
www.scads.de

SCALABLE GRAPH ANALYTICS

ERHARD RAHM

2

„GRAPHS ARE EVERYWHERE“

3

Facebook
ca. 1.3 billion users
ca. 340 friends per user

Twitter
ca. 300 million users
ca. 500 million tweets per day

Internet
ca. 2.9 billion users

Gene (human)
20,000-25,000
ca. 4 million individuals

Patients
> 18 millions (Germany)

Illnesses
> 30.000

World Wide Web
ca. 1 billion Websites

LOD-Cloud
ca. 90 billion triples

Social science Engineering Life science Information science

𝑮𝑮𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑽𝑽𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑬𝑬𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)

“GRAPHS ARE EVERYWHERE”

4

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝑟𝑟𝑒𝑒)

“GRAPHS ARE EVERYWHERE”

Alice

Bob

Eve

Dave

Carol

Mallory

Peggy

Trent

5

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔,𝐹𝐹𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑑𝑑𝑒𝑒𝑟𝑒𝑒𝑟𝑟𝑒𝑒)

“GRAPHS ARE EVERYWHERE”

Alice

Bob

Eve

Dave

Carol

Mallory

Peggy

Trent

6

“GRAPHS ARE HETEROGENEOUS”

Alice

Bob

AC/DC

Dave

Carol

Mallory

Peggy

Metallica

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔 ∪ 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐔𝐔,𝐹𝐹𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑑𝑑𝑒𝑒𝑟𝑒𝑒𝑟𝑟𝑒𝑒 ∪ 𝐿𝐿𝑒𝑒𝐿𝐿𝑒𝑒𝑒𝑒)

7

0.2

0.28

0.26

0.33

0.25

0.26

“GRAPHS CAN BE ANALYZED”

Alice

Bob

AC/DC

Dave

Carol

Mallory

Peggy

Metallica

3.6
2.82

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔 ∪ 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐔𝐔,𝐹𝐹𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑑𝑑𝑒𝑒𝑟𝑒𝑒𝑟𝑟𝑒𝑒 ∪ 𝐿𝐿𝑒𝑒𝐿𝐿𝑒𝑒𝑒𝑒)

8

“GRAPHS CAN BE ANALYZED“

Assuming a social network
1. Determine subgraph
2. Find communities
3. Filter communities
4. Find common subgraph

9

 all „V“ challenges
 volume (scalability)
 Variety (support for heterogenous data / data

integration)
 Velocity (dynamically changing graph data)
 veracity (high data quality)
 value (improved business value)

 ease-of-use

 high cost-effectiveness

GRAPH DATA ANALYTICS: HIGH-LEVEL
REQUIREMENTS

10

 powerful but easy to use graph data model
 support for heterogeneous, schema-flexible vertices

and edges
 support for collections of graphs (not only 1 graph)
 powerful graph operators

 powerful query and analysis capabilities
 interactive, declarative graph queries
 scalable graph mining

 high performance and scalability

 persistent graph storage and transaction support

 graph-based integration of many data sources

 versioning and evolution (dynamic /temporal graphs)

 comprehensive visualization support

GRAPH DATA ANALYTICS: REQUIREMENTS

11

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

12

 First Generation:
 research prototypes only
 peak popularity in early 90s

 Second Generation:
 NoSQL movement
 commercial systems

GRAPH DATABASES

 graph data model
 mostly property graphs, RDF or generic graphs
 different vertex and edge data
 graph operators (traversal, pattern matching) /

queries

 application scope
 mostly queries/OLTP on small graph portions
 some support for analytical queries/computations

(analyze whole graph, e.g., page rank)

RECENT GRAPH DATABASE SYSTEMS

 popular data model for commercial graph DBMS
 de-facto industry standard TinkerPop
 query languages Gremlin (TinkerPop) and Cypher

(Neo4j, openCypher)

 query example (pattern matching)

PROPERTY GRAPH MODEL

15

Data Model Scope Storage
System RDF/SPARQL PGM/TinkerPop Generic OLTP/Queries Analytics Approach Replication Partitioning
Apache Jena TBD /  native
AllegroGraph /  native 
MarkLogic /  native  
Ontotext GraphDB /  native 
Oracle Spatial and Graph /  native 
Virtuoso /  relational  
TripleBit /  native
Blazegraph / /   native RDF  
IBM System G / /    native PGM,

wide column store
 

Stardog / /   native RDF 
SAP Active Info. Store /-  realtional
ArangoDB /  document store  
InfiniteGraph /  native  
Neo4j /  native 
Oracle Big Data /  key value store  
OrientDB /  document store  
Sparksee /  native 
SQLGraph /  relational

Titan /   wide column store,
key value store

 

HypergraphDB   native

SYSTEM COMPARISON

COMPARISON

17

Graph Database
Systems
Neo4j, OrientDB

data model rich graph models
(PGM)

focus queries

query language yes

graph analytics (no)

scalability vertical

analysis workflows no

persistency yes

dynamic graphs /
versioning

no

data integration no

visualization (yes)

 goal: better support for scalable/distributed graph
mining
 page rank, connected components, clustering, frequent

subgraphs, …
 mostly generic graphs only (e.g., directed multigraphs)

 early approaches based on MapReduce
 iterative processing via control program and multiple MR

programs
 unintuitive programming and limited performance (high

communication and I/O costs)

 „newer“ computation models pioneered by Google Pregel
 vertex-centric programming („Think Like a Vertex“)
 Bulk-synchronous-parallel (BSP) computation
 In-memory storage of graph data

GRAPH PROCESSING SYSTEMS

 parallel and synchronized execution of vertex compute function

 vertex keeps state about itself

 compute function

 reads incoming messages,
 updates vertex state (value)
 sends information to neighboring vertices

 vertices can deactivate themselves (call voteToHalt() function)

 iterative execution within supersteps until there are no active vertices
or messages anymore (bulk-synchronus-parallel execution)

VERTEX-CENTRIC PROCESSING

Time

1
2
3

Superstep 𝑆𝑆𝑖𝑖−1

1
2
3

Superstep 𝑆𝑆𝑖𝑖

1
2
3

Superstep 𝑆𝑆𝑖𝑖+1

EXAMPLE – MAXIMUM VALUE

1 2 3 4
v = 3 v = 6 v = 2 v = 1

𝑆𝑆0

1 2 3 4
v = 6 v = 6 v = 2 v = 6

1 2 3 4
v = 6 v = 6 v = 6 v = 6

1 2 3 4
v = 6 v = 6 v = 6 v = 6

𝑆𝑆1

𝑆𝑆2

𝑆𝑆3

Active

Inactive

Updated

Message

 alternate execution models
 partition-centric (“Think-like-a-graph”): synchronized execution of compute

functions for entire partions (all vertices on one worker)
 asynchronous: to avoid many idle vertices/workers with skewed degree

distributions

 Gather-Apply-Scatter (GAS) programming model
 gather function: aggregates/combines messages
 apply function: preprocesses incoming messages and updates vertex state
 scatter function: uses vertex state to produce outgoing messages
 Goals: reduce network traffic and better workload balancing for graphs

graphs with highly skewed degree distribution

 Scatter-Gather programming model
 user provides vertex and edge functions:
 vertex function uses all incoming messages to modify vertex value
 edge function uses vertex value to generate a message
 susceptible to execution skew (like vertex-centric)

ALTERNATE MODELS

GRAPH PROCESSING SYSTEMS

Language Computation Model BSP async. Agg. Add Remove Comb.

Pregel C++ Pregel     

Giraph Java Pregel   

GPS Java Pregel   

Mizan C++ Pregel     n.a.

GraphLab C++ GAS     n.a.

GraphChi C++, Java Pregel     n.a.

Signal/Collect Java Scatter-Gather   n.a.

Chaos Java Scatter-Gather   n.a.

Giraph++ Java Partiton-centric     

GraphX Scala, Java GAS   n.a.

Gelly Scala, Java GSA, Scatter-Gather, Pregel     n.a.

COMPARISON (2)

23

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

data model rich graph models
(PGM)

generic
graph models

focus queries analytic

query language yes no

graph analytics no yes

scalability vertical horizontal

Workflows no no

persistency yes no

dynamic graphs /
versioning

no no

data integration no no

visualization (yes) no

 Graph processing systems are specialized systems
 tailored programming abstractions for fast execution of

a single iterative graph algorithm

 complex analytical problems often require the
combination of multiple techniques, e.g.:
 creation of combined graph structures from different

sources (data extraction, transformation and
integration)

 different analysis steps: queries, iterative graph
processing, machine learning, …

 Dataflow systems can combine such tasks within dataflow
programs/workflows/scripts for distributed execution
 1st generation: MapReduce workflows
 Apache Spark/Flink: in-memory dataflow systems

GRAPH DATAFLOW SYSTEMS

• Distributed in-memory dataflow systems (e.g., Apache Spark, Apache
Flink)

 general-purpose operators (e.g. map, reduce, filter, join) =>
transformations

 specialized libraries (e.g. machine learning, graph analysis)

 holistic view enables optimizations (operator reordering, caching, etc.)

DATAFLOW SYSTEMS

• Dataset := distributed collection of data objects
• Transformation := operation on datasets (higher-order function)
• Dataflow Programm := composition of transformations

Dataset

Dataset

Dataset

Transformation

Transformation

Dataset

Dataset

Transformation Dataset

Dataflow Program

 Graph abstraction on top of a dataflow system
(e.g., Gelly on Apache Flink and GraphX on Apache Spark)
 generic graph representation
 graph operations / transformations / processing

 Graph transformations / operations
 mutation: adding / removing of vertices and edges
 map: modification of vertex and edge values
 subgraph: find subgraph for user-defined vertex / edge predicates
 join: combination of vertex / edge datasets with other datasets
 union/difference/intersect: combine two graphs into one

 Graph processing
 Gelly implements Pregel, GAS, Scatter-Gather by using native

Flink iteration functions
 GraphX implements GAS based on Spark Iterations

GRAPH DATAFLOW SYSTEMS

Gelly

COMPARISON (3)

27

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink Gelly,
Spark GraphX)

data model rich graph models
(PGM)

generic
graph models

generic
graph models

focus queries analytic analytic

query language yes no no

graph analytics no yes yes

scalability vertical horizontal horizontal

Workflows no no yes

persistency yes no no

dynamic graphs /
versioning

no no no

data integration no no no

visualization (yes) no no

An end-to-end framework for scalable
(distributed) graph data management
and analytics supporting a rich graph

data model and queries

WHAT‘S MISSING?

28

Data Volume and Problem Complexity

Ea
se

-o
f-u

se

Graph Processing Systems

Graph Databases

Graph Dataflow Systems Gelly

29

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

30

 Hadoop-based framework for graph data management and
analysis
 persistent graph storage in scalable distributed store (Hbase)
 utilization of powerful dataflow system (Apache Flink) for

parallel, in-memory processing

 Extended property graph data model (EPGM)
 operators on graphs and sets of (sub) graphs
 support for semantic graph queries and mining

 declarative specification of graph analysis workflows
 Graph Analytical Language - GrALa

 end-to-end functionality
 graph-based data integration, data analysis and visualization

 open-source implementation: www.gradoop.org

GRADOOP CHARACTERISTICS

31

 integrate data from one or more sources into a dedicated
graph store with common graph data model

 definition of analytical workflows from operator algebra

 result representation in meaningful way

END-TO-END GRAPH ANALYTICS

Data Integration Graph Analytics Visualization

32

HIGH LEVEL ARCHITECTURE

HDFS/YARN
Cluster

HBase Distributed Graph Store

Extended Property Graph Model

Flink Operator Implementations

Data Integration

Flink Operator Execution

Workflow
Declaration

Visual

GrALa DSL
Representation

Data flow

Control flow

Graph Analytics Representation

33

 includes PGM as special case

 support for collections of logical graphs / subgraphs
 can be defined explicitly
 can be result of graph algorithms / operators

 support for graph properties

 powerful operators on both graphs and graph collections

 Graph Analytical Language – GrALa
 domain-specific language (DSL) for EPGM
 flexible use of operators with application-specific UDFs
 plugin concept for graph mining algorithms

EXTENDED PROPERTY GRAPH MODEL (EPGM)

34

• Vertices and directed Edges

35

• Vertices and directed Edges
• Logical Graphs

36

• Vertices and directed Edges
• Logical Graphs
• Identifiers

1 3

4

5

21 2

3

4

5

1

2

37

• Vertices and directed Edges
• Logical Graphs
• Identifiers
• Type Labels

1 3

4

5

21 2

3

4

5
Person Band

Person

Person

Band

likes likes

likes

knows

likes

1|Community

2|Community

38

• Vertices and directed Edges
• Logical Graphs
• Identifiers
• Type Labels
• Properties

1 3

4

5

21 2

3

4

5
Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973

likes
since : 2014

likes
since : 2013

likes
since : 2015

knows

likes
since : 2014

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

39

Operators

40

Operators

Unary Binary
Algorithms

* auxiliary

G
ra

ph
 C

ol
le

ct
io

n
Lo

gi
ca

lG
ra

ph

Aggregation

Pattern Matching

Transformation

Grouping Equality

Call *

Combination

Overlap

Exclusion

Equality

Union

Intersection
Difference

Gelly Library

BTG Extraction

Frequent Subgraphs

Limit

Selection
Distinct

Sort

Apply *
Reduce *

Call *

Adaptive Partitioning

Subgraph

41

Combination

Overlap

Exclusion

LogicalGraph graph3 = graph1.combine(graph2);
LogicalGraph graph4 = graph1.overlap(graph2);
LogicalGraph graph5 = graph1.exclude(graph2);

BASIC BINARY OPERATORS

1 3
4

5
2

3

1 2

1 3
4

5
2

1
2 4

5

3

42

udf = (graph => graph[‘vertexCount’] = graph.vertices.size())
graph3 = graph3.aggregate(udf)

AGGREGATION

1 3
4

5
2

3

1 3
4

5
2

3 | vertexCount: 5

UDF

43

LogicalGraph graph4 = graph3.subgraph((vertex => vertex[:label] == ‘green’))
LogicalGraph graph5 = graph3.subgraph((edge => edge[:label] == ‘blue’))
LogicalGraph graph6 = graph3.subgraph(

(vertex => vertex[:label] == ‘green’),
(edge => edge[:label] == ‘orange’))

SUBGRAPH

3

1 3
4

5
2

3

4

1 2

5

3
5

2UDF

UDF

UDF 3

6

1 2

44

GraphCollection collection = graph3.match(“(:Green)-[:orange]->(:Orange)”);

PATTERN MATCHING

3

1 3
4

5
2 Pattern

4 5

1 3
4

2

Graph Collection

45

 new: support of Cypher query language for pattern matching*

* Junghanns et al.: Cypher-based Graph Pattern Matching in Gradoop. Proc. GRADES 2017

q = "MATCH (p1: Person) -[e: knows *1..3] ->(p2: Person)
WHERE p1.gender <> p2 .gender RETURN *"

GraphCollection matches = g.cypher (q)

LogicalGraph grouped = graph3.groupBy(
[:label], // vertex keys
[:label]) // edge keys

LogicalGraph grouped = graph3.groupBy([:label], [COUNT()], [:label], [MAX(‘a’)])

GROUPING

Keys

3

1 3
4

5
2

+Aggregate

3

a:23 a:84

a:42

a:12

1 3
4

5
2

a:13

a:21

4

count:2 count:3

max(a):42

max(a):84

max(a):13 max(a):21

6 7

4

6 7

46

SAMPLE GRAPH

[0] Tag
name : Databases

[1] Tag
name : Graphs

[2] Tag
name : Hadoop

[3] Forum
title : Graph Databases

[4] Forum
title : Graph Processing

[5] Person
name : Alice
gender : f
city : Leipzig
age : 23

[6] Person
name : Bob
gender : m
city : Leipzig
age : 30

[7] Person
name : Carol
gender : f
city : Dresden
age : 30

[8] Person
name : Dave
gender : m
city : Dresden
age : 42

[9] Person
name : Eve
gender : f
city : Dresden
age : 35
speaks : en

[10] Person
name : Frank
gender : m
city : Berlin
age : 23
IP: 169.32.1.3

0

1

2

3

4

5

6 7 8 9

10

11 12 13 14

15

16

17

18 19 20 21

22

23

knows
since : 2014

knows
since : 2014

knows
since : 2013

hasInterest

hasInterest hasInterest

hasInterest

hasModeratorhasModerator
hasMember hasMember

hasMember hasMember

hasTag hasTaghasTag hasTag

knows
since : 2013

knows
since : 2014

knows
since : 2014

knows
since: 2015

knows
since: 2015

knows
since : 2015

knows
since: 2013

GROUPING: TYPE LEVEL (SCHEMA GRAPH)

vertexGrKeys = [:label]
edgeGrKeys = [:label]
sumGraph = databaseGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

[11] Person

count : 6

[12] Forum

count : 2

[13] Tag

count : 3

hasMember
count : 4

knows
count : 10

hasInterest
count : 4

hasTag
count : 4

hasModerator
count : 2

24

26

28

27

25

48

personGraph = databaseGraph.subgraph((vertex => vertex[:label] == ‘Person’),
(edge => edge[:label] == ‘knows’))

vertexGrKeys = [:label, “city”]
edgeGrKeys = [:label]
sumGraph = personGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

GROUPING: PROPERTY-SPECIFIC

1 3

[11] Person

city : Leipzig
count : 2

[12] Person

city : Dresden
count : 3

[13] Person

city : Berlin
count : 1

24

25

26

27

28

knows
count : 3

knows
count : 1 knows

count : 2

knows
count : 2

knows
count : 2

49

GraphCollection filtered = collection.select((graph => graph[‘vertexCount’] > 4));

SELECTION

UDF

vertexCount > 4

1 | vertexCount: 5

2 | vertexCount: 4

0 2
3

4
1

5 7 86

1 | vertexCount: 5

0 2
3

4
1

50

GraphCollection frequentPatterns = collection.callForCollection(new TransactionalFSM(0.5))

CALL (E.G., FREQUENT SUBGRAPHS)

FSM

Threshold: 50%

1

0 1 2
3

4

5 6 7
8

9

10
13

14

2

3

11 12

15 16

17 18

19 20

4

5

6

21 2322

25 2624

7

8

51

Implementation
and evaluation

52

GRAPH REPRESENTATION

Id Label Properties Graphs

Id Label Properties SourceId TargetId Graphs

EPGMGraphHead

EPGMVertex

EPGMEdge

Id Label Properties POJO

POJO

POJO

DataSet<EPGMGraphHead>

DataSet<EPGMVertex>

DataSet<EPGMEdge>

Id Label Properties Graphs

EPGMVertex

GradoopId := UUID
128-bit

String PropertyList := List<Property>
Property := (String, PropertyValue)
PropertyValue := byte[]

GradoopIdSet := Set<GradoopId>

53

Id Label Properties

1 Community {interest:Heavy Metal}

2 Community {interest:Hard Rock}

Id Label Properties Graphs

1 Person {name:Alice, born:1984} {1}

2 Band {name:Metallica,founded:1981} {1}

3 Person {name:Bob} {1,2}

4 Band {name:AC/DC,founded:1973} {2}

5 Person {name:Eve} {2}

Id Label Source Target Properties Graphs

1 likes 1 2 {since:2014} {1}

2 likes 3 2 {since:2013} {1}

3 likes 3 4 {since:2015} {2}

4 knows 3 5 {} {2}

5 likes 5 4 {since:2014} {2}

likes
since : 2014

likes
since : 20131 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973likes

since : 2015

knows

likes
since : 20141 2

3

4

5

DataSet<EPGMGraphHead>

DataSet<EPGMVertex> DataSet<EPGMEdge>

GRAPH REPRESENTATION: EXAMPLE

54

// input: firstGraph (G[1]), secondGraph (G[2])

1: DataSet<GradoopId> graphId = secondGraph.getGraphHead()
2: .map(new Id<G>());
3:
4: DataSet<V> newVertices = firstGraph.getVertices()
5: .filter(new NotInGraphBroadCast<V>())
6: .withBroadcastSet(graphId, GRAPH_ID);
7:
8: DataSet<E> newEdges = firstGraph.getEdges()
9: .filter(new NotInGraphBroadCast<E>())

10: .withBroadcastSet(graphId, GRAPH_ID)
11: .join(newVertices)
12: .where(new SourceId<E>().equalTo(new Id<V>())
13: .with(new LeftSide<E, V>())
14: .join(newVertices)
15: .where(new TargetId<E>().equalTo(new Id<V>())
16: .with(new LeftSide<E, V>());

Exclusion

OPERATOR IMPLEMENTATION

likes
since : 2013

likes
since : 20141 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973likes

since : 2015

knows

likes
since : 20141 2

3

4

5

55

IMPLEMENTATION OF GRAPH GROUPING

GroupBy(1,2,3) +
GC + GR* + Map
Assign edges to groups
Compute aggregates
Build super edges

Filter + Map
Extract super vertex tuples
Build super vertices

GroupBy(1) + GroupReduce*
Assign vertices to groups
Compute aggregates
Create super vertex tuples
Forward updated group members

V

E

Map
Extract
attributes

Filter + Map
Extract group members
Reduce memory footprint

Join*
Replace Source/TargetId
with corresponding super
vertex id

Map
Extract
attributes

*requires worker communication

V1 V2

V3

V‘

E1 E2 E‘

56

TEST WORKFLOW: SUMMARIZED COMMUNITIES

http://ldbcouncil.org/

1. Extract subgraph containing only Persons and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph

57

TEST WORKFLOW: SUMMARIZED
COMMUNITIES

https://git.io/vgozj

1. Extract subgraph containing only Persons

and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph

58

BENCHMARK RESULTS

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
 16x 48 GB RAM
 1 Gigabit Ethernet
 Hadoop 2.6.0
 Flink 1.0-SNAPSHOT

0

200

400

600

800

1000

1200

1 2 4 8 16

Ru
nt

im
e

[s
]

Number of workers

Runtime
Graphalytics.100

1

2

4

8

16

1 2 4 8 16

Sp
ee

du
p

Number of workers

Speedup
Graphalytics.100 Linear

59

BENCHMARK RESULTS 2

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028

1

10

100

1000

10000

Ru
nt

im
e

[s
]

Datasets

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
 16x 48 GB RAM
 1 Gigabit Ethernet
 Hadoop 2.6.0
 Flink 1.0-SNAPSHOT

60

COMPARISON

61

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink
Gelly, Spark
GraphX)

data model rich graph
models (PGM)

generic
graph models

generic
graph models

Extended PGM

focus queries analytic analytic analytic

query language yes no no (yes)

graph analytics (no) yes yes yes

scalability vertical horizontal horizontal horizontal

Workflows no no yes yes

persistency yes no no yes

dynamic graphs
/ versioning

no no no no

data integration no no no (yes)

visualization (yes) no no limited

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

62

 Graph data allocation and partitioning

 Benchmarking and evaluation of graph data
systems

 Graph-based data integration and knowledge
graphs

 Analysis of dynamic graphs

 Interactive graph analytics

CHALLENGES

63

 distributed graph processing depends on suitable
graph allocation/partitioning
 minimize communication for graph analysis
 load balancing

 goal: balanced vertex distribution with minimal
number of edges between partitions (edge cut)
 vertex cut: balanced edge distribution with minimal replication

of vertices (PowerGraph, Spark GraphX)

GRAPH DATA ALLOCATION / PARTITIONING

64

 hash-based vertex partitioning prevalent but not
optimal
 vertex neighbors frequently in different

partitions -> high communication overhead

 multilevel graph partitioning (e.g., METIS)
 expensive to determine / static

 newer approaches for adaptive allocation
 Stanton/Kliot (KDD2012), Mondal/Deshpande

(Sigmod2012), Huang/Abadi (VLDB2016)

GRAPH DATA ALLOCATION / PARTITIONING (2)

65

 many comparative evaluations between graph
DBMS and graph processing systems (Han -
VLDB14, Lu -VLDB14, …)
 many differences in considered systems. workloads,

configurations, etc
 early systems using Map/reduce or Giraph are

outperformed by newer graph processing systems
 few results for Spark GraphX, Flink Gelly

 Benchmark efforts for graph data analysis
 e.g., LinkBench, LDBC, gMark
 only few results so far

BENCHMARKING AND EVALUATION

66

 need to integrate diverse data from different
sources (or from data lake) into semantically
expressive graph representation
 for later graph analysis
 for representing background knowledge

(knowledge graphs)

 traditional tasks for data acquisition, data
transformation, data cleaning, schema / entity
matching, entity fusion, data enrichment /
annotation

 most previous work for RDF data, but not for
property graphs

GRAPH-BASED DATA INTEGRATION

67

BIIIG DATA INTEGRATION WORKFLOW

68

„Business Intelligence on Integrated Instance Graphs (BIIIG)“ (PVLDB 2014)

Business Transaction Graphs

(3) Subgraph
Isolation

(2) Graph
integration

Integrated Instance Graph

Domain expert

meta
data

(1) Graph
transformation

D
at

a
So

ur
ce

s

INTEGRATION SCENARIO

69

source: Andreas Thor

 graphs like social networks, citation networks,
road networks etc change over time
 need to efficiently update/refresh analysis results

(graph metrics, communities/clusters, …)
 streaming networks vs slowly evolving networks
 fast stream analysis vs. analysis of series of graph

snapshots

 many initial studies on specific aspects but no
comprehensive system for analysis of
dynamic graphs

DYNAMIC GRAPHS

70

 need to support both interactive graph
queries / exploration + graph mining

 OLAP-like graph analysis functionality
 Multi-level, multidimensional grouping and

aggregation
 need for extended (nested) graph model?

 visual analytics for big graphs
 data reduction techniques for visualization

(sampling, multi-level grouping, …)

INTERACTIVE GRAPH ANALYTICS

71

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

72

Thank
you!

 M. Junghanns, A. Petermann, M. Neumann, E. Rahm: Management and Analysis of Big
Graph Data: Current Systems and Open Challenges. In: Big Data Handbook (eds.: S. Sakr, A.
Zomaya) , Springer, 2017

Gradoop
 M. Junghanns, M. Kießling, A. Averbuch, A. Petermann, E. Rahm: Cypher-based Graph Pattern Matching in Gradoop.

Proc. ACM SIGMOD workshop on Graph Data Management Experiences and Systems (GRADES), 2017

 M. Junghanns, A. Petermann, K. Gomez, E. Rahm: GRADOOP - Scalable Graph Data Management and Analytics with
Hadoop. Tech. report (Arxiv), Univ. of Leipzig, 2015

 M. Junghanns, A. Petermann, N. Teichmann, K. Gomez, E. Rahm: Analyzing Extended Property Graphs with Apache
Flink. Proc. ACM SIGMOD workshop on Network Data Analytics (NDA), 2016

 M. Junghanns, A. Petermann, E. Rahm: Distributed Grouping of Property Graphs with GRADOOP. Proc. BTW, 2017

 A. Petermann; M. Junghanns: Scalable Business Intelligence with Graph Collections. it - Information Technology Special
Issue: Big Data Analytics, 2016

 A. Petermann, M. Junghanns, S. Kemper, K. Gomez, N. Teichmann, E. Rahm: Graph Mining for Complex Data
Analytics. Proc. ICDM 2016 (Demo paper)

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: BIIIG : Enabling Business Intelligence with Integrated Instance Graphs.
Proc. 5th Int. Workshop on Graph Data Management (GDM 2014)

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: Graph-based Data Integration and Business Intelligence with BIIIG.
Proc. VLDB Conf., 2014

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: FoodBroker - Generating Synthetic Datasets for Graph-Based Business
Analytics. Proc. 5th Int. Workshop on Big Data Benchmarking (WBDB), 2014

 A. Petermann, M. Junghanns, E. Rahm: DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory
Dataflow Systems. arXiv 2017

REFERENCES

73

	Scalable Graph AnalyTics
	Foliennummer 2
	„Graphs are everywhere“
	“Graphs are everywhere”
	“Graphs are everywhere”
	“Graphs are everywhere”
	“Graphs are heterogeneous”
	“Graphs can be analyzed”
	“Graphs can be analyzed“
	Graph Data Analytics: High-level requirements
	Graph Data Analytics: requirements
	Agenda
	Graph Databases
	Recent Graph Database Systems
	Property Graph model
	System Comparison
	Comparison
	Graph Processing systems
	Vertex-centric processing
	Example – Maximum Value
	Alternate models
	Graph Processing Systems
	Comparison (2)
	Graph Dataflow Systems
	Dataflow Systems
	Graph Dataflow Systems
	Comparison (3)
	�				What‘s missing?
	Foliennummer 29
	Agenda
	Gradoop Characteristics
	End-to-end Graph Analytics
	High Level Architecture
	Extended Property Graph Model (EPGM)
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Basic Binary Operators
	Aggregation
	Subgraph
	Pattern Matching
	Grouping
	Sample Graph
	Grouping: Type level (Schema Graph)
	Grouping: property-specific
	Selection
	Call (e.g., Frequent Subgraphs)
	Foliennummer 52
	Graph Representation
	Graph Representation: example
	Operator implementation
	Implementation of Graph Grouping
	Test Workflow: Summarized communities
	Test Workflow: Summarized communities
	Benchmark Results
	Benchmark Results 2
	Comparison
	Agenda
	Challenges
	Graph data allocation / partitioning
	Graph data allocation / partitioning (2)
	Benchmarking and evaluation
	Graph-based data integration
	BIIIG Data integration workflow
	Integration scenario
	Dynamic graphs
	Interactive graph analytics
	Agenda
	References

