learners we ap-
plied the two similarity measures Edit Distance and Cosine. EditDistance was used
in the single-step as well as the two-step learning approach. Cosine was just applied
in the single-step approach as it has limitations in the two-step implementation as
mentioned by the authors in [18]. We also tested combined match strategies us-
ing the two similarity measures either on one or on two attributes for single-step
learning. In total, 15 different learning-based approaches are considered.
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.12: Evaluation results for learning-based approaches with SVM from
FEBRL
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.13: Evaluation results for learning-based approaches with decision tree
from MARLIN
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(a) DBLP-ACM (b) DBLP-Scholar

(c) Abt-Buy (d) Amazon-GoogleProducts

Figure 8.14: Evaluation results for learning-based approaches with SVM from MAR-
LIN
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For the easy bibliographic match task DBLP-ACM, we observe that both FEBRL
and MARLIN are able to achieve stable results already for very small training sizes
of 20 labeled object pairs with all evaluated approaches. For the more challenging
bibliographic match task DBLP-Scholar, for both FEBRL and MARLIN the SVM
strategies combining several matchers on two attributes perform best and achieve
F-measure results of 88-89%. The best one-attribute strategies are the combined
SVM approaches and SVM using trigram (for FEBRL) or EditDistance (MARLIN).
All approaches have substantial difficulties with the e-commerce match tasks, espe-
cially for training sizes smaller than 500 object pairs. The best match quality is
always achieved for the combined strategies using all similarity measures on two at-
tributes, followed by the combined approach on one attribute. This underlines that
the learners are able to effectively find a combination of several matchers. The deci-
sion tree learner of MARLIN is mostly inferior to the SVM-based results. The SVM
learner of MARLIN performs slightly better than the one of FEBRL for smaller
training sizes. However, for 500 training pairs both SVM learners perform similarly
well and achieve a top F-measure of about 71% for Abt-Buy and (only) 60% for
Amazon-GoogleProducts. From the single similarity approaches FEBRL with tri-
gram and MARLIN with cosine similarity performed best for the e-commerce tasks.
For MARLIN, the 2-step learning for Edit-Distance was always better than the 1-
step approach but still too ineffective for the e-commerce tasks. Here the rather
long product names and product descriptions tend to favor token-based similarity
measures such as cosine, trigram, or the unsupported TF/IDF similarity.
There are huge differences between the approaches regarding execution time as can
be seen in Table 8.4. In general, the execution times for the considered learning-
based approaches are significantly worse than for the non-learning approaches.
Nearly all learning-based approaches do not scale with larger input sets and are
unable to match sufficiently fast on the Cartesian product. For the largest match
task DBLP-Scholar execution times of hours to days are needed, the most effec-
tive combined approaches exceeded our limit of 500,000 seconds. On the blocked
datasets, the approach with the fastest execution time for all match tasks is the
FEBRL approach with the TokenSet Cosine measure. The combined match ap-
proaches on two attributes take the longest time for blocking, too. They are more
than a factor 2 slower than the other learning-based approaches and (except for
DBLP-ACM) requires execution times in the order of minutes to hours.

Non-learning vs. learning-based

Table 8.5 shows a brief summary of the maximum F-measure results achieved for
each of the considered non-learning as well as learning-based approaches. For three
of four tasks the commercial COSY approach performs best for matching on one at-
tribute. However for two match tasks its quality degrades when using two attributes.
The learning-based approaches, on the other hand, always improve for matching on
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DBLP-ACM DBLP-Scholar Abt-Buy Amazon-
GoogleProducts

1 attr 2 attr 1 attr 2 attr 1 attr 2 attr 1 attr 2 attr

COSY 91.7 93.8 84.5 82.9 70.7 65.8 62.1 62.2

FEBRL FellegiSunter 91.8 93.6 57.2 81.9 44.5 36.7 48.4 53.8

PPJoin+ 91.9 - 77.8 - 47.4 - 41.9 -

FEBRL SVM comb. 91.5 94.4 81.9 87.6 44.5 71.3 46.5 60.1

MARLIN ADTree comb 92.5 93.4 82.6 82.9 18.4 54.8 45.0 50.5

MARLIN SVM comb. 91.6 94.2 82.6 89.4 54.8 70.8 50.5 59.9

Table 8.5: Summary of evaluation results (F-measure in %, top values are under-
lined) DBLP-ACM

two attributes compared to only one attribute underlining their potential to effec-
tively combine different match criteria. SVM learning was most effective and the
FEBRL and MARLIN implementations perform similarly well for training size 500.
They achieve the top F-measure for three of the four match tasks for matching on
two attributes. The learning-based approaches from FEBRL perform better than
the non-learning FEBRL (FellegiSunter) approach, especially when considering two
attributes. The good quality of the learning-based approaches on two attributes
comes at the expense of significantly higher execution times. With a single matcher
on just one attribute the learning-based approaches could not exploit their potential
to combine several matchers and thus turned out to be inferior to the non-learning
approaches considering both match quality and execution times. The relatively low
match quality for the e-commerce task asks for further improvements, e.g., by con-
sidering additional similarity measures such as TFIDF and/or further attributes and
spending more training effort on learning.

Comparison with FEVER

Figure 8.15 compares the maximum F-measure results achieved with approaches
using six and eight matchers with FEVER and the best learning-based approach on
two attributes (six matchers) from the comparative evaluation summarized in Ta-
ble 8.5. For the bibliographic match tasks we could achieve comparable results. For
the two E-Commerce tasks we were able to clearly outperform all other evaluated
competitive approaches. With our learning-based approaches we achieve signifi-
cantly better match effectiveness results. For both E-Commerce task the obtained
F-measure values are above the result of the best competitive approach. For Abt-
Buy the F-measure improvement amounts to 3% for six matchers and to 14% for
eight matchers. For Amazon-GoogleProduct the F-measure improvement amounts
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Figure 8.15: Effectiveness comparison of FEVER with best competitive learning-
based approach on two attributes

to 5% for six matchers and to 14% for eight matchers. The improvements are
achieved even for very small training sizes incurring a low manual effort.
Regarding efficiency, FEVER is on a competitive basis with the PPJoin+ approach
for the non-learning approaches. For the learning-based approaches FEVER is more
scalable compared to FEBRL and MARLIN. We illustrate that for the largest match
task DBLP-Scholar on the Cartesian product. For simple strategies using the SVM
on the title attribute with a single matcher FEVER requires between 1989 and 4002
seconds depending on the used matcher. That is more than 100 times faster than
any of the approaches from FEBRL. With FEVER even combined approaches on
one and two attributes are possible. The combined strategy on one attribute with
four matchers required 8237 seconds.
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9
The product offer matching problem

Product offer matching is a special case of object matching that is needed to identify
equivalent offers referring to the same real-world product.
After a short introduction to the problem of product offer matching in Section 9.1,
Section 9.2 points out some specific challenges that have to be addressed.

9.1 Problem outline

As consumers all over the world increasingly use online shopping for consumer prod-
ucts and services, price comparison portals (e.g., Idealo.de), online marketplaces
(e.g., Amazon.com), or product search engines (e.g., Google Product Search) have
become popular. A challenge for all these providers of price comparisons is to ag-
gregate offers for the same product.
Product offer matching is a special case of object matching. It deals with the iden-
tification of different descriptions or offers referring to the same real-world product.
Given that many thousands of online shops sell millions of diverse products over the
web, product offer matching has become of increasing importance [72], [110].
For the product offer matching problem we assume that there exists no catalogue
of consolidated product offers. Hence, we have to match product offers against each
other. Matching product offers against other offers is much more challenging than
matching product offers to an existing catalogue of consolidated product descrip-
tions (e.g., as done in [72]) due to the absence of structured and cleaned product
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data. Directly matching product offers is highly relevant since in many scenarios
a carefully maintained reference product catalogue is not available. For example,
price monitoring applications that keep track of offers from different merchants or
websites typically start without a product catalogue. Product offer matching is also
useful to aggregate product information for an incremental construction of product
catalogues.
Product offer matching for e-commerce websites introduces several specific chal-
lenges that make this problem much harder than other forms of object matching,
e.g., to match records about publications. In particular, there is a huge degree of
heterogeneity since product offers come from thousands of merchants using different
names and descriptions of the products. Furthermore, offers frequently have miss-
ing or wrong values and are mostly not well structured but mix different product
characteristics in text fields such as product name or description [72].
For illustration, we show in Figure 9.1 some result offers for the product search
engine Google Product Search and a specific camcorder. The offers refer to different
merchants that use heterogeneous names, descriptions, and other attributes for the
same product and may also contain misspellings and other errors. For example,
the product names for the considered product Canon Vixia HF R400 partially include
specific technical details that may complicate product offer matching, e.g., to find
out that (only) the first three entries refer to the same product.
As this example already illustrates there are several specific challenges that have to
be mastered for product offer matching. We will discuss these challenges in more
detail in the following section.
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Figure 9.1: Product offers related to the Canon VIXIA HF camcorder in Google Prod-
uct Search

9.2 Special challenges

For product offer matching there exist some specific challenges that have to be
addressed. Some of them are illustrated in Figure 9.1.

• Unstructured text: Typically, an offer consists of a largely unstructured
textual description. Different product characteristics are often mixed in text
fields such as product name and technical specifications. For example, the
product name "Canon VIXIA HF R400 3.28 MP Camcorder - 1080p" contains
the resolution (3.28 MP) and the specification of the high-definition video
mode (1080p).

• Domain-specific labels and short forms: For german fashion product
offers "lg. A." is a short form for "lang Arm", whereas in electronics LG is a
well-known brand manufacturer.

• Heterogeneous labels for sizes and quantities: Sizes and quantities can
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be stated in different ways. For example for a bundle product the product offer
might specify the total amount of pieces as a single number (e.g., 168 pieces).
Another product offer on the other hand might specify the total amount of
pieces as the product of the amount of pieces of all bundle parts (e.g., 3x56
pieces).

• Heterogeneous string lengths: Descriptions for product offer are highly
heterogeneous. Some product offers are described in great detail with long
product names and descriptions, whereas other product offers are scarcely
described.

• Synonyms: For many products there exist alternative denominations. For
example, hoodie, hoody and hooded sweatshirt are all denominations for a
sweatshirt with a hood.

• Missing values: Often the representation of a product offer is fragmentary.
Important attribute values like the brand value are often missing.

• Wrong values: Another problem are wrong values. The specifications of a
product offer are often erroneous. This is even applies to product identification
numbers, such as UPC (Universal Product Code) or EAN (European Article
Number) values.
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Tailored product offer matching

approaches

As a response to the challenges outlined in the previous section we propose the
use of tailored approaches for product offer matching based on a preprocessing of
product offers to extract and clean new attributes usable for matching. In particular,
we propose a new approach to extract and use so-called product codes to identify
products and distinguish them from similar product variations.
In Section 10.1 we outline our overall approach to matching product offers. It
supports category-specific match strategies and is based on machine learning to semi-
automatically determine a match strategy utilizing several attributes and similarity
functions. In Section 10.2 we describe the Modified Naive Bayes approach according
to [74] that we employ to assign product offers automatically to a category in a given
taxonomy. Techniques to consolidate heterogeneous manufacturer denominations
and complement missing values are introduced in section 10.3. Section 10.4 proposes
a new approach for improving product offer matching based on a pattern-based
extraction and web-based verification of product codes.

10.1 Overall product offer matching workflow

Given a collection of product offers our goal is to identify corresponding offers, i.e.,
offers that refer to the same real-world product. Typically only few attribute values
are available per offer, in particular product title, product description, manufacturer,
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price, and perhaps a product identification such as UPC. While we consider the
UPC values for evaluation, we are only concerned here with matching based on the
remaining information.
Matching noisy real-world objects such as product offers requires the combined use of
several matchers (e.g., different string similarity measures [38]) on several attributes
to derive a match decision for every pair of entities. Given the availability of sev-
eral relevant attributes and similarity measures, it becomes a very complex task to
manually specify a reasonable strategy for the combination of matcher similarities.
Therefore, we employ a learning-based approach and treat product offer matching
as a classification problem.
The overall design of our system is illustrated in Figure 10.1. The match work-
flow runs in three phases: pre-processing, training, and model application. The
product code extraction is one element of preprocessing and will be described in
Section 10.4 in more detail. Further preprocessing tasks are the cleaning of manu-
facturer information and the categorization of product offers.
For manufacturer cleaning we cluster different variations of the same manufac-
turer based on a combination of string similarities, synonym lists, and existing lists
of manufacturers. Since a significant number of product offers does not provide a
manufacturer attribute value, we also analyze the product title and descriptions for
manufacturer names from the manufacturer dictionary. We describe our approach
in more detail in Section 10.3.
An important use case for product offer matching that we consider is the assignment
of product offers to a given set of product categories. Such a product categoriza-
tion [11] allows the restriction of matching to offers from the same category thereby
improving match efficiency and likely also match precision. Furthermore, it is pos-
sible to devise category-specific match strategies to take characteristics of certain
product types into account. We assign offers to one of the categories by using a Mod-
ified Naive Bayes approach according to [74] and utilizing already assigned offers.
To classify an offer o, the Naive Bayes Classifier calculates the posterior probability
P (c|o) for all categories c. To this end, attribute values (e.g., title, description, man-
ufacturer) of already categorized offers are tokenized and the probabilities P (t|c) are
computed for all tokens t. Tokens and their probabilities are weighted based on their
attribute. The algorithm is described in more detail in the following section.
The training phase for the learning-based approach requires selection of training
data, i.e., object pairs that are annotated whether they represent a match or a non-
match. The manual labeling of training data is very time consuming and is typically
done offline. In our approach match and non-match pairs are generated utilizing the
ratio approach as described in Section 7.4.2. This strategy considers only object
pairs for labeling, for which the similarity exceeds a specified threshold. This ensures
that the training is not dominated by trivial non-matching object pairs that are not
useful for finding effective matcher parameters and combinations. Furthermore it
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Figure 10.1: Overall workflow for matching product offers

aims at a certain ratio of matching and non-matching object pairs in the training
data to enhance the training data’s discriminating value for learning effective match
strategies.
As the characteristics of product data and the variety and distribution of errors
across different categories can vary greatly we adopt an adaptive learning ap-
proach for training separate classifiers for each category. To this end we apply
the learning individually for each category using disjoint subsets of training data
according to the categories of the labeled training data. We also support learn-
ing a uniform model (match strategy) across all categories. In the evaluation we
will compare the effectiveness of the uniform approach with category-specific match
strategies. Learning is performed for several matchers, in particular for three string
measures (TF/IDF, Trigram Jaccard) on the title and description attributes and a
specific product code matcher (see Section 10.4). For the learner we decided on the
Support Vector Machine (SVM).
During the last phase, application, the learned match strategies are applied to
determine matching product offers. To reduce the search space we use the cleaned
manufacturer value and the product category for blocking, i.e., we apply matchers
only for pairs of product offers sharing the same manufacturer and category. The
resulting match similarities are the input for the learned classification model that,
in turn, provides the “match or non-match” decision.

10.2 Product offer classification

Merchant feeds may not have category information, or they may have categories
under a taxonomy that is different from the one used in the catalog. To determine
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the category for a given offer, we learn a categorization model utilizing a Naive
Bayes approach similar to [74].
To classify an offer o, the Naïve Bayes Classifier calculates the posterior probability
P (c|d) based on the Bayes Theorem and the independence assumption. Given a set
of categories C, the attributes a1, . . . , an and the values v1, . . . , vn that describe an
input offer, the Naïve Bayes Classifier assigns the most probable category according
to the following formula:

C = arg max
cj∈C

P (cj)
∏
i

P (ai = vi |cj) (10.1)

The value of an attribute is a set of terms vi = {ti1, ti2, ..., tim}. The probability
P (ai = vi |cj) is calculated as follows:

P (Ai = vi|cj) =
∏
k

P (tik appears in ai |cj) =
∏
k

n(cj, ai, tik)
n(cj, ai)

(10.2)

where n(cj, ai, tik) denotes the number of occurrences of tik in attribute ai of category
cj. Similarly, n(cj, Ai) denotes the sum of frequencies of all terms in ai of category
cj. n(ai) denotes the total number of terms appearing in attribute ai.
Attributes are normalized with the geometric mean n

√
t1 · . . . · tn

CNB = arg max
cj∈C

P (cj)
∏
i

(∏
k

P (tik appears in ai|cj)
) 1
|vi|

(10.3)

= arg max
cj∈C

|cj|∏
i

(∏
k

n(cj, ai, tik)
n(cj, ai)

) 1
|vi|
 (10.4)

Normalization enables us to weight each attribute ai with a weight wi. Attributes
may have different effects on the classification accuracy although they are equally
treated due to the independence assumption. The classification accuracy can be
enhanced by giving more weights to more informative attributes. Weights have
to be normalized as they are implicitly and arbitrarily weighted by the number of
terms. The final classification model is based on the following formula:

CNB = arg max
cj∈C

P (cj)
∏
i

(∏
k

P (tik appears in ai |cj)
) wi
|vi|

(10.5)

= arg max
cj∈C

|cj|∏
i

(∏
k

n(cj, ai, tik)
n(cj, ai)

) wi
|vi|
 (10.6)

We illustrate the approach by means of some example offers depicted in Table 10.1.
In the training phase, the string values of the attributes of the offers are tokenized
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Name Description Manufacturer Category

LCD SyncMaster100 High quality speaker is
embedded

Samsung LCD Monitors

Flatron LCD171 Effectively protects
electromagnetic waves

LG LCD Monitors

XNote LM50-DMP2 Compact size and slim-
design

LG Notebook Computers

Table 10.1: Example training data for categorization

and the term frequencies are counted to build the frequency table and total frequency
table as illustrated in Table 10.2. Based on these two tables we can automatically
assign a new product offer with product name "Flatron LCD 180" und product
description "Compact size and slim design" based on formula 10.6.

P (cA|d) = P (c) · P (a1 = v1|cA) · P (a4 = v4|cA)

= 750 ·
(1

6 ·
2
6 ·

1
5000

) 5
3
·
( 1

5000 ·
1

5000 ·
1

5000 ·
1

5000

) 1
4

= 750 · (1.19 · 10−19) · (2 · 10−5)
= 2.60 · 10−18

P (cB|d) = P (c) · P (a1 = v1|cB) · P (a4 = v4|cB)

= 1100 ·
( 1

5000 ·
1

5000 ·
1

5000

) 5
3
·
(1

4 ·
1
4 ·

1
4 ·

1
4

) 1
4

= 1100 · (3.20 · 10−24) · (2.5 · 10−1)
= 8.88 · 10−22

Both n(a1) and n(a4) which are used for the probability estimation of the mismatch-
ing terms are set to 5000. The attribute a1, product name, is weighted with 5 and
the attribute a4, product description, is weighted with 1. The final posterior prob-
ability of cA is much higher although its probability from a4 is much lower than
that of cB. This means that the product is assigned to the category LCD Monitors.
Without normalization and weighting, it would have been assigned to the category
Notebook Computers.
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Category Attr Term Freq

LCD Monitors 1 lcd 2

LCD Monitors 1 syncmaster 1

LCD Monitors 1 100 1

LCD Monitors 1 flatron 1

LCD Monitors 1 171 1

LCD Monitors 2 cd 2

LCD Monitors 2 monitors 2

LCD Monitors 3 samsung 1

LCD Monitors 3 lg 1

LCD Monitors 4 high 1

LCD Monitors 4 ... ...

Notebook Computers 1 xnote 1

Notebook Computers 1 lm50 1

Notebook Computers 1 dmp2 1

Notebook Computers 2 notebook 1

Notebook Computers 2 computers 1

Notebook Computers 3 lg 1

Notebook Computers 4 compact 1

Notebook Computers 4 ... ...

(a) Frequency Table

Category Attr Total_Freq

LCD Monitors 1 6

LCD Monitors 2 4

LCD Monitors 3 2

LCD Monitors 4 8

Notebook Computers 1 3

Notebook Computers 2 2

Notebook Computers 3 1

Notebook Computers 4 4

(b) Total Frequency Table

Table 10.2: Frequency table and total frequency table

10.3 Manufacturer cleaning

We provide several techniques to consolidate heterogeneous manufacturer denomi-
nations and complement missing values.

10.3.1 Automated look-up table construction with synonym
maintenance

If there is a manufacturer attribute with values for at least some offers we start
with those to automatically construct a look-up table with synonym maintenance.
First of all, we clean values that represent missing values such as never, noname, not
specified. Next, we consolidate manufacturer denominations if their values satisfy
at least one of the following conditions:

1. The two strings are similar according to a similarity measure. In our approach
we use normalized Levenshtein distance with a threshold of 0.75.
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Allied Telesis Hewlett Packard Hewlett Peckard HP

Allied 0.42 0.13 0.2 0.0 alliedtelesis.eu

Allied Telesis 0.13 0.2 0.0 alliedtelesis.eu

Hewlett Packard 0.93 0.13 hewlett-peckard.de

Hewlett Peckard 0.13 hewlett-peckard.de

HP hp.com

(a) look-up table construction

ID manufacturer synonym

A1 Allied Allied ; Allied Telesis

A2 Allied Telesis Allied ; Allied Telesis

A3 Hewlett Packart Hewlett Packard ; HewlettPackard ; HP

A4 HewlettPeckard Hewlett Packard ; HewlettPackard ; HP

A5 HP Hewlett Packard ; HewlettPackard ; HP

(b) look-up table

Table 10.3: Manufacturer cleaning using a look-up table

2. search engine evidence: A search engine return the same top url when queried
with the manufacturer name as keyword

Tables 10.3 illustrates the approach for five manufacturer names that are eventually
grouped into two clusters. Table 10.3a shows the Levenshtein distances and the
search engine results for five manufacturer names. For the first two values, Allied
and Allied Telesis, the search engine returned the same top domain (alliedtelesis.eu)
and, thus, both are considered the same though their Levenshtein distance (0.42)
is below the threshold (0.75). The remaining three manufacturer names (Hewlett
Packard, Hewlett Peckard, HP) are also grouped together. The first two match
because of their high string similarity; the first and the last share the same domain.
From the result a look-up table as illustrated in table 10.3b is constructed.

10.3.2 Completion of missing values

The last phase, classification, assigns all product offers with an infrequent or missing
manufacturer value to one of the existing manufacturer clusters. To this end, a man-
ufacturer name is added to a cluster if it matches one of the cluster elements using
the Levenshtein similarity and search engine results as described above. In contrast
to the clustering phase no new clusters are created during the classification, i.e., if
a manufacturer does not match any of the clusters its product offer is considered to
have no manufacturer information for blocking.
Since a significant number of product offers does not provide a manufacturer at-
tribute we apply two strategies to complement a value for offers with missing man-
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ufacturer values. The first strategy uses the constructed look-up table to extract a
possible value from the title or description of the offer. We employ an implemen-
tation of the Aho-Corasick algorithm [1]. The Aho-Corasick algorithm allows to
find all matches against a dictionary in linear time independent of the number of
matches or size of the dictionary. The second strategy is a heuristic based on the
observation that the title of an offer quite often starts with the specification of the
manufacturer. For this strategy we tokenize the title strings and extract the first
token(s).

10.4 Product code extraction

One key observation is the frequent existence of specific product codes for certain
product types that can help to differentiate similar but different products. A product
code is a manufacturer-specific identifier that typically appears in the product title
and description. In general, it can be any sequence consisting of alphabetic, special,
and numeric characters split by an arbitrary number of white spaces. In the example
of Figure 9.1 the term HF R400 is a product code for the first three entries. A product
code is under full control of the manufacturer and thus we observe very good data
quality, i.e., the product code is usually correct if it is available. Unfortunately,
product codes are generally not provided as a separate attribute but appear only
within the product title or description.
The extraction of the product code of the offered product is non-trivial as the title
and the description of the product offer contain several unstructured information.
Furthermore, accessory products may also contain multiple product codes, e.g., one
for the accessory itself and one for the target product. Product code extraction is a
special case of product attribute extraction that identifies attribute-value pairs out
of unstructured textual descriptions (e.g., [56]). However, such approaches typically
require labeled (tagged) training data whereas our focused product code extraction
does not need any training data but employs the rich knowledge of search engines.
The product code extraction algorithm is illustrated in Algorithm 3 and will be
described next. For illustration purposes Figure 10.2 demonstrates the extraction
workflow for the sample accessory product Hahnel HL-XF51 7.2V 680mAh for Sony
NP-FF51 .
The first step, feature extraction, applies regular expressions to extract common
features such as dimensions, weight specification, colors, etc. In our example the
voltage (7.2V) and energy (680mAh) are extracted. The next step, tokenization,
breaks the title string into words. Tokens are separated by white spaces and punc-
tuations.
Filtering comprises the removal of stop words as well as other tokens that appear
frequently in product offers of several different manufacturers. For this we calculate a
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Algorithm 3: Product code extraction
1 getProductCode(offer, regularExpressions, threshold)
2 // remove common features, e.g., dimensions, weight, ...
3 offer ← removeFeatures(offer);
4 // tokenize and remove stop words and frequent
5 // category-specific tokens
6 tokens ← tokenize(offer);
7 tokens ← removeFrequentTokens(tokens);
8 // candidates (= up to 3 tokens) that satisfy
9 // specific patterns

10 candidates ← generateCandidates(tokens);
11 candidates ← filterCandidates(regularExpressions);
12 // get code with highest web score above threshold
13 code ← webVerification(candidates, threshold);
14 return code;

manufacturer-based frequency for each token t appearing in any offer representation.
Let N(t,m) be the number of product offers of manufacturer m containing the token
t and let N(t) be the overall number of product offers containing t. For any product
offer of m only tokens t with a ratio N(t,m)/N(t) above a given threshold are
considered for product code extraction. In our experiments we employ a threshold
of 50%, i.e., at least 50% of all product offers containing tmust be from manufacturer
m. In the running example the term for will thus be excluded from further steps.
Afterwards we generate candidates for product codes. In general, a candidate
consists of up to 3 consecutive tokens. To reduce the possibly large number of
candidates regular expressions are employed to find “interesting” candidates, e.g.,
candidates that contain both letters and numbers. To this end we use a manu-
ally created list of regular expressions that captures knowledge on the syntactical
structure of common product codes. Furthermore, string type frequencies can be
computed to identify types that frequently occur with a particular manufacturer.
For example, a significant number of candidates for the manufacturer Hahnel follows
the pattern [A-Z]{2}\-[A-Z]{2}[0-9]{2} (“two capital letters, minus, two capital let-
ters, two digits”) which indicates that such strings can be product codes.
Finally, a web verification step utilizes the web as an external knowledge source
to verify the extracted candidates. For each of the determined candidates a query
is submitted to a web search engine. The correctness of a code candidate is verified
by the ratio of the results containing the corresponding manufacturer. Figure 10.2
illustrates for the two candidates HL-XF51 and NP-FF51 the retrieved top 2 query
results. For the first candidate, HL-XF51, all results contain the manufacturer name
Hahnel and thus giving an overlap of 100%. The term HL-XF51 is therefore con-
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Figure 10.2: Example code extraction for Hahnel HL-XF51 7.2V 680mAh for Sony
NP-FF51 (manufacturer: Hahnel).

sidered a valid product code. On the other hand, NP-FF51 is not a product code
because none of the results contain the manufacturer name Hahnel.

144



11
Evaluation of product offer matching

In this chapter we evaluate our approaches for product offer matching introduced in
chapter 10.
The chapter is organized as follows: We first provide details on the used evaluation
dataset in Section 11.1 We then evaluate in Section 11.2 our approach for product
offer classification. This is followed in Section 11.3 by the evaluation of the pro-
posed approach to derive product codes from the titles of product offers of different
categories. We then analyze in Section 11.4 the effectiveness of different general and
category-specific strategies for matching product offers and study the usefulness of
using the extracted product codes. This evaluation is first done in Section 11.4.1
w.r.t. an UPC-based reference mapping assuming that only offers with the same
UPC are matching. We then study in Section 11.4.2 the match quality w.r.t. the
manually determined perfect mapping and discuss limitations of relying on UPC
values only.

11.1 Evaluation dataset

To evaluate our product offer matching approaches we use a large real-world dataset
provided by an e-commerce portal 1. The evaluation dataset comprises a total of
102,182 offers for electronic products and accessory products that are associated to
71 given product categories of the portal. The offers are mostly limited to only a

1Because of a non-disclosure agreement we are not able to provide any details on the e-commerce
portal.
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Figure 11.1: Distribution of string length for the product title attribute

few attributes, in particular product title, description, and manufacturer. For evalu-
ation purposes, we also required that all offers contain an UPC value assuming that
it permits the evaluation of the quality (recall, precision, F-measure) of different
match strategies. In addition, we manually determined a perfect match mapping
for two selected product categories. All product offers are preprocessed as described
in chapter 10, i.e., we cleaned the manufacturer values, extracted product codes if
possible, and automatically assigned offers to product categories. Since the evalu-
ation of manufacturer cleaning and product categorization is beyond the scope of
this paper, we corrected the results of these steps manually to avoid negative side
effects.
Figure 11.1 shows the length distribution of the product titles for these offers. It
illustrates that this important attribute is highly heterogeneous with many long, ver-
bose strings. The puzzling second peak around string length 135 is due to numerous
accessory products for digital cameras, mobile phones, and navigation systems whose
titles contain a long list of models for which they are suitable. As a result, standard
string measures alone are not able to achieve a sufficient match quality.
This is further confirmed by Figure 11.2 showing for two product match tasks and
a publication match task the percentage of correspondences (matching object pairs)
with a string (TF/IDF) similarity smaller or equal to a given similarity threshold
t. For example, approx. 60% of all correspondences of the product category Digital
Cameras have a title similarity below or equal to 0.5 making it difficult to identify
matching offers. On the other hand, matching publications is much easier since 60%
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Figure 11.2: Cumulative distribution of TF/IDF similarity for match correspon-
dences

of the correspondences have a title similarity of more than 90%.

11.2 Evaluation of product offer classification

We evaluated both effectiveness and efficiency of the approach for product offer clas-
sification. Effectiveness is evaluated in terms of classification accuracy (percentage
of correctly classified product offers) and efficiency in terms of classification time.
For training we selected a random sample of 1000 product offers from each of the
71 categories. The learned model was then applied to the remaining product offers.
Figure 11.4a illustrates the top 1 categorization accuracy for different attribute
combinations and weights. The results reveal that weights have an high influence on
categorization accuracy. For different weights the accuracy varies between 62% and
84%. Using only the title attribute achieves the highest accuracy of 89%. This due
to the fact that both the description and brand attribute are highly heterogeneous.
Using these attributes decreases the categorization accuracy rather than increasing
it.
Figure 11.4b illustrates the top N classification accuracy. Instead of selecting only
the category with the highest probability we choose the n highest ranked categories
according to their probability value. The top N classification accuracy is the per-
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Figure 11.3: Efficiency of product offfer classification

centage of times that the correct category is among the selected n categories. The
results show that the right category is among the top 10 category in most cases.
The categorization accuracy for top 10 is 99%. That is an improvement of 10%
compared to top 1.
Figure 11.3 pictures the classification time for different numbers of categories. The
figure illustrates that the classification time increases linearly with the number of
target categories.
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(a) Categorization accuracy for different attribute weights

(b) Top N categorization accuracy

Figure 11.4: Effectiveness of product offer classification
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11.3 Evaluation of product code extraction

The effectiveness of the proposed approach to extract product codes depends on
the product category, especially on whether the offers refer to accessory products
or to the main, non-accessory products. In Figure 11.5 we show the number of
product offers for the largest five accessory categories as well as the largest five non-
accessory categories. Furthermore, we show for each category for how many offers a
product code could be extracted by our approach. We observe significant differences
between accessory and non-accessory products. For non-accessory product offers, we
could mostly find a product code (in 85%, on average) in particular for the larger
categories of mobile phones, cameras, and TV sets. By contrast, for the accessory
product offers (which are much more frequent than non-accessory offers) a product
code could be determined only in 34% on average.
To determine the quality of the extracted product codes we manually determined
the correct product codes for a random subset of about 2% of the product offers
over all categories.
Table 11.1 shows the quality results for product code extraction after the web-based
verification. This verification proved to be an important step that helped to improve
the results by up to 20% even for a low threshold value of 0.1. As shown, the average
precision of the product codes is 79% over all categories, i.e., that almost four fifth
of the found product codes are correct. The achieved recall values are smaller,
especially for accessory products where less than half (48%) of the product codes
could be found. The resulting F-measure is thus higher for non-accessory offers than
for accessories. For mobile phones, product code extraction was most effective with
an F-measure of 89%.
The results show that product code extraction works best for non-accessory products
so that they are likely to benefit more than accessory products from using them for
matching product offers.

Precision Recall F-measure

Overall 79% 56% 66%

Non-Accessories 79% 64% 71%

Accessories 79% 48% 60%

Mobile Phones 93% 86% 89%

Table 11.1: Quality of product code extraction
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Figure 11.5: Number of product offers for 10 product categories (5 accessory and 5
non-accessory categories)

11.4 Evaluation of match quality

We evaluate the match quality for product offers of the five largest accessory cate-
gories and the five largest non-accessory ones. As described in Section 10.1, we apply
SVM-based match strategies combining different string measures on the product ti-
tle and product description. Optionally, we consider an additional product code
matcher requiring equal product codes for product offers to match. For training we
use 500 matching and 500 non-matching offer pairs per category respectively. The
training data is used to determine both a common match strategy for all categories
as well as category-specific match strategies.

11.4.1 Match quality against UPC mapping

We first evaluate match quality against an UPC-based reference mapping where only
offers with the same UPC are considered to match (recall that we only evaluate offers
for which the UPC is provided).
Figure 11.6 shows the resulting average F-measure results over the considered ac-
cessory and non-accessory categories for three match strategies: a common base-
line strategy (not using product codes) for all categories, category-specific baseline
match strategies, and category-specific match strategies including the product code
matcher.
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Figure 11.6: Quality of baseline and product code matching

We observe that the average F-measure values are generally rather low which is due
to the high difficulty of matching offers against offers (and not against cleaned prod-
uct descriptions). Furthermore, as we will see in the next subsection the comparison
against the UPC reference mapping leads to pessimistic results.
We find that the use of category-specific match strategies generally outperforms
the use of a common match strategy. This effect is especially pronounced for non-
accessory product offers for which the average F-measure becomes higher than for
accessory products. Similarly, the use of the product code matcher is most ben-
eficial for non-accessory offers influenced by the improved coverage and quality of
product code extraction as discussed above. Product code matching helps improve
the average F-measure for non-accessory categories to 55%. The best match quality
(F-measure 73%) is achieved for offers of mobile phones.

11.4.2 Match quality against manually determined reference
mapping

A closer inspection of the UPC values for the product offers revealed several anoma-
lies that questioned the appropriateness of UPC-based match decisions. There are
offers for the same or almost the same product that come with different UPC values.
One of the reasons for this phenomenon is that products may come with different
codes based on the manufacturer’s country or target market. For example, there are
three different UPCs for the Canon IXUS 90 IS camera in our dataset.
Furthermore, we observed the existence of offers for different products having the
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same UPC. So we decided to manually determine a reference match mapping to eval-
uate the quality of the automatic match strategies. For this purpose, we employed
a crowd-sourcing effort involving several local researchers. Due to the large number
of offers we still had to restrict the determination of the reference match mapping
to two categories (flat tv sets and digital cameras). The manual match decisions
did not try to differentiate all minor variations of the same product (e.g., different
colors) but had in mind what should be bundled in a comparison portal or product
search engine to allow a meaningful price comparison, to utilize aggregated product
reviews etc. Similar as in the example of Figure 9.1, the product code information
turned out to be a useful indicator for match decisions.
Table 11.2 provides some base statistics about the manually determined and the
UPC-based reference mappings.
The number of clusters indicates how many different products are distinguished per
category, the cluster size indicates the average number of offers for the same product,
and the number of correspondences specifies the number of matching pairs of offers.
We observe that the manual mappings contain more correspondences than the UPC
mappings by considering more offers to refer to the same product. The differences
are especially pronounced for the camera category where the average number of offers
per product more than doubles, i.e., the offers in most correspondences had different
UPC values. To a much smaller extent, we observed that the same UPC value was
assigned to non-matching offers with different product codes (for 90 correspondences
of TV set offers and 331 pairs of camera offers).
Figure 11.7 compares the match quality (F-measure) for the two product categories
w.r.t. both reference mappings.
We only consider category-specific match strategies. For the UPC-based reference
mapping, the baseline match strategy (not using product codes) performs similarly
for both categories. For the TV set category, product code matching helped to sub-
stantially improve F-measure already for the UPC reference mapping. Comparing
against the manually determined reference mapping results in a further albeit rela-
tively small improvement (to 69% F-measure) since the two reference mappings are
relatively similar for this category. By contrast, for the camera category the UPC
mapping did not enable taking much advantage from product code matching since
many offers with the same product code had different UPC values. Here, using the
manual reference mapping helped to almost double the F-measure result compared
to the UPC mapping (to 81%) indicating the high value of product code matching.
While we could only evaluate the offers for two categories we expect similar trends
for other categories. We conclude that UPC-based match evaluations tend to be too
pessimistic and that UPC-based matching may leave many matching or comparable
offers unmatched. The manual reference mappings also showed the high potential
of the proposed product code matching.
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Category Mapping #Clusters Average
Cluster size

#Corres-
pondences

Flat TV sets UPC 1,222 2.5 5,293

manual 1,103 2.7 6,509

Digital cameras UPC 1,087 3.1 8,375

manual 504 6.8 32,571

Table 11.2: Reference mappings

Figure 11.7: Match quality for different reference mappings
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12
Summary

This chapter summarizes the main contributions of the thesis.
Object matching is defined as the identification of different representations or ver-
sions of a same real-world object. Such duplicates are due to errors and inconsisten-
cies in the data, such as typos and misspellings, missing information, or outdated
data. As a consequence, duplicates are not exactly equal, which makes object match-
ing a challenging task in data cleaning and data integration processes.
To reduce the manual effort as much as possible, semi-automatic approaches are
needed to effectively assist the user in solving the match problem. This dissertation
has advanced the state of the art of object matching by developing and implementing
new solutions for object matching. In particular, it made four main contributions
as follows:

• Survey of object matching frameworks
We performed a comprehensive survey of existing object matching approaches
and frameworks. We analyzed and discussed various approaches for blocking,
matching and the combination of several matchers. We then used the classifi-
cation and evaluation criteria to comprehensively review previous prototypes
and evaluations and thereby identified important issues to be addressed in the
future.

• Generic object matching framework
With FEVER, we developed a new generic and customizable object matching
system. In particular, FEVER is based on an open multi-component archi-
tecture, which offers high flexibility for extension and adaptation. FEVER
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provides a comprehensive library of individual matchers and supports differ-
ent mechanisms to combine and refine their results.
An important aspect of the FEVER framework is the support of training-
based match approaches. FEVER includes several training-based approaches
and methods to (semi-)automatically generate training data for object match-
ing. Hence, FEVER can be used to compare non-learner and learner-based
approaches for object matching. We specifically analyzed the effectiveness for
small training sizes which incur only a modest effort for labeling.
The flexibility to customize the match operation allowed us to systematically
evaluate the different match approaches supported by FEVER. This way we
can achieve high quality and fast execution time for large real-world problems
in different domains.

• Comparative object matching evaluation
We presented an evaluation of existing implementations on challenging real-
world match tasks. We considered approaches both with and without using
machine learning to find suitable parametrization and combination of simi-
larity functions. In addition to approaches from the research community we
also considered a state-of-the-art commercial object matching implementation.
Our results indicate significant quality and efficiency differences between dif-
ferent approaches. We also find that some challenging resolution tasks such
as matching product entities from online shops are not sufficiently solved with
conventional approaches based on the similarity of attribute values.

• Product offer matching
Matching product offers is a challenging problem requiring sophisticated and
tailored object matching approaches. We outlined and evaluated such an ap-
proach that is based on machine learning and a comprehensive preprocessing.
In particular, we proposed a new approach for improving product offer match-
ing based on a pattern-based extraction and web-based verification of so-called
product codes. Our evaluation with a large real-life dataset showed the high
benefit of product code matching, especially for non-accessory products. Fur-
thermore, we found that category-specific match strategies should be applied
to cope with the heterogeneity of the different categories. We also analyzed the
use of UPC values for evaluating match strategies and for product matching
and observed significant limitations. In particular, UPC-based match evalu-
ations tend to be too pessimistic and UPC-based matching may leave many
matching or comparable offers unmatched.
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Future directions

Although the thesis has made a number of contributions to improve the state of
the art in object matching and object matching evaluation, it also raises several
opportunities for improvement and further issues to be addressed in future work.
We review some of them in the following.

• Parallel object matching
There exists an increasing amount of approaches that consider parallelized ob-
ject matching [9, 36, 122]. In [36] the authors show how the match computation
can be parallelized among available cores on a single node. Parallel evaluation
of the Cartesian product of two sources is described in [122]. D-Swoosh [9]
proposes different strategies for both evaluating the Cartesian product and the
use of blocking. In [75] the authors propose a general model for parallel entity
matching based on a balanced partitioning of the input data to create match
tasks that can be evaluated in parallel.

A recent trend in parallel object matching is the use of MapReduce. MapRe-
duce (MR) is a popular programming model for parallel processing on cloud
infrastructures with up to thousands of nodes [42]. The availability of MR
distributions such as Hadoop makes it attractive to investigate its use for the
efficient parallelization of data-intensive tasks. MR has already been success-
fully applied to parallelize object matching workflows [134, 137, 80, 81, 77].

Dedoop (Deduplication with Hadoop ) [78, 79] is a tool for parallel object
matching on cloud infrastructures. Dedoop supports a browser-based specifi-
cation of complex object matching strategies and provides a large library of
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blocking and matching approaches. To simplify the configuration of object
matching strategies with several similarity metrics, training-based machine
learning approaches can be employed with Dedoop. Specified object match-
ing strategies are automatically translated into MapReduce jobs for parallel
execution on different Hadoop clusters. For improved performance, Dedoop
supports redundancy-free multi-pass blocking as well as advanced load balanc-
ing approaches.
Another direction in parallel object matching is to utilize the capabilities of
modern graphics processing units (GPUs) to increase the efficiency of finding
duplicates in very large datasets [8, 109].

• Object matching for linked data
The Linked Data paradigm has evolved into a powerful enabler for the tran-
sition from the document-oriented Web into the Semantic Web. While the
amount of data published as Linked Data grows steadily and has surpassed
25 billion triples, less than 5% of these triples are links between knowledge
bases. Thus, there is a strong need for powerful approaches for link discovery,
especially for the discovery of sameAs-links. Over the last years, several link
discovery approaches have been proposed [40, 65, 111, 113, 126, 136] .
Recently generic frameworks such as SILK [136] and LIMES [108] are being
developed. With its modular architecture FEVER has the best possible pre-
requisites to incorporate methods for matching linked data.

• Collaborative object matching
Recently, crowdsourcing has attracted significant attention in both the indus-
trial and academic communities (see [47] for a recent survey). Recent projects
in the database community aim to embed crowdsourcing into database query
processing. In [138] a first approach is proposed on how to improve object
matching using hybrid human-machine techniques combining a generic micro-
task crowdsourcing platform with machine-based techniques.
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