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Abstract

Many Big Data applications in business and sci-
ence require the management and analysis of huge
amounts of graph data. Previous approaches for
graph analytics such as graph databases and par-
allel graph processing systems (e.g., Pregel) either
lack sufficient scalability or flexibility and expres-
siveness. We are therefore developing a new end-
to-end approach for graph data management and
analysis based on the Hadoop ecosystem, called
Gradoop (Graph analytics on Hadoop). Gradoop
is designed around the so-called Extended Property
Graph Data Model (EPGM) supporting semantically
rich, schema-free graph data within many distinct
graphs. A set of high-level operators is provided
for analyzing both single graphs and collections of
graphs. Based on these operators, we propose a
domain-specific language to define analytical work-
flows. The Gradoop graph store is currently utiliz-
ing HBase for distributed storage of graph data in
Hadoop clusters. An initial version of Gradoop has
been used to analyze graph data for business intelli-
gence and social network analysis.

1 Introduction

Graphs are simple, yet powerful data structures to
model and analyze relations between real world data
objects. The flexibility of graph data models and
the variety of graph algorithms made graph analytics
attractive in different domains, e.g., for web infor-
mation systems, social networks [20], business intelli-
gence [44,52,59] or in the life sciences [17,38]. Entities
such as web sites, users or proteins can be modeled
as vertices while their connections are represented by
edges in a graph. Based on that abstraction, graph
algorithms help to rank websites, to detect commu-
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Figure 1: Key steps of end-to-end graph analytics

nities in social graphs, to identify pathways in bio-
logical networks, etc.. The graphs in these domains
are often very large with millions of vertices and bil-
lions of edges making efficient data management and
execution of graph algorithms challenging. For the
graph-oriented analysis of heterogeneous data, possi-
bly integrated from different sources, graphs should
also be able to adequately represent entities and re-
lationships of different kinds.

Currently, two major kinds of systems focus on
the management and analysis of graph data: graph
database systems and parallel graph processing sys-
tems. Graph database systems, such as Neo4j [6]
or Sparksee [8, 42], focus on the efficient storing and
transactional processing of graph data where multi-
ple users can access a graph in an interactive way.
They support expressive data models, such as the
property graph model [49] or the resource descrip-
tion framework [34], which are suitable to repre-
sent heterogeneous graph data. Furthermore, graph
database systems often provide a declarative graph
query language, e.g., Cypher [7] or SPARQL [28],
with support for graph traversals or pattern match-
ing. However, graph database systems are typically
less suited for high-volume data analysis and graph
mining [27, 43, 55] and often do not support dis-
tributed processing on partitioned graphs which lim-
its the maximum graph size to the resources of a sin-
gle machine.

By contrast, parallel graph processing systems such
as Google Pregel [41] or Apache Giraph [2] pro-
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cess and analyze large-scale graph data in-memory
on shared nothing clusters. They provide a tailored
computational model where users implement parallel
graph algorithms by providing a vertex-centric com-
pute function. However, there is no support of an
expressive graph data model with heterogeneous ver-
tices and edges and high-level graph operators. Par-
allel in-memory graph processing is also supported by
Apache Spark and its GraphX [60] component as well
as Apache Flink [10]. In contrast to Giraph or Pregel,
these systems provide more powerful workflow-based
analysis capabilities based on high-level operators for
processing and analyzing both graph data as well as
other kinds of data. However, these systems also
lack support for permanent graph storage and gen-
eral data management features. Furthermore, there
is no support for storing and analyzing many distinct
graphs rather than only a single graph.
The discussion shows that the previous approaches

for graph data management and analysis have both
strengths and restrictions (more approaches will be
discussed in section 6 on related work). We are espe-
cially missing support for an end-to-end approach for
scalable graph data management and analytics based
on an expressive graph data model including pow-
erful analytical operators. Furthermore, we see the
need for an advanced graph data model supporting
storage and analysis for collections of graphs, e.g.,
for graph comparison in biological applications [17] or
graph mining in business information networks [44].
The approach should also support the flexible integra-
tion of heterogeneous data within a distributed graph
store as illustrated in Fig. 1.
At the German Big Data center of excellence ScaDS

Dresden/Leipzig, we have thus started with the de-
sign and development of the Gradoop (Graph Ana-
lytics on Hadoop) system for realizing such an end-
to-end approach to scalable graph data management
and analytics. Its design is based on our previous
work on graph-based business intelligence with the so-
called BIIIG approach for integrating heterogeneous
data within integrated instance graphs [44,46]. In the
ongoing implementation of Gradoop we aim at lever-
aging existing Hadoop-based systems (e.g., HBase,
MapReduce, Giraph) for reliable, scalable and dis-
tributed storage and processing of graph data.
In this paper we present the initial design of the

Gradoop architecture (section 2) and its underlying
data model, the so-called Extended Property Graph
Data Model (EPGM, section 3). We also outline the
implementation of the HBase-based graph data store
(section 4) and demonstrate the usefulness of our ap-
proach for two use cases (section 5). Our main con-
tributions can be summarized as follows:
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Figure 2: Gradoop High-Level Architecture

• We present the high-level system design of
Gradoop, a new Hadoop-based framework for
distributed graph data management and analyt-
ics. Gradoop aims at an end-to-end approach
according to Fig. 1 with workflow-based integra-
tion of source data into a common graph store,
workflow-based graph analysis as well as the vi-
sualization of analysis results.

• We propose the powerful yet simple EPGM
graph data model. It supports both graphs and
collections of graphs with heterogeneous vertices
and edges as well as declarative operators for
graph analytics. We also show how the opera-
tors can be used for the declaration of analytical
workflows with a new domain-specific language
called GrALa (Graph Analytical Language).

• We describe the design and implementation of
our distributed graph store built upon Apache
HBase. It supports partitioning, replication and
versioning of large, heterogeneous graphs.

• We show the applicability of an initial implemen-
tation of Gradoop using two use cases for social
network analysis and business intelligence.

2 Gradoop Architecture

With Gradoop we aim at providing a framework for
scalable graph data management and analytics on
large, semantically expressive graphs. To achieve hor-
izontal scalability of storage and processing capacity,
Gradoop runs on shared nothing clusters and utilizes
existing Hadoop-based software for distributed data
storage and processing.



Fig. 2 shows the high-level architecture of
Gradoop. Gradoop users can declare data integra-
tion and analytical workflows with either a visual in-
terface or by using GrALa, our domain specific lan-
guage (DSL). Workflows are processed by the work-
flow execution layer which has access to the actual
operator implementations, which in turn access the
distributed graph store using the EPGM graph data
model. After processing a workflow, results are pre-
sented to the user. In the following, we briefly explain
the core components and discuss them in more detail
in subsequent sections.

Distributed Graph Store The distributed graph
store manages a persistent graph database structured
according to the EPGM graph data model. It of-
fers basic methods to store, read and modify graph
data, and serves as the data source for operators di-
rectly operating on the permanent graph representa-
tion, e.g., when using MapReduce. Furthermore, the
graph output of operators can be written to the data
store.

Efficient graph processing demands a fast retrieval
of vertices and their neighborhood as well as a low-
latency communication between connected vertices.
The graph data has to be physically partitioned
across all cluster nodes so that data is equally dis-
tributed for load balancing. Furthermore, the par-
titioning should support graph processing with lit-
tle communication overhead (locality of access). The
Gradoop graph store also manages different versions
of the underlying graph, e.g., to enable the analysis
of graph changes over time. Finally, the graph store
needs to be resilient against failures and avoid data
loss.

Our current storage implementation builds on
HBase [4], an open-source implementation of Google’s
BigTable [16], running on the Apache HDFS (Hadoop
Distributed File System) [3]. HBase supports high
data availability through redundant data storage
and provides data versioning as well as partitioning.
Many Hadoop processing components (e.g., MapRe-
duce, Giraph, Flink) have built-in support for HBase
thererby simplifying their use for realizing Gradoop
functionality. In section 4 we describe the Gradoop
graph store in more detail.

Extended Property Graph Data Model Our
extended property graph data model (EPGM) de-
scribes how graph databases are structured and de-
fines a set of declarative operators. EPGM is an ex-
tension of the property graph model [49], which is
used in various graph database systems. To facili-

tate integration of heterogeneous data from different
sources, it does not enforce any kind of schema, but
the graph elements (vertices, edges, logical graphs)
can have different type labels and attributes. For
enhanced analytical expressiveness, EPGM supports
multiple logical graphs inside a graph database. Logi-
cal graphs are, as well as vertices and edges, first-class
citizens of our data model which can have their own
properties. Furthermore, collections of logical graphs
can be the input and output of analytical operators.
The details of our data model and its analytical op-
erators are discussed in section 3.

Operator Implementations The EPGM opera-
tors need to be efficiently implemented for use in an-
alytical workflows. This also holds for further oper-
ators for presenting analysis results and to perform
data import, transformation and integration tasks to
load external data into the Gradoop graph store. All
these operators have access to the common graph
store and need to be executed in parallel on the un-
derlying Hadoop cluster. For the operator imple-
mentation Gradoop utilizes existing systems such as
MapReduce, Giraph, Flink or Spark thereby taking
advantage of their respective strengths. For example,
MapReduce is well suited for ETL-like data transfor-
mation and integration tasks while Giraph can effi-
ciently process graph mining algorithms. We imple-
mented a first set of operators as a proof of concept
and use them in our evaluation in section 5.

Workflow Execution The workflow execution
component is responsible for managing the complete
execution of data integration workflows or analytical
workflows. Before a declared workflow can be exe-
cuted, it is transformed into an executable program.
The workflow execution has access to the operator
implementations and runs and monitors their execu-
tion. Furthermore, it manages intermediate operator
results and provides status updates to the user. At
the beginning of a workflow, as necessary for the first
operator, the graph or parts of it are read from the
graph store by the execution system. Intermediate
results are either written to the graph store or are
cached in memory by the execution layer. The lat-
ter case will be preferred for high performance and
especially used if two subsequent operators are im-
plemented in the same system, e.g., Spark or Flink.
Final analysis results are stored or forwarded to the
presentation layer.



Workflow Declaration and Result Representa-

tion The typical Gradoop users are data scientists
and analysts. They are responsible for the specifica-
tion of data integration and analysis workflows and
evaluate the obtained results. For ease of use, work-
flows can be declaratively specified by writing a DSL
(GrALa) script using the available operators which is
then handed over to the workflow execution subsys-
tem. Alternatively, workflows are visually defined us-
ing a browser-based front-end and then automatically
transformed into a DSL script. Workflow results are
either represented through graph visualization (e.g.,
colored subgraphs or specific layouts) or combined
with charts and tables (e.g., aggregate values for sub-
graphs or frequency distributions of graph patterns).
As mentioned in the introduction, the implemen-

tation of Gradoop is still going on, so that some of
the introduced components, in particular the work-
flow execution, the visual workflow definition and re-
sult representation still need to be completed. The
current focus is on the graph data model, the defini-
tion of analytical workflows and the underlying graph
data store. For data integration, we will port the ap-
proaches proposed for BIIIG [44, 46] to Hadoop and
adapt our MapReduce-based Dedoop tool for entity
resolution [35] to support graph data.

3 Graph Data Model

In this section, we introduce the EPGM data model
of Gradoop. We first describe the representation of
graph data with EPGM and then present its analyt-
ical operators.

3.1 Graph Representation

The design of EPGM data representation is based on
the following requirements that we have derived from
various analytical scenarios:

Simple but powerful The graph model should be
powerful enough to support the graph structures of
most use cases for graph analytics. On the other
hand, it should also be intuitive and easy to use. For
this reason we favor a model with a flat structure of
vertices and binary edges.

Logical graphs Support for more than one graph
in the data model is advantageous since many ana-
lytical applications involve multiple graphs, such as
communities in social networks or multiple executions
of a business process. These graphs may have com-
mon vertices, edges or subgraphs.

Type labels and attributes Graph data from
real-world scenarios is often heterogeneous exhibit-
ing multiple types of vertices, edges and graphs. A
graph model should thus support different types and
heterogeneous attributes for all of its elements in a
uniform way. Additionally, the meaning of relation-
ships requires edges to be directed.

Loops and parallel edges In many real-world sce-
narios there may be self-connecting edges or multiple
edges having the same incident vertices, for example,
to describe different relationships between persons.
Hence, a graph data model should support loops and
parallel edges.

In its simplest form, a graph G = 〈V,E〉 con-
sists of a set of vertices V and a set of binary edges
E ⊆ V × V . Several extensions of this simple graph
abstraction have been proposed to define a graph
data model [11, 13]. One of those models, the prop-
erty graph model (PGM) [49, 50], already meets our
requirements in large parts. The PGM is widely
accepted and used in graph database systems (e.g.,
Neo4j), industrial research projects (e.g., SAP Active
Information Store [51]) and in parallel processing sys-
tems such as Spark GraphX. A property graph is a
directed multigraph supporting encapsulated proper-
ties (named attributes) for both vertices and edges.
Properties have the form of key-value pairs (e.g.,
name:Alice or weight:42) and are defined at the in-
stance level without requiring an upfront schema def-
inition. However, the PGM foresees type labels only
for edges (e.g., knows). Hence, it has no support for
multiple graphs and respective graph type labels and
graph properties. Furthermore, there are no opera-
tors on multiple graphs.
To meet all of the posed requirements, we have

developed the Extended Property Graph Model
(EPGM). In this model, a database consists of mul-
tiple property graphs which we call logical graphs.
These graphs are application-specific subsets from
shared sets of vertices and edges, i.e., may have com-
mon vertices and edges. Additionally, not only ver-
tices and edges but also logical graphs have a type
label and can have different properties. Formally, we
define an EPGM database as

DBEPGM = 〈V , E ,G, T, τ,K,A, κ〉.

A (graph) database DBEPGM consists of a ver-
tex space V = 〈vi〉, an edge space E = 〈ek〉 and
a set of logical graphs G = 〈Gm〉. Vertices, edges
and (logical) graphs are identified by the respec-
tive indices i, k,m ∈ N. An edge ek = 〈vi, vj〉



Figure 3: Example EPGM database graph

with vi, vj ∈ V directs from vi to vj and supports
loops (i.e., i = j). There can be multiple edges be-
tween two vertices which are differentiated by dis-
tinct identifiers. A logical graph Gm = 〈V,E〉 is
an ordered pair of a subset of vertices V ⊆ V and
a subset of edges E ⊆ E . We use GDB to denote
the graph of all vertices V (GDB) = V and all edges
E(GDB) = E of a database. Graphs may potentially
overlap such that ∀Gi, Gj ∈ G : |V (Gi) ∩ V (Gj)| ≥
0 ∧ |E(Gi) ∩E(Gj)| ≥ 0. For the definition of
type labels we use label alphabet T and a mapping
τ : (V ∪ E ∪ G) → T . Similarly, properties (key-value
pairs) are defined by key set K, value set A and map-
ping κ : (V ∪ E ∪ G)×K → A.
Figure 3 shows an example EPGM database graph

GDB for a simple social network. Formally, GDB con-
tains of the vertex space V = {v0, .., v10} and the edge
space E = {e0, .., e23}. Vertices represent persons, fo-
rums and interest tags, represented by correspond-
ing type labels (e.g., Person) and further described
by their properties (e.g., type:Tag or name:Alice).
Edges describe the relationships between vertices and
also have type labels (e.g., knows) and properties (e.g.,
since:2013). The key set K contains all property
keys, for example, name, title and since, while the
value set A contains all property values, for example,
"Alice", "Graph Databases" and 2015. Vertices with
the same type label may have different property keys,
e.g., v4 and v5.
Furthermore, the sample database contains the log-

ical graph set G = {G0, G1, G2}, where each logi-
cal graph represents a community inside the social
network, in this case, specific interest groups (e.g.,
Graph Databases). Such groups can be found by
application-specific subgraph detection algorithms.

In this example, users will be part of a community,
if they are a member of a forum that is tagged by
a specific topic or have direct interest in that topic.
Each logical graph has a specific subset of vertices
and edges, for example, V (G0) = {v0, v1, v4} and
E(G0) = {e0, e3, e6, e21}. Considering G0 and G1,
it can be seen that vertex sets may overlap such
that V (G0) ∩ V (G1) = {v0, v1}. Additionally, also
graphs have type labels (e.g., Community) and may
have properties, which can be used to describe the
graph by annotating it with specific metrics (e.g.,
vertexCount:3) or general information about that
graph (e.g., interest:Databases). Usually, logical
graphs are the result of an operator executed in an
analytical workflow. If they need to be re-used, logi-
cal graphs can be persisted in the graph store.

3.2 Operators

The EPGM provides operators for both single graphs
as well as collections of graphs; operators may also
return single graphs or graph collections. In the fol-
lowing, we use collection and graph collection corre-
spondingly. In Gradoop, collections are ordered to
support application-specific sorting of collections and
position-based selection of graphs from a collection.
Table 1 lists our analytical operators together with
the definitions of their input and output. The ta-
ble also shows the corresponding syntax for calling
the operators in our domain specific language GrALa
(Graph Analytical Language). Inspired by mod-
ern programming languages, we use the concept of
higher-order functions in GrALa for several opera-
tors (e.g., to use an aggregate or a predicate function
as an operator argument). Based on the input of op-



erators, we distinguish between collection operators
(shown in the top part of Table 1) and graph oper-
ators as well as between unary and binary operators
(single graph/collection vs. two graphs/collections
input). There are also some auxiliary operators to
apply graph operators on collections or to call specific
graph algorithms. In addition to the listed operators,
GrALa provides basic operators to create, read, up-
date and delete graphs, vertices and edges as well as
their properties. Since we can store older versions of
graphs in the Gradoop graph store, we can read dif-
ferent versions of graphs and their elements, e.g., for
time-based analytics. In the following, we discuss the
Gradoop operators in more detail.

Collection Operators Collection operators can be
applied on collections of graphs, vertices and edges.
In the following, we focus on graphs as their usage for
vertices and edges is analogous.
The selection operator σϕ : Gn → Gn for col-

lections selects the graphs from the input collection
that meet a user-defined predicate function ϕ : G →
{true, false}. The output is a collection with all
qualifying graphs. Algorithm 1 shows two exam-
ples using the selection operator in GrALa. We first
define the input collection (line 1) of three logical
graphs identified by their unique id (e.g., db.G[0]

corresponds to G0) and assign it to the variable
collection. The db object is a reference to the
database graph GDB. The first user-defined predi-
cate function (line 2) will evaluate to true, if the in-
put graph g has a value greater than 3 for property
key vertexCount, i.e., we want to find all graphs with
more than three vertices. In line 3, we call the select
operator to apply the predicate function on the pre-
defined collection. For our example graph in Figure
3, the result collection only contains db.G[2].

Algorithm 1 Selection Example
1: collection = <db.G[0],db.G[1],db.G[2]>

2: predicate1 = (Graph g => g["vertexCount"] > 3)

3: result1 = collection.select(predicate1)

4: predicate2 = (Graph g => g["vertexCount"] ==

g.V.select(Vertex v =>

v["age"] > 20).count()))

5: result2 = collection.select(predicate2)

The second example shows that predicates are not
limited to graph properties but can be specified by
complex functions on graph vertices or edges. The
predicate function defined in line 4 allows us to se-
lect all graphs where all vertices have a property age

with a value greater than 20. To achieve that, we
access the vertices of the particular graph (i.e., g.V)

and apply a further predicate which uses the selec-
tion operator on the vertices. The vertex selection
determines all vertices satisfying the age condition.
The predicate then evaluates to true if the number
(i.e., count()) of the resulting vertices equals the total
number of vertices stored in property vertexCount.
The count function is a predefined aggregate func-
tion and will be discussed below. For our example
graph, the resulting collection in line 5 only contains
db.G[1].

As shown in Table 1, we also support the
set-theoretical operators union, intersection and
difference on collections. For example, the call
<db.G[0],db.G[1]>.intersect(<db.G[1],db.G[2]>)

results in a collection <db.G[1]>.

Algorithm 2 Sort and Top Examples
1: sortedColl = db.G.sortBy("vertexCount",:desc)

2: topGraphs = sortedColl.top(2)

Furthermore there are operators for eliminating du-
plicate graphs in collections based on their index (dis-
tinct operator), for sorting collections (sort) and for
selecting the first n (n ∈ N) graphs in a collection
(top). The sort operator returns a collection sorted
by a graph property k in either ascending or descend-
ing order, denoted by o. Algorithm 2 shows the usage
of sort and top in GrALa.

Binary Graph Operators We also support set-
theoretical operators to determine the union (com-
bination operator), intersection (overlap) and differ-
ence (exclusion) of two graphs resulting in a new
graph. For example, the combination operators is
useful to merge previously selected subgraphs into
a new graph. The combination of input graphs
G1, G2 is a graph G′ consisting of the vertex set
V (G′) = V (G1) ∪ V (G2) and the edge set E(G′) =
E(G1) ∪ E(G2). For our example graph in Figure
3, the call db.G[0].combine(db.G[2]) results in the
new graph G′ = 〈{v0, v1, v2, v3, v4}, {e0, .., e6, e21}〉.

Similarly, the overlap of graphs G1, G2 is a graph
G′ with vertex set V (G′) = V (G1) ∩ V (G2) and
edge set E(G′) = E(G1) ∩ E(G2). Applying the
exclusion operator to G1 and G2 determines all G1

elements that do not occur in G2, i.e., V (G′) =
V (G1) \ V (G2) and E(G′) = {(u, v) ∈ E(G1) |
u ∈ V (G1) \ V (G2) ∧ v ∈ V (G1) \ V (G2)}. In
the example, the call db.G[0].overlap(db.G[2]) re-
turns the graphG′ = 〈{v0, v1}, {e0, e1}〉 while the call
db.G[0].exclude(db.G[2]) results in G′ = 〈{v4}, ∅〉.



Operator Definition GrALa
Selection σϕ : Gn → Gn collection.select(predicateFunction) : Collection

Distinct δ : Gn → Gn collection.distinct() : Collection

Sort by ξk,o : Gn → Gn collection.sortBy(key,[:asc|:desc]) : Collection

Top βn : Gn → Gn collection.top(limit) : Collection

Union ∪ : (Gn)2 → Gn collection.union(otherCollection) : Collection

Intersection ∩ : (Gn)2 → Gn collection.intersect(otherCollection) : Collection

Difference \ : (Gn)2 → Gn collection.difference(otherCollection) : Collection

Combination ⊔ : G2 → G graph.combine(otherGraph) : Graph

Overlap ⊓ : G2 → G graph.overlap(otherGraph) : Graph

Exclusion − : G2 → G graph.exclude(otherGraph) : Graph

Pattern Matching µG∗,ϕ : G → Gn graph.match(patternGraph,predicateFunction) : Collection

Aggregation γk,α : G → G graph.aggregate(propertyKey,aggregateFunction) : Graph

Projection πν,ǫ : G → G graph.project(vertexFunction,edgeFunction) : Graph

Summarization ζgv,ge,γv ,γe : G → G graph.summarize(vertexGroupingKeys,vertexAggregateFunction,

edgeGroupingKeys,edgeAggregateFunction) : Graph

Apply λo : Gn → Gn collection.apply(unaryGraphOperator) : Collection

Reduce ρo : Gn → G collection.reduce(binaryGraphOperator) : Graph

Call ηa,P : G ∪ Gn → G ∪ Gn [graph|collection].callForGraph(algorithm,parameters) : Graph

[graph|collection].callForCollection(algorithm,parameters):Collection

Table 1: Overview of analytical operators in Gradoop

Pattern Matching A fundamental operation in
graph analytics is the retrieval of subgraphs matching
a user-defined pattern, also referred as pattern match-
ing. For example, given a social network scenario, an
analyst may be interested in all pairs of users that
are member of the same forum. We provide the pat-
tern matching operator µG∗,ϕ : G → Gn, where the
search pattern consists of a pattern graph G∗ and a
predicate ϕ : G → {true, false}. The operator takes
a graph G as input and returns a graph collection
G′ = {G′ ⊆ G | G′ ≃ G∗ ∧ ϕ(G′) = true} containing
all found matches. Generally speaking, the operator
finds all subgraphs of the input graph that are isomor-
phic to the pattern graph and fulfill the predicate.

Algorithm 3 shows an example use of our pattern
matching operator; the pattern graph is illustrated
in Figure 4. For GrALa, we adopted the basic con-
cept of describing graph patterns using ASCII char-
acters from Neo4j Cypher [7], where (a)-e->(b) de-
notes an edge e that points from a vertex a to a vertex
b. In line 1, we describe a pattern of three vertices
and two edges, which then can be accessed by vari-
ables in isomorphic instances to declare the predicate
(e.g., graph.V[$a]). Property values are accessed us-
ing the property key (e.g., v["name"]) or in case of
the type label using the reserved symbol :type. In
line 2, the predicate is defined as a function which
maps a graph to a boolean value. In this function,
vertices and edges are accessed by vertex and edge
variables and multiple expressions are combined by
logical operators. In our example, we compare vertex
and edge types to constants (e.g., g.V[$a][:type]

== "Forum"). In line 3, the match operator is
called for the database graph db of Figure 3 using

pattern and predicate as arguments. For the ex-
ample, the result collection has two subgraphs: G′ =
{〈{v0, v1, v9}, {e17, e18}〉, 〈{v2, v3, v10}, {e19, e20}〉}.

Algorithm 3 Pattern Matching Example
1: pattern = new Graph("(a)<-d-(b)-e->(c)")

2: predicate = (Graph g =>

g.V[$b][:type]=="Forum" &&

g.E[$d][:type]=="hasMember"&&

g.V[$a][:type]=="Person" &&

g.E[$e][:type]=="hasMember"&&

g.V[$c][:type]=="Person")

3: result = db.match(pattern,predicate)

Figure 4: Example pattern graph and predicate

Aggregation An operator often used in analytical
applications is aggregation, where a set of values is
summarized to a single value of significant meaning.
In the EPGM, we support aggregation at the graph
level by providing the operator γk,α : G → G. For-
mally, the operator maps an input graph G to an
output graph G′ and applies the user-defined aggre-
gation function α : G → R. Thus, the resulting graph
is a modified version of the input graph with an ad-
ditional property k, such that κ(G′, k) 7→ α(G). The
resulting property value depends on the applied ag-
gregation function. Basic aggregation functions such
as count, sum and average are predefined in GrALa



and can be applied on graph, vertex and edge collec-
tions (count) and their properties (sum, average), for
example, to calculate the average age per community
in a social network or the financial result of a business
process instance.
Algorithm 4 shows a simple vertex count exam-

ple where the computed cardinality of the vertex
set becomes the value of a new graph property
vertexCount.

Algorithm 4 Aggregation Example
1: g.aggregate(

"vertexCount",(Graph g => g.V.count()))

Projection The projection operator simplifies a
graph representation by keeping only vertex and edge
properties necessary for further processing. Further-
more, it is possible to modify (e.g., rename) prop-
erties of interest. For this purpose, the projection
operator πν,ǫ : G → G applies the bijective projec-
tion functions ν : V → V and ǫ : E → E to an input
graph G, and outputs the graph G′ where V (G′) =
{ν(v) | v ∈ V (G)}, E(G′) = {ǫ(e) | e ∈ E(G)} and
G ≃ G′ (i.e., the input and output graphs are iso-
morphic). The user-defined projection functions are
able to modify type labels as well as property keys
and values of vertices and edges, but not their struc-
ture. All properties not specified in the projection
functions are removed.
Algorithm 5 shows an example GrALa script to

project the community graph G0 in Figure 3 to a
simplified version shown in Figure 5. The vertex
function in line 1 determines that all vertex prop-
erties are removed, except vertex property "city",
which is renamed to "from". Further on, all vertices
in the projected graph obtain the value of the for-
mer "name" property as label. The edge function in
line 2 expresses that projected edges show only the
original edge (type) labels while all edge properties
are removed. In line 3, the projection operator is
called on the input graph db.G[0] using the vertex
and edge functions as arguments. The identifiers in
the resulting new graph are temporary (e.g., p0) as
projected graphs are typically reused in another op-
eration. However, as stated above, it is also possible
to persist temporary graphs.

Algorithm 5 Projection Example
1: vertexFunc = (Vertex v =>

new Vertex(v["name"], {"from":v["city"]})
2: edgeFunc = (Edge e => new Edge(e[:type], {}))
3: projGraph = db.G[0].project(vertexFunc,edgeFunc)

Figure 5: Example projection of G0 from figure 3

Summarization The summarization operator de-
termines a structural grouping of similar vertices and
edges to condense a graph and thus to help to uncover
insights about patterns hidden in the graph [63, 64].
It can also be used as an optimization step to re-
duce the graph size with the intent to facilitate com-
plex graph algorithms, e.g., multi-level graph par-
titioning [33]. The graph summarization operator
ζgv ,ge,γv,γe

: G → G represents every vertex group
by a single vertex in the summarized graph; edges
between vertices in the summary graph represent a
group of edges between the vertex group members of
the original graph. Summarization is defined by spec-
ifying grouping keys gv and ge for vertices and edges,
respectively, similarly as for GROUP BY in SQL. These
grouping keys are sets of property keys and may also
include the type label τ (or :type in GrALa). Ad-
ditionally, the vertex and edge aggregation functions
γv : Vn → V and γe : En → E are used to compute
aggregated property values for grouped vertices and
edges, e.g., the average age of person groups or the
number of group members, which can be stored at
the summarized vertex or edge.
Algorithm 6 shows an example application of our

summarization operator using GrALa. The goal is to
summarize persons in our graph of Fig. 3 according
to the city they live in and to calculate their aver-
age age. Furthermore, we want to group both the
edges between users in different cities as well as edges
between users that live in the same city. The re-
sult of the operator is shown in Figure 6. In line 1
we use the combine operator to form a single graph
containing all persons and their relationships to each
other; this will be the graph to summarize. In line 2
we define the vertex grouping keys. In this case, we
want to group vertices by type label :type and prop-
erty key "city". Edges are only grouped by type
label (line 3). Grouping keys and values are auto-
matically added to the resulting summarized vertices
and edges. In lines 4 and 5, we define the vertex and
edge aggregation functions. Both receive the summa-
rized entity (i.e., vSum, eSum) and the set of grouped
entities (i.e., vertices, edges) as input. The vertex
function applies the aggregate function average(key)

on the set of grouped entities to compute the average
age. The result is stored as a new property avg age

at the summarized vertex. The edge function counts



the grouped edges and adds the resulting value to the
summarized edge. In line 6, the summarize operator
is called using the predefined sets and functions as
argument.

Algorithm 6 Summarization Example
1: personGraph =

db.G[0].combine(db.G[1]).combine(db.G[2])

2: vertexGroupingKeys = {:type,"city"}
3: edgeGroupingKeys = {:type}
4: vertexAggFunc = (Vertex vSum, Set vertices =>

vSum["avg age"] = vertices.average("age"))

5: edgeAggFunc = (Edge eSum, Set edges =>

eSum["count"] = edges.count())

6: sumGraph = personGraph.summarize(

vertexGroupingKeys,vertexAggFunc,

edgeGroupingKeys,edgeAggFunc)

Figure 6: Example summarization

Auxiliary Operators In addition to the funda-
mental graph and graph collection operators, ad-
vanced graph analytics often requires the use of
application-specific graph mining algorithms. One
application can be the extraction of subgraphs that
cannot be achieved by pattern matching, e.g., the
detection of communities in a social network [25]
or business transactions [44]. Further on, applica-
tions may require algorithms to detect frequent sub-
graphs [30] or for statistical evaluations to select sig-
nificant patterns. To support the plug-in of such ex-
ternal algorithms, we provide generic call operators,
which may have graphs and graph collections as in-
put or output, formally ηa,P : G ∪ Gn → G ∪ Gn.
Depending on the output type, we distinguish be-
tween so-called callForGraph (single graph result)
and callForCollection operators. Algorithm 7
shows the use of callForCollection on a single input
graph. The operator arguments are symbol a to set
the executed algorithm (e.g., :CommunityDetection)
and a set of algorithm-specific parameters P . In the
example, a graphPropertyKey needs to be supplied
to determine, which graph property should store the
computed community id. The resulting collection
communities contains all logical graphs computed by
the algorithm and can be used for subsequent analy-
sis.

Furthermore, it is often necessary to execute an
unary graph operator on more than one graph, for ex-
ample to calculate an aggregated value for all graphs
in a collection. Not only the previously introduced
operators aggregation, projection and summariza-
tion, but all other operators with single graphs as
in- and output (i.e., o : G → G) can be executed
on each element of a graph collection using the apply
operator λo : Gn → Gn. For an input graph collec-
tion the specified operator is applied for every graph
and the result is added to a new output graph collec-
tion. Algorithm 8 demonstrates the apply function
in combination with the aggregate operator. The lat-
ter is applied on all logical graphs in the database,
represented by db.G. The result can be seen in our
example graph in Figure 3, where each logical graph
has an additional property for the vertex count.

Algorithm 7 Call Example
1: communities = graph.callForCollection(

:CommunityDetection,

{"graphPropertyKey":"community"})

Algorithm 8 Apply Example
1: db.G.apply(Graph graph =>

graph.aggregate(

"vertexCount",(Graph g => g.V.count()))

Algorithm 9 Reduce Example
1: totalMerge = db.G.reduce(

(Graph g, Graph f => g.combine(f))

Lastly, in order to apply a binary operator on a
graph collection we adopt the reduce operator often
found in programming languages and also in paral-
lel processing frameworks such as MapReduce. The
operator takes a graph collection and a binary graph
operator as input, formally ρo : Gn → G. The bi-
nary operator o : G2 → G is initially applied on the
first pair of elements of the input collection which re-
sults in a new graph. This result graph and the next
element from the input collection are then the new
arguments for the binary operator and so on. In this
way, the binary operator is applied on pairs of graphs
until all elements of the input collection are processed
and a final graph is computed. In Algorithm 9 we
call the reduce operator parametrized with the com-
bine operator on all logical graphs in the database
in Figure 3. The final graph contains all persons of
the three communities including their relationships to
each other.



4 Distributed Graph Store

The distributed graph store is a fundamental ele-
ment of the Gradoop framework. Its main purpose
is to manage persistent EPGM databases by provid-
ing methods to read and write graphs, vertices and
edges.1 It further serves as data source and data sink
for the operator implementations.
The main requirement for a suitable implementa-

tion of the Gradoop graph store is supporting effi-
cient access to very large EPGM databases with bil-
lions of vertices and edges including their respective
properties. Graphs of that size can take up to multi-
ple petabytes in space and thus require a distributed
store that can handle such amounts of data. Fur-
thermore, as already mentioned in section 2, there
should be different options to physically partition the
graph data to ensure both load balancing as well as
data locality with minimal communication overhead
for graph processing. We also aim at supporting time-
based graph analytics, so that the store should sup-
port data versioning of the graph structure as well as
of properties. Finally, the store should provide fault
tolerance against hardware failures and prevent data
loss through data replication.
As there is currently no system to store and man-

age graphs that apply to our data model, we chose
Apache HBase [4] as the technological platform for
our distributed graph store. HBase is built on top of
the Hadoop distributed file system (HDFS) and im-
plements a distributed, persistent, multidimensional
map. It can store large amounts of structured and
semi-structured data across a shared nothing cluster
and provides fast random reads and writes on that
data to applications. Similar to relational databases,
HBase organizes data inside tables that contain rows
and columns. Unlike in the relational model, the ta-
ble layout is not static as each row can have a very
large number of different columns within column fam-
ilies. This leads to a very flexible storage layout opti-
mized for sparse data and fits perfectly to the EPGM
where each element can have various properties with-
out following a global schema.
The most basic unit in HBase is a cell which is iden-

tified by row key, column family, column and times-
tamp. Column families allow the grouping of columns
based on their access characteristics and can be used
to apply different storage features on them (e.g., com-
pression or versioning). The timestamp enables data
versioning at the cell level which is also supporting
our requirements. HBase does not offer support for

1An API documentation is beyond the scope of this paper
but will be provided in the documentation on our project web-
site www.gradoop.com.

data types, instead, all values including the row key,
column family, column and cell are represented by
byte arrays leaving (de-)serialization of values to the
application. To provide horizontal scalability in terms
of data size and parallel data access, HBase par-
titions tables into so called regions and distributes
them among cluster nodes. Built upon HDFS, a dis-
tributed, fault-tolerant file system, HBase also sup-
ports automatic failure handling through data repli-
cation.

It can be seen, that Apache HBase already ful-
fills most of our stated requirements as it provides
distributed management of large quantities of sparse
data, data versioning and fault tolerance. A remain-
ing challenge is to suitably map the EPGM to the
data model provided by HBase. Furthermore, we
should exploit the partitioning options of HBase for
effective graph partitioning. In the following, we dis-
cuss our current implementation choices.

Graph Layout Our current approach is straight-
forward: we represent the database graph as an ad-
jacency list [19] and store all vertices inside a single
table (i.e., the vertex table). Logical graphs are main-
tained in an additional graph table. This approach
gives us fast access to vertices including their prop-
erties and edges. It also gives us the possibility to
quickly retrieve graphs including their corresponding
vertex and edge sets.

Vertex table The vertex space V and the edge
space E of an EPGM database are stored in the vertex
table. Each row contains all information regarding
one vertex, i.e., vertex properties, incident edges in-
cluding their properties and references to the graphs
that contain the vertex. Typically, an operator imple-
mentation (e.g., in MapReduce) loads multiple rows
from HBase and applies an algorithm on them. We
store edges denormalized to give the operator imple-
mentations a holistic view on a vertex. By doing so,
we avoid expensive join computation between the ver-
tex table and a dedicated edge table during graph
processing. Furthermore, given that HBase offers fast
random access at the row level, our vertex store lay-
out is advantageous for graph traversals as loading
all incident edges of a vertex can be done in constant
time.

Figure 7 shows a schematic representation of the
vertex store omitting the time dimension. The graph
contains three vertices resulting in three rows. Each
row is identified by a row key which is the primary
key within the table and composed of a partition id
and a vertex id. Multiple rows may share the same

www.gradoop.com


0-0

meta properties out edges in edges

type graphs idx name gender city 〈2, 0-1, 0〉 〈2, 0-1, 0〉 〈3, 0-9, 0〉 〈4, 0-9, 2〉

0 [0, 2] 1 〈5, Alice〉 〈5, f〉 〈5, Leipzig〉 [(since, 〈0, 2014〉)] [(since, 〈0, 2014〉)]

0-1

meta properties out edges in edges

type graphs idx name gender city 〈2, 0-0, 0〉 〈2, 0-0, 0〉 〈3, 0-9, 1〉

0 [0, 2] 1 〈5, Bob〉 〈5,m〉 〈5, Leipzig〉 [(since, 〈0, 2014〉)] [(since, 〈0, 2014〉)]

0-9

meta properties out edges in edges

type idx title 〈3, 0-0, 0〉 〈3, 0-1, 1〉 〈4, 0-0, 2〉

1 3 〈5, GraphDatabases〉

Figure 7: Vertex table containing the subgraph 〈{v0, v1, v9}, {e0, e1, e15, e17, e18}〉 of Figure 3.

partition id, but each vertex must have a unique ver-
tex id which is either provided during data import or
generated by the graph store. We will explain graph
partitioning in more detail below.

Vertex data is further separated into four column
families for two reasons. First, we assume that not
all vertex data has the same access characteristics:
while edges are frequently accessed in many graph
algorithms, vertex properties on the other hand are
only needed to evaluate predicate or aggregate func-
tions. Second, HBase storage and tuning features are
applied at the column family level, for example, com-
pression requires similar column size characteristics
to work more efficiently.

The column family meta contains three columns
at most. While the obligatory column type stores
the type label encoded by an id (e.g, Person is rep-
resented by 0), the second column graphs stores the
ids of graphs containing the vertex. The third col-
umn idx stores an index which is used when creating
outgoing edges (see below). If the vertex is not con-
tained in any logical graph or has no outgoing edges,
the particular columns do not exist and thus require
no storage space.

The second column family properties stores the ver-
tex attributes. The number of grouped columns may
differ significantly between rows as this depends solely
on the vertex instance. The property key (e.g, name)
is serialized as the column identifier while the prop-
erty data type and the property value (e.g., 〈5, Alice〉)
are stored in the cell. As HBase solely handles byte
arrays, the graph store adds support for all primitive
data types (e.g., String is represented by 5). How-
ever, the property key does not enforce a specific data
type for the associated value. Furthermore, data ver-
sioning is realized at the cell level and the number of
versions is configurable in the Gradoop settings.

The remaining two column families store the in-
cident edges of the vertex. Analogously to proper-
ties, the number of columns may vary significantly
between rows. To enable efficient traversals in any di-
rection, we currently store both outgoing and incom-

ing edges per vertex. This leads to data redundancy
as each edge has to be stored twice. However, the
graph repository guarantees data consistency when
updating edges. Each column in both column fam-
ilies serializes a single edge. The column stores an
edge identifier, while the cell stores the edge proper-
ties. An edge identifier, e.g., 〈2, 0-1, 0〉, contains the
edge type label (e.g., knows is represented by 2), the id
of the opposite vertex (e.g., 0-1) and an index which
is unique at the start vertex. The opposite vertex
identifier refers to the start- or end vertex of the edge
depending on its direction. The edge index allows
the definition of parallel edges. If an outgoing edge is
created, the next available index is read from the idx
column and incremented afterwards. The graph store
automatically adds the corresponding incoming edge
at the target vertex using the same edge identifier
with switched vertex ids. Edge properties are stored
as a list of tuples, e.g., [(since, 〈0, 2014〉)], where each
tuple contains the property key, type and value. Con-
sequently, reading a single edge property requires the
deserialization of all edge properties. We decided to
store edge properties differently from vertex proper-
ties as edges typically have significantly fewer proper-
ties than vertices. Similar to vertex properties, edge
properties are versioned.

Graph table The set of logical graphs G of an
EPGM database is stored in a second table, the graph
table. Each row in that table contains all information
regarding one graph, i.e., references to the vertices
and edges it contains, a type label and properties. As
illustrated in Figure 8, each row represents a single
logical graph identified by a unique graph id and de-
scribed by three column families. Similar to the ver-
tex store, each row contains the column families meta
and properties. While the former consists of the type
label and a list of vertex identifiers contained in the
graph, the latter stores graph properties in the same
way as described for the vertex store. The third col-
umn family edges stores all edges that are incident to
the vertices contained in the logical graph. Each col-



0

meta properties edges

type vertices interest vertexCount 0-0 0-1 0-4

5 [0-0, 0-1, 0-4] 〈5, Databases〉 〈0, 3〉 [〈2, 0-1, 0〉] [〈2, 0-0, 0〉] [〈2, 0-1, 0〉, 〈2, 0-2, 1〉]

1

meta properties edges

type vertices interest vertexCount 0-2 0-3 0-5

5 [0-2, 0-3, 0-5] 〈5, Hadoop〉 〈0, 3〉 [〈2, 0-3, 0〉] [〈2, 0-2, 0〉] [〈2, 0-2, 0〉, 〈2, 0-3, 1〉]

2

meta properties edges

type vertices interest vertexCount 0-0 0-1 0-2 0-3

5 [0-0, 0-1, 0-2, 0-3] 〈5, Graphs〉 〈0, 4〉 [〈2, 0-1, 0〉] [〈2, 0-0, 0〉, 〈2, 0-2, 1〉] [〈2, 0-1, 0〉, 〈2, 0-3, 1〉] [〈2, 0-2, 0〉]

Figure 8: Graph table containing the three logical graphs 〈G0, G1, G2〉 of Figure 3.

umn stores a vertex identifier and the corresponding
cell contains its outgoing edges belonging to the logi-
cal graph. This is necessary, as not all incident edges
of a vertex may be contained in a logical graph. Fur-
thermore, we can exploit the versioning features of
HBase to load snapshots of logical graphs at a given
time. While the column vertices stores a versioned
list of vertex identifiers, for each such identifier, we
store a versioned list of incident edges, hence making
the construction of structural snapshots possible.

Graph Partitioning To achieve scalability of data
volume and data access, HBase horizontally splits ta-
bles into so called regions and distributes those re-
gions across the cluster. Each cluster node handles
one or more regions depending on the available re-
sources. Furthermore, rows inside a table are phys-
ically sorted by their row key, whereby each region
contains a continuous range of rows between a de-
fined start and end key. Region boundaries are either
determined automatically or can be defined manu-
ally when creating a table. We apply the latter case
to the vertex table when it is created and define par-
tition boundaries upfront. For example, on a cluster
with 10 nodes, an administrator may define 100 re-
gions for the vertex table. Region boundaries are set
by using the partition id, which is also used as the
prefix in the row key.

Solely defining partition boundaries does not guar-
antee equal data distribution. To achieve that, the
graph store supports partition strategies that assign
a vertex to a region. At the moment, we support
the well-known range and hash partitioning strate-
gies, both requiring a continuous id space. The for-
mer assigns vertices to regions if their vertex id is
in the partitions range, the latter assigns vertices to
regions by applying a modulo function on the ver-
tex id. Both strategies do not minimize the number
of edges between different regions but achieve a bal-
anced data distribution. We currently work on imple-
menting more sensible strategies for improved locality
of access.

5 Use Case Evaluation

In this section, we present an initial evaluation of
Gradoop for two analytical use cases, namely for so-
cial network analysis and business intelligence. We
demonstrate the usefulness of the proposed data
model and operators by showing that the non-trivial
analysis tasks can be declared in relatively small
GrALa scripts. To execute the equivalent workflows,
we used initial implementations of the operators and
generated the graph data by data generators. We first
present the two analysis workflows and then discuss
implementation and evaluation results for different
graph sizes.

Social Network Analysis In our first scenario, an
analyst is interested in communities of a social net-
work. As a meaningful representation, she requires
a summarized graph with one vertex per community,
the number of users per community and the num-
ber of relationships between the different communi-
ties. Algorithm 10 shows a GrALa workflow achiev-
ing such a summarized graph from a social network.
The original social network graph sng is created us-
ing the LDBC-SNB Data Generator [5,12] and shows
different types of vertices and edges. However, com-
munities should only group vertices of type Person

and edges of type knows. So, in the first step, the
relevant subgraph of Person vertices and knows edges
is extracted in lines 1 to 4. In more detail, line 1
defines a pattern graph describing two vertices con-
nected by one edge and line 2 the corresponding pred-
icate. Then, in line 3 pattern and predicate are
used to match all knows edges between Person ver-
tices. The result is friendships, a collection of 1-
edge graphs, which is subsequently combined to a sin-
gle graph knowsGraph utilizing the reduce operator.
In line 5, an external algorithm :LabelPropagation

[47] is executed to detect communities. We use the
callForGraph operator, as we need a single graph as
output, where each vertex has a "community" prop-
erty. Finally, the graph is summarized in line 6. At
that, vertices are grouped by "community". As the



Algorithm 10 Summarized Communities

Input: Social Network Graph sng

Output: Summarized graph summarizedCommunities;

each vertex represents a community and edges represent

aggregated links between communities

1: pattern = new Graph("(a)-c->(b)")

2: predicate = (Graph g =>

g.V[$a][:type] == "Person" &&

g.E[$c][:type] == "knows" &&

g.V[$b][:type] == "Person")

3: friendships = sng.match(pattern,predicate)

4: knowsGraph = friendships.reduce(

Graph g, Graph f => g.combine(f))

5: knowsGraph = knowsGraph.callForGraph(

:LabelPropagation,{"propertyKey":"community"})
6: summarizedCommunities = knowsGraph.summarize(

{"community"}, (Vertex vSum, Set vertices) =>

vSum["count"] = vertices.count()),

{},(Edge eSum,Set edges)=>

eSum["count"]=edges.count())

set of edge grouping keys is empty, edges are only
grouped by their incident vertices. Both, vertices
and edges in the summarized graph provide a "count"
property showing the number of original vertices or
edges.

Business Intelligence In our second scenario, an
analyst is interested in common data objects, such
as employees, customers or products, occuring in all
high turnover business transaction graphs (business
process executions) [44]. Algorithm 11 shows a corre-
sponding GrALa workflow. The initial integrated in-
stance graph iig contains all domain objects and re-
lationships determined by the FoodBroker data gen-
erator [45]. In line 1, a domain specific algorithm
is executed to extract a collection of business trans-
action graphs (btgs) using the algorithm from [44].
Line 2 defines an advanced predicate to select the
revenue-relevant graphs containing at least one vertex
with type label Invoice. Line 3 defines an advanced
aggregation function to calculate the actual revenue
per graph. In line 4, multiple operations are chained.
First, only the graph meeting the predicate are se-
lected and second, the actual revenue is aggregated
and written to the new graph property "revenue" for
all remaining graphs. In line 5, the graphs with top
100 revenue aggregates are selected using our sort and
top operators. Finally, the overlap of all subgraphs is
determined by applying our reduce operator in line 6.

Algorithm 11 Top Revenue Business Cases

Input: integrated instance graph iig

Output: Common subgraph of top 100 revenue business

transaction graphs topBtgOverlap

1: btgs = iig.callForCollection(

:BusinessTransactionGraphs,{})
2: predicate = (Graph g =>

g.V.select(Vertex v =>

v[:type] == "SalesInvoice").count() > 0)

3: aggRevenue = (Graph g =>

g.V.values("revenue").sum())

4: invBtgs = btgs.select(predicate)

.apply(Graph g =>

g.aggregate("revenue",aggRevenue))

5: topRevBtgs = invBtgs

.sortBy("revenue",:desc).top(100)

6: topRevBtgOverlap = invBtgs.reduce(

Graph g, Graph h => g.overlap(h))

Implementation and evaluation For the initial
evaluation and proof-of-concept we implemented the
required operators in Giraph and MapReduce and use
the HBase graph store as data source and sink be-
tween operator executions. Before the workflow runs,
the generated data set is loaded into HBase using its
MapReduce bulk import. Vertices are assigned to
regions using the range partitioning strategy which
leads to a balanced distribution. The matching and
combination steps are realized by loading the rele-
vant subgraph from the graph store. We further im-
plemented the Label Propagation algorithm for the
first use case and the extraction of business transac-
tion graphs for the second use case in Giraph. Selec-
tion, aggregation and summarization have been im-
plemented in MapReduce. As HBase does not na-
tively support secondary indexes, we implemented the
sort operator by building a secondary index during
workflow execution with MapReduce. The top and
overlap operators access the graph store directly to
select relevant graphs and their elements. Both op-
erators are implemented as regular, non-distributed
Java applications. Generally, the integration of dif-
ferent frameworks, i.e., HBase, MapReduce and Gi-
raph, could be easily done as they belong to the same
ecosystem and thus share libraries and internal ap-
proaches like data serialization.

Table 2 shows the results of our initial evaluation
on a small cluster of five nodes, each equipped with
an Intel Xeon CPU E5-2430, 48 GB RAM and local
disk storage. In both use cases, the data generators
were executed with their default parameters. We ad-
justed the scale factors (SF) to generate graphs of
different sizes. The resulting sizes are shown in the
table as well as the time to load them from HDFS into



the graph store. We observe that for both use cases
the loading times scale linearly with the graph size.
The execution times for the analytical workflows in
the rightmost column also show a linear and thus scal-
able behavior w.r.t. the graph sizes. Nevertheless, we
observed that the time to read and write data from
HBase needs to be further optimized, e.g., for Giraph-
based operators where about 50% of the processing
time was for loading and distributing the graph. To
improve this, we need to replace Giraphs own parti-
tioning strategies to avoid data transfers across the
cluster while loading the graph.

Datagen SF |V | |E| Import [s] Workflow [s]

LDBC-SNB 1 3.6M 21.7M 79 218

LDBC-SNB 10 34M 217M 828 1984

FoodBroker 100 7M 70M 259 234

FoodBroker 1000 70M 700M 2020 1754

Table 2: Statistics for both use cases.

6 Related Work

We discuss related work on graph data models as well
as on systems and approaches for graph data manage-
ment and analysis. We also deal with more specific
recent work on graph analytics related to our opera-
tors.
A large variety of graph data models has been

proposed in the last three decades [11, 13, 23, 29],
but only two found considerable attention in graph
data management and processing: the resource de-
scription framework (RDF) [34] and the property
graph model (PGM) [49, 50]. In contrast to the
PGM, RDF has some support for multiple graphs
by the notion of n-quads [21]; its standardized query
language SPARQL [28] also allows queries on mul-
tiple graphs. However, the RDF data represen-
tation by triples is very fine-grained and there is
no uniform way to represent richer concepts of the
PGM in RDF [57] so that the distinction of re-
lationships , e.g., (vertex1,edge1,vertex2), type
lables, e.g., (edge1,type,knows), and properties, e.g.,
(vertex1,name,

Alice) has to be done at the application level. In
consequence, expressing queries involving structural
and value-based predicates requires non-standard ex-
tensions [53].
Gradoop provides a persistent graph store and an

API to access its elements similar to graph database
systems, e.g., Neo4j [6] and Sparksee [8, 42]. In con-
trast to most graph database systems, the Gradoop

store is built on a distributed storage solution and
can partition the graph data across a cluster. A no-
table exception is Titan [9], a commercial distributed
graph database supporting different storage systems,
e.g., Apache Cassandra or HBase. Unlike Gradoop,
Titan focuses on transactional graph processing and
the storage layout is built for the PGM. Approaches
to store and process RDF data in Hadoop are sur-
veyed in [32].
MapReduce is heavily used for the parallel analysis

of voluminous data [56] and has also been applied for
iterative algorithms [22,37]. GLog [26] is a promising
graph analysis system that extends datalog with ad-
ditional rules for graph querying. GLog queries are
translated to a series of optimized MapReduce jobs.
The underlying data model is a so called relational-
graph table (RG table) storing vertices by nested at-
tributes. Unlike Gradoop, GLog stores RG tables as
HDFS files and does not address graph partitioning
and data versioning in general. It also lacks more
complex graph analytics on multiple graphs and, as
noted by the authors, suffers from general limitations
of MapReduce for iterative algorithms that can be
reduced by graph processing systems.
Parallel graph processing systems, such as Pregel

[41], Giraph [2], GraphLab [40] and the recent
Pregelix [15], focus on the efficient, distributed ex-
ecution of iterative algorithms on big graphs. The
provided data models are generic and algorithms
need to be implemented by user-defined functions.
Gradoop can use these systems by mapping its high-
level, declarative operators to their respective generic
data-models and user-defined functions. Parallel pro-
cessing systems such as Spark [62] and Flink [1] (for-
merly known as Stratosphere [10]) support analysis
workflows with high-level graph operators, similarly
as in Gradoop. However, their graph data models
and graph operators are limited to single graphs. For
example, Spark GraphX [60] and Flink Gelly support
filter operations on vertex and edge sets to extract a
subgraph from a single graph, but no further analyt-
ical operations on graph collections. Specific graph
algorithms, e.g., connected components or page rank,
are implemented as dedicated operators in GraphX
and Flink. The mentioned graph processing systems
focus on in-memory processing and do not provide
a persistent, distributed graph store like Gradoop.
Still, we see Spark and Flink as powerful and sup-
portive platforms for our approach and we plan to
make use of them.
Shared memory cluster systems such as Trinity [54]

address both online query processing and offline ana-
lytics on distributed graphs. Trinity demands a strict
schema definition and has no support for graph col-



lections. The system offers an API to access graph
elements and leaves the implementation of analytical
operators to the user. Furthermore, Trinity is an in-
memory system with no support for persistent graph
data management.

There are also graph analytics tools built on top
of relational database systems thereby utilizing their
proven performance techniques for query processing.
For example, Vertexica [31] offers a vertex-centric
query interface for analysts to express graph queries
as user-defined functions which are executed by a
SQL engine. In contrast to Gradoop, relational graph
stores may be less suited to support schema-flexible
graph models such as the EPGM and are not as well
integrated in the Hadoop ecosystem to utilize its po-
tential for parallel graph mining.

Many publications propose specific implementa-
tions related to some of our operators, although we
can only discuss some of them here. Similar to our
summarization operator, Rudolf et al. [52] describe
a visual approach to declaratively define graph sum-
maries. Liu et al describe distributed algorithms for
graph summarization [39]. OLAP-like graph anal-
ysis using multiple summaries of a graph is pro-
posed among others in [18,64]. Some approaches sup-
port heterogeneous graphs [61], grouping by edge at-
tributes [59] and the generation of a predefined num-
ber of vertex groups [58, 63]. Summaries are not
only useful as a simplified representation of a graph,
but also to optimize queries [36, 48]. While pattern
matching queries [11, 13] are a typical part of exist-
ing graph data models, recent work is focussing on
pattern queries in graph collections [14], distributed
graphs [24] and by graph similarity [65].

7 Conclusions

We presented an overview of Gradoop, an end-to-end
approach for Hadoop-based management and analy-
sis of graph data. Its underlying extended property
graph data model (EPGM) builds upon the proven
property graph model but extends its with support
for collections of graphs which we expect to be a ma-
jor asset in many analytical applications. The pro-
posed set of operators provides basic analysis and ag-
gregation capabilities, graph summarization and col-
lection processing. All operators as well as the invo-
cation of graph mining algorithms are usable within
the GrALa language to specify analysis scripts. The
Gradoop store is realized based on HBase and sup-
ports scalability to very large graphs, graph version-
ing, partitioned storage and fault tolerance. An ini-
tial evaluation shows the flexibility of the proposed

operators to define analytical workflows in different
domains as well as the scalability of the parallel data
import and workflow execution for different graph
sizes.
Gradoop is still in its initial phase so that many

parts of the system need to be completed and op-
timized, in particular operator implementations, the
upper layers of the architecture (Figure 2) and data
integration workflows. For the efficient implemen-
tation of the workflow execution layer and oper-
ators we will evaluate and possibly utilize avail-
able Flink and GraphX functionality. We will
also address component-specific research questions
such as customizable graph partitioning at differ-
ent storage layers (HBase, in-memory) and the op-
timization of specific operators and entire workflows.
Gradoop will be open-source and made available un-
der www.gradoop.com.
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