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„GRAPHS ARE EVERYWHERE“
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Facebook
ca. 1.3 billion users
ca. 340 friends per user

Twitter
ca. 300 million users
ca. 500 million tweets per day

Internet
ca. 2.9 billion users

Gene (human)
20,000-25,000
ca. 4 million individuals

Patients
> 18 millions (Germany)

Illnesses
> 30.000

World Wide Web
ca. 1 billion Websites

LOD-Cloud
ca. 90 billion triples

Social science Engineering Life science Information science
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“GRAPHS ARE EVERYWHERE”
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“GRAPHS ARE EVERYWHERE”

Alice

Bob

Eve

Dave

Carol

Mallory

Peggy

Trent

6



“GRAPHS ARE HETEROGENEOUS”

Alice

Bob

AC/DC

Dave

Carol

Mallory

Peggy

Metallica
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“GRAPHS CAN BE ANALYZED”

Alice
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3.6
2.82
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“GRAPHS CAN BE ANALYZED“

Assuming a social network
1. Determine subgraph
2. Find communities
3. Filter communities
4. Find common subgraph
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 all „V“ challenges
 volume (scalability)
 Variety (support for heterogenous data / data

integration)
 Velocity (dynamically changing graph data)
 veracity (high data quality) 
 value (improved business value) 

 ease-of-use

 high cost-effectiveness

GRAPH DATA ANALYTICS: HIGH-LEVEL 
REQUIREMENTS
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 powerful but easy to use graph data model
 support for heterogeneous, schema-flexible vertices

and edges
 support for collections of graphs (not only 1 graph) 
 powerful graph operators

 powerful query and analysis capabilities
 interactive, declarative graph queries
 scalable graph mining

 high performance and scalability

 persistent graph storage and transaction support

 graph-based integration of many data sources

 versioning and evolution (dynamic /temporal graphs)

 comprehensive visualization support

GRAPH DATA ANALYTICS: REQUIREMENTS
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 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems 
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture 
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA
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 First Generation:
 research prototypes only
 peak popularity in early 90s

 Second Generation:
 NoSQL movement
 commercial systems

GRAPH DATABASES



 graph data model
 mostly property graphs, RDF or generic graphs
 different vertex and edge data
 graph  operators (traversal, pattern matching) / 

queries

 application scope
 mostly queries/OLTP on small graph portions
 some support for analytical queries/computations

(analyze whole graph, e.g., page rank)

RECENT GRAPH DATABASE SYSTEMS



 popular data model for commercial graph DBMS
 de-facto industry standard TinkerPop
 query languages Gremlin (TinkerPop) and Cypher

(Neo4j, openCypher)

 query example (pattern matching) 

PROPERTY GRAPH MODEL
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Data Model Scope Storage
System RDF/SPARQL PGM/TinkerPop Generic OLTP/Queries Analytics Approach Replication Partitioning
Apache Jena TBD /  native     
AllegroGraph /  native     
MarkLogic /  native      
Ontotext GraphDB /  native     
Oracle Spatial and Graph /  native     
Virtuoso    /  relational  
TripleBit /  native
Blazegraph / /   native RDF  
IBM System G / /    native PGM,

wide column store 
 

Stardog / /   native RDF 
SAP Active Info. Store /-  realtional
ArangoDB /  document store   
InfiniteGraph /  native           
Neo4j /  native          
Oracle Big Data /  key value store  
OrientDB /  document store   
Sparksee /  native         
SQLGraph /  relational     

Titan /   wide column store, 
key value store

 

HypergraphDB   native

SYSTEM COMPARISON



COMPARISON
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Graph Database 
Systems
Neo4j, OrientDB

data model rich graph models
(PGM)

focus queries

query language yes

graph analytics (no)

scalability vertical

analysis workflows no

persistency yes

dynamic graphs / 
versioning

no

data integration no

visualization (yes)



 goal: better support for scalable/distributed graph
mining
 page rank, connected components, clustering, frequent

subgraphs, … 
 mostly generic graphs only (e.g., directed multigraphs)

 early approaches based on MapReduce
 iterative processing via control program and multiple MR 

programs
 unintuitive programming and limited performance (high 

communication and I/O costs) 

 „newer“ computation models pioneered by Google Pregel 
 vertex-centric programming („Think Like a Vertex“) 
 Bulk-synchronous-parallel (BSP) computation
 In-memory storage of graph data

GRAPH PROCESSING SYSTEMS



 parallel and synchronized execution of vertex compute function

 vertex keeps state about itself

 compute function

 reads incoming messages, 
 updates vertex state (value) 
 sends information to neighboring vertices

 vertices can deactivate themselves (call voteToHalt() function) 

 iterative execution within supersteps until there are no active vertices
or messages anymore (bulk-synchronus-parallel execution) 

VERTEX-CENTRIC PROCESSING

Time

1
2
3

Superstep 𝑆𝑆𝑖𝑖−1

1
2
3

Superstep 𝑆𝑆𝑖𝑖

1
2
3

Superstep 𝑆𝑆𝑖𝑖+1



EXAMPLE – MAXIMUM VALUE

1 2 3 4
v = 3 v = 6 v = 2 v = 1

𝑆𝑆0

1 2 3 4
v = 6 v = 6 v = 2 v = 6

1 2 3 4
v = 6 v = 6 v = 6 v = 6

1 2 3 4
v = 6 v = 6 v = 6 v = 6

𝑆𝑆1

𝑆𝑆2

𝑆𝑆3

Active

Inactive

Updated

Message



 alternate execution models 
 partition-centric (“Think-like-a-graph”): synchronized execution of compute 

functions for entire partions (all vertices on one worker) 
 asynchronous: to avoid many idle vertices/workers with skewed degree 

distributions  

 Gather-Apply-Scatter (GAS) programming model
 gather function: aggregates/combines messages
 apply function: preprocesses incoming messages and updates vertex state
 scatter function: uses vertex state to produce outgoing messages
 Goals: reduce network traffic and better workload balancing for graphs 

graphs with highly skewed degree distribution

 Scatter-Gather programming model
 user provides vertex and edge functions:
 vertex function uses all incoming messages to modify vertex value
 edge function uses vertex value to generate a message
 susceptible to execution skew (like vertex-centric) 

ALTERNATE MODELS



GRAPH PROCESSING SYSTEMS

Language Computation Model BSP async. Agg. Add Remove Comb.

Pregel C++ Pregel     

Giraph Java Pregel   

GPS Java Pregel   

Mizan C++ Pregel     n.a.

GraphLab C++ GAS     n.a.

GraphChi C++, Java Pregel     n.a.

Signal/Collect Java Scatter-Gather   n.a.

Chaos Java Scatter-Gather   n.a.

Giraph++ Java Partiton-centric     

GraphX Scala, Java GAS   n.a.

Gelly Scala, Java GSA, Scatter-Gather, Pregel     n.a.



COMPARISON (2) 
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Graph Database 
Systems
Neo4j, OrientDB

Graph Processing 
Systems
(Pregel, Giraph)

data model rich graph models
(PGM)

generic
graph models

focus queries analytic

query language yes no

graph analytics no yes

scalability vertical horizontal

Workflows no no

persistency yes no

dynamic graphs / 
versioning

no no

data integration no no

visualization (yes) no



 Graph processing systems are specialized systems 
 tailored programming abstractions for fast execution of 

a single iterative graph algorithm 

 complex analytical problems often require the 
combination of multiple techniques, e.g.:
 creation of combined graph structures from different 

sources (data extraction, transformation and 
integration) 

 different analysis steps: queries, iterative graph 
processing, machine learning, … 

 Dataflow systems can combine such tasks within dataflow 
programs/workflows/scripts for distributed execution 
 1st generation: MapReduce workflows
 Apache Spark/Flink: in-memory dataflow systems 

GRAPH DATAFLOW SYSTEMS



• Distributed in-memory dataflow systems (e.g., Apache Spark, Apache 
Flink) 

 general-purpose operators (e.g. map, reduce, filter, join) => 
transformations

 specialized libraries (e.g. machine learning, graph analysis)

 holistic view enables optimizations (operator reordering, caching, etc.)

DATAFLOW SYSTEMS

• Dataset := distributed collection of data objects
• Transformation := operation on datasets (higher-order function)
• Dataflow Programm := composition of transformations

Dataset

Dataset

Dataset

Transformation

Transformation

Dataset

Dataset

Transformation Dataset

Dataflow Program



 Graph abstraction on top of a dataflow system 
(e.g., Gelly on Apache Flink and GraphX on Apache Spark)
 generic graph representation
 graph operations / transformations / processing

 Graph transformations / operations
 mutation: adding / removing of vertices and edges
 map: modification of vertex and edge values
 subgraph: find subgraph for user-defined vertex / edge predicates
 join: combination of vertex / edge datasets with other datasets
 union/difference/intersect: combine two graphs into one

 Graph processing
 Gelly implements Pregel, GAS, Scatter-Gather by using native 

Flink iteration functions
 GraphX implements GAS based on Spark Iterations 

GRAPH DATAFLOW SYSTEMS

Gelly



COMPARISON (3) 
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Graph Database 
Systems
Neo4j, OrientDB

Graph Processing 
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink Gelly, 
Spark GraphX)

data model rich graph models
(PGM)

generic
graph models

generic
graph models

focus queries analytic analytic

query language yes no no

graph analytics no yes yes

scalability vertical horizontal horizontal

Workflows no no yes

persistency yes no no

dynamic graphs / 
versioning

no no no

data integration no no no

visualization (yes) no no



An end-to-end framework for scalable
(distributed) graph data management
and analytics supporting a rich graph

data model and queries

WHAT‘S MISSING?
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Data Volume and Problem Complexity

Ea
se

-o
f-u

se

Graph Processing Systems

Graph Databases

Graph Dataflow Systems Gelly
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 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems 
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture 
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA
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 Hadoop-based framework for graph data management and 
analysis
 persistent graph storage in scalable distributed store (Hbase)
 utilization of powerful dataflow system (Apache Flink) for 

parallel, in-memory processing

 Extended property graph data model (EPGM)
 operators on graphs and sets of (sub) graphs
 support for semantic graph queries  and  mining 

 declarative specification of graph analysis workflows
 Graph Analytical Language - GrALa

 end-to-end functionality 
 graph-based data integration, data analysis and visualization

 open-source implementation:  www.gradoop.org

GRADOOP CHARACTERISTICS
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 integrate data from one or more sources into a dedicated
graph store with common graph data model

 definition of analytical workflows from operator algebra

 result representation in meaningful way

END-TO-END GRAPH ANALYTICS

Data Integration Graph Analytics Visualization
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HIGH LEVEL ARCHITECTURE

HDFS/YARN
Cluster

HBase Distributed Graph Store

Extended Property Graph Model

Flink Operator Implementations

Data Integration

Flink Operator Execution

Workflow 
Declaration

Visual

GrALa DSL
Representation

Data flow

Control flow

Graph Analytics Representation
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 includes PGM as special case

 support for collections of logical graphs / subgraphs
 can be defined explicitly
 can be result of graph algorithms / operators

 support for graph properties

 powerful operators on both graphs and graph collections

 Graph Analytical Language – GrALa
 domain-specific language (DSL) for EPGM
 flexible use of operators with application-specific UDFs
 plugin concept for graph mining algorithms

EXTENDED PROPERTY GRAPH MODEL (EPGM)
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• Vertices and directed Edges
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• Vertices and directed Edges
• Logical Graphs
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• Vertices and directed Edges
• Logical Graphs
• Identifiers

1 3

4

5

21 2

3

4

5

1

2
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• Vertices and directed Edges
• Logical Graphs
• Identifiers
• Type Labels

1 3

4

5

21 2

3

4

5
Person Band

Person

Person

Band

likes likes

likes

knows

likes

1|Community

2|Community
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• Vertices and directed Edges
• Logical Graphs
• Identifiers
• Type Labels
• Properties

1 3

4

5

21 2

3

4

5
Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973

likes
since : 2014

likes
since : 2013

likes
since : 2015

knows

likes
since : 2014

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock
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Operators
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Operators

Unary Binary
Algorithms

* auxiliary

G
ra

ph
 C

ol
le

ct
io

n
Lo

gi
ca

lG
ra

ph

Aggregation

Pattern Matching

Transformation

Grouping Equality

Call *

Combination

Overlap

Exclusion

Equality

Union

Intersection
Difference

Gelly Library

BTG Extraction

Frequent Subgraphs

Limit

Selection
Distinct

Sort

Apply *
Reduce *

Call *

Adaptive Partitioning

Subgraph
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Combination

Overlap

Exclusion

LogicalGraph graph3 = graph1.combine(graph2);
LogicalGraph graph4 = graph1.overlap(graph2);
LogicalGraph graph5 = graph1.exclude(graph2);

BASIC BINARY OPERATORS

1 3
4

5
2

3

1 2

1 3
4

5
2

1
2 4

5

3
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udf = (graph => graph[‘vertexCount’] = graph.vertices.size())
graph3 = graph3.aggregate(udf)

AGGREGATION

1 3
4

5
2

3

1 3
4

5
2

3 | vertexCount: 5

UDF
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LogicalGraph graph4 = graph3.subgraph((vertex => vertex[:label] == ‘green’))
LogicalGraph graph5 = graph3.subgraph((edge => edge[:label] == ‘blue’))
LogicalGraph graph6 = graph3.subgraph(

(vertex => vertex[:label] == ‘green’),
(edge => edge[:label] == ‘orange’))

SUBGRAPH

3

1 3
4

5
2

3

4

1 2

5

3
5

2UDF

UDF

UDF 3

6

1 2
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GraphCollection collection = graph3.match(“(:Green)-[:orange]->(:Orange)”);

PATTERN MATCHING

3

1 3
4

5
2 Pattern

4 5

1 3
4

2

Graph Collection

45

 new: support of Cypher query language for pattern matching*

* Junghanns et al.: Cypher-based Graph Pattern Matching in Gradoop. Proc. GRADES 2017

q = "MATCH (p1: Person ) -[e: knows *1..3] ->( p2: Person)
WHERE p1.gender <> p2 .gender RETURN *"

GraphCollection matches = g.cypher (q)



LogicalGraph grouped = graph3.groupBy(
[:label], // vertex keys
[:label]) // edge keys

LogicalGraph grouped = graph3.groupBy([:label], [COUNT()], [:label], [MAX(‘a’)])

GROUPING

Keys

3

1 3
4

5
2

+Aggregate

3

a:23 a:84

a:42

a:12

1 3
4

5
2

a:13

a:21

4

count:2 count:3

max(a):42

max(a):84

max(a):13 max(a):21

6 7

4

6 7
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SAMPLE GRAPH 

[0] Tag
name : Databases

[1] Tag
name : Graphs

[2] Tag
name : Hadoop

[3] Forum
title : Graph Databases

[4] Forum
title : Graph Processing

[5] Person
name : Alice
gender : f
city : Leipzig
age : 23

[6] Person
name : Bob
gender : m
city : Leipzig
age : 30

[7] Person
name : Carol
gender : f
city : Dresden
age : 30

[8] Person
name : Dave
gender : m
city : Dresden
age : 42

[9] Person
name : Eve
gender : f
city : Dresden
age : 35
speaks : en

[10] Person
name : Frank
gender : m
city : Berlin
age : 23
IP: 169.32.1.3

0

1

2

3

4

5

6 7 8 9

10

11 12 13 14

15

16

17

18 19 20 21

22

23

knows
since : 2014

knows
since : 2014

knows
since : 2013 

hasInterest

hasInterest hasInterest

hasInterest

hasModeratorhasModerator
hasMember hasMember

hasMember hasMember

hasTag hasTaghasTag hasTag

knows
since : 2013 

knows
since : 2014 

knows
since : 2014 

knows
since: 2015 

knows
since: 2015 

knows
since : 2015 

knows
since: 2013 



GROUPING: TYPE LEVEL (SCHEMA GRAPH)

vertexGrKeys = [:label]
edgeGrKeys = [:label]
sumGraph = databaseGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

[11] Person

count : 6

[12] Forum

count : 2

[13] Tag

count : 3

hasMember
count : 4

knows
count : 10

hasInterest
count : 4

hasTag
count : 4

hasModerator
count : 2

24

26

28

27

25
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personGraph = databaseGraph.subgraph((vertex => vertex[:label] == ‘Person’),
(edge => edge[:label] == ‘knows’))

vertexGrKeys = [:label, “city”]
edgeGrKeys = [:label]
sumGraph = personGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

GROUPING: PROPERTY-SPECIFIC

1 3

[11] Person

city : Leipzig
count : 2

[12] Person

city : Dresden
count : 3

[13] Person

city : Berlin
count : 1

24

25

26

27

28

knows
count : 3

knows
count : 1 knows

count : 2

knows
count : 2

knows
count : 2
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GraphCollection filtered = collection.select((graph => graph[‘vertexCount’] > 4));

SELECTION

UDF

vertexCount > 4

1 | vertexCount: 5

2 | vertexCount: 4

0 2
3

4
1

5 7 86

1 | vertexCount: 5

0 2
3

4
1
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GraphCollection frequentPatterns = collection.callForCollection(new TransactionalFSM(0.5))

CALL (E.G., FREQUENT SUBGRAPHS)

FSM

Threshold: 50%

1

0 1 2
3

4

5 6 7
8

9

10
13

14

2

3

11 12

15 16

17 18

19 20

4

5

6

21 2322

25 2624

7

8
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Implementation 
and evaluation
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GRAPH REPRESENTATION

Id Label Properties Graphs

Id Label Properties SourceId TargetId Graphs

EPGMGraphHead

EPGMVertex

EPGMEdge

Id Label Properties POJO

POJO

POJO

DataSet<EPGMGraphHead>

DataSet<EPGMVertex>

DataSet<EPGMEdge>

Id Label Properties Graphs

EPGMVertex

GradoopId := UUID
128-bit

String PropertyList := List<Property>
Property      := (String, PropertyValue)
PropertyValue := byte[]

GradoopIdSet := Set<GradoopId>
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Id Label Properties

1 Community {interest:Heavy Metal}

2 Community {interest:Hard Rock}

Id Label Properties Graphs

1 Person {name:Alice, born:1984} {1}

2 Band {name:Metallica,founded:1981} {1}

3 Person {name:Bob} {1,2}

4 Band {name:AC/DC,founded:1973} {2}

5 Person {name:Eve} {2}

Id Label Source Target Properties Graphs

1 likes 1 2 {since:2014} {1}

2 likes 3 2 {since:2013} {1}

3 likes 3 4 {since:2015} {2}

4 knows 3 5 {} {2}

5 likes 5 4 {since:2014} {2}

likes
since : 2014

likes
since : 20131 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973likes

since : 2015

knows

likes
since : 20141 2

3

4

5

DataSet<EPGMGraphHead>

DataSet<EPGMVertex> DataSet<EPGMEdge>

GRAPH REPRESENTATION: EXAMPLE
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// input: firstGraph (G[1]), secondGraph (G[2])

1: DataSet<GradoopId> graphId = secondGraph.getGraphHead()
2: .map(new Id<G>());
3: 
4: DataSet<V> newVertices = firstGraph.getVertices()
5: .filter(new NotInGraphBroadCast<V>())
6: .withBroadcastSet(graphId, GRAPH_ID);
7:
8: DataSet<E> newEdges = firstGraph.getEdges()
9: .filter(new NotInGraphBroadCast<E>())

10: .withBroadcastSet(graphId, GRAPH_ID)
11: .join(newVertices)
12: .where(new SourceId<E>().equalTo(new Id<V>())
13: .with(new LeftSide<E, V>())
14: .join(newVertices)
15: .where(new TargetId<E>().equalTo(new Id<V>())
16: .with(new LeftSide<E, V>());

Exclusion

OPERATOR IMPLEMENTATION

likes
since : 2013

likes
since : 20141 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973likes

since : 2015

knows

likes
since : 20141 2

3

4

5
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IMPLEMENTATION OF GRAPH GROUPING

GroupBy(1,2,3) +
GC + GR* + Map
Assign edges to groups
Compute aggregates
Build super edges

Filter + Map
Extract super vertex tuples
Build super vertices

GroupBy(1) + GroupReduce*
Assign vertices to groups
Compute aggregates
Create super vertex tuples
Forward updated group members

V

E

Map
Extract
attributes

Filter + Map 
Extract group members
Reduce memory footprint

Join*
Replace Source/TargetId
with corresponding super 
vertex id

Map
Extract
attributes

*requires worker communication

V1 V2

V3

V‘

E1 E2 E‘
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TEST WORKFLOW: SUMMARIZED COMMUNITIES

http://ldbcouncil.org/

1. Extract subgraph containing only Persons and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph

57



TEST WORKFLOW: SUMMARIZED
COMMUNITIES

https://git.io/vgozj

1. Extract subgraph containing only Persons

and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph
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BENCHMARK RESULTS

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
 16x 48 GB RAM
 1 Gigabit Ethernet
 Hadoop 2.6.0
 Flink 1.0-SNAPSHOT
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BENCHMARK RESULTS 2

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028
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]

Datasets

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
 16x 48 GB RAM
 1 Gigabit Ethernet
 Hadoop 2.6.0
 Flink 1.0-SNAPSHOT
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COMPARISON

61

Graph Database 
Systems
Neo4j, OrientDB

Graph Processing 
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink 
Gelly, Spark 
GraphX)

data model rich graph
models (PGM)

generic
graph models

generic
graph models

Extended PGM

focus queries analytic analytic analytic

query language yes no no (yes)

graph analytics (no) yes yes yes

scalability vertical horizontal horizontal horizontal

Workflows no no yes yes

persistency yes no no yes

dynamic graphs 
/ versioning

no no no no

data integration no no no (yes)

visualization (yes) no no limited



 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems 
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture 
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA
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 Graph data allocation and partitioning

 Benchmarking and evaluation of graph data
systems

 Graph-based data integration and knowledge 
graphs 

 Analysis of dynamic graphs

 Interactive graph analytics 

CHALLENGES
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 distributed graph processing depends on suitable
graph allocation/partitioning
 minimize communication for graph analysis
 load balancing

 goal:  balanced vertex distribution with minimal 
number of edges between partitions (edge cut)
 vertex cut: balanced edge distribution with minimal replication 

of vertices  (PowerGraph, Spark GraphX)

GRAPH DATA ALLOCATION / PARTITIONING 
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 hash-based vertex partitioning prevalent but not 
optimal 
 vertex neighbors frequently in different 

partitions -> high communication overhead

 multilevel graph partitioning (e.g., METIS)
 expensive to determine / static

 newer approaches for adaptive allocation
 Stanton/Kliot (KDD2012), Mondal/Deshpande

(Sigmod2012), Huang/Abadi (VLDB2016)

GRAPH DATA ALLOCATION / PARTITIONING (2) 
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 many comparative evaluations between graph
DBMS and graph processing systems (Han -
VLDB14, Lu -VLDB14, …)
 many differences in considered systems. workloads, 

configurations, etc
 early systems using Map/reduce or Giraph are

outperformed by newer graph processing systems
 few results for Spark GraphX, Flink Gelly

 Benchmark efforts for graph data analysis
 e.g., LinkBench, LDBC, gMark
 only few results so far 

BENCHMARKING AND EVALUATION
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 need to integrate diverse data from different 
sources (or from data lake) into semantically
expressive graph representation
 for later graph analysis
 for representing background knowledge

(knowledge graphs) 

 traditional tasks for data acquisition, data
transformation, data cleaning, schema / entity
matching, entity fusion, data enrichment / 
annotation

 most previous work for RDF data, but not for
property graphs

GRAPH-BASED DATA INTEGRATION
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BIIIG DATA INTEGRATION WORKFLOW

68

„Business Intelligence on Integrated Instance Graphs (BIIIG)“  (PVLDB 2014)

Business Transaction Graphs

(3) Subgraph
Isolation

(2) Graph 
integration

Integrated Instance Graph

Domain expert

meta
data

(1) Graph 
transformation
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a 
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INTEGRATION SCENARIO
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source: Andreas Thor



 graphs like social networks, citation networks, 
road networks etc change over time  
 need to efficiently update/refresh analysis results

(graph metrics, communities/clusters, …) 
 streaming networks vs slowly evolving networks 
 fast stream analysis vs. analysis of series of graph 

snapshots

 many initial studies on specific aspects but no
comprehensive system for analysis of 
dynamic graphs

DYNAMIC GRAPHS
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 need to support both interactive graph
queries / exploration + graph mining

 OLAP-like graph analysis functionality
 Multi-level, multidimensional grouping and

aggregation
 need for extended (nested) graph model?

 visual analytics for big graphs 
 data reduction techniques for visualization 

(sampling, multi-level grouping, …)

INTERACTIVE GRAPH ANALYTICS
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 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems 
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture 
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA
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Thank
you!



 M. Junghanns, A. Petermann, M. Neumann, E. Rahm: Management and Analysis of Big 
Graph Data: Current Systems and Open Challenges. In: Big Data Handbook (eds.: S. Sakr, A. 
Zomaya) , Springer, 2017 

Gradoop
 M. Junghanns, M. Kießling, A. Averbuch, A. Petermann, E. Rahm: Cypher-based Graph Pattern Matching in Gradoop. 

Proc. ACM SIGMOD workshop on Graph Data Management Experiences and Systems (GRADES), 2017

 M. Junghanns, A. Petermann, K. Gomez, E. Rahm: GRADOOP - Scalable Graph Data Management and Analytics with 
Hadoop. Tech. report (Arxiv), Univ. of Leipzig, 2015 

 M. Junghanns, A. Petermann, N. Teichmann, K. Gomez, E. Rahm: Analyzing Extended Property Graphs with Apache 
Flink. Proc. ACM SIGMOD workshop on Network Data Analytics (NDA),  2016

 M. Junghanns, A. Petermann, E. Rahm: Distributed Grouping of Property Graphs with GRADOOP. Proc. BTW, 2017 

 A. Petermann; M. Junghanns: Scalable Business Intelligence with Graph Collections. it - Information Technology Special 
Issue: Big Data Analytics, 2016 

 A. Petermann, M. Junghanns, S. Kemper, K. Gomez, N. Teichmann, E. Rahm: Graph Mining for Complex Data 
Analytics. Proc. ICDM 2016 (Demo paper)

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: BIIIG : Enabling Business Intelligence with Integrated Instance Graphs. 
Proc. 5th Int. Workshop on Graph Data Management (GDM 2014)

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: Graph-based Data Integration and Business Intelligence with BIIIG. 
Proc. VLDB Conf., 2014

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: FoodBroker - Generating Synthetic Datasets for Graph-Based Business 
Analytics. Proc. 5th Int. Workshop on Big Data Benchmarking (WBDB), 2014

 A. Petermann, M. Junghanns, E. Rahm:  DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory 
Dataflow Systems. arXiv 2017
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