Graph Mining for Complex Data Analytics

André Petermann, Martin Junghanns, Stephan Kemper, Kevin Gémez, Niklas Teichmann and Erhard Rahm
University of Leipzig & ScaDS Dresden/Leipzig
[petermann,junghanns,kemper,gomez,teichmann,rahm] @informatik.uni-leipzig.de

Abstract—Complex data analytics that involve data mining
often comprise not only a single algorithm but also further
data processing steps, for example, to restrict the search space
or to filter the result. We demonstrate graph mining with
GRADOOP, the first scalable system supporting declarative ana-
lytical programs composed from multiple graph operations. We
use a business intelligence example including frequent subgraph
mining to highlight the analytical capabilities enabled by such
programs. The results can be visualized and, to show its ease of
use, the program can be modified on visitors request. GRADOOP
is built on top of state-of-the-art big data technology and out-of-
the-box horizontally scalable. Its source code is publicly available
and designed for easy extensibility. We offer to the graph mining
community, to apply GRADOOP in large scale use cases and to
contribute further algorithms.

Index Terms—Graph Mining, Business Intelligence

I. INTRODUCTION

The identification of frequent patterns is an established ap-
proach to data mining [1]. However, in real-world applications,
the actual mining algorithm is often combined with other
operations, e.g., to identify frequent sets of item groups in
canceled orders. Such complex analyses require additional data
processing steps, e.g., to identify canceled orders and to project
items to their groups. For non-graph data (e.g., relational),
multi-step analyses are already supported by analytical toolkits
of large database vendors or machine learning libraries of big
data processing platforms [2].

In comparison to mining frequent itemsets, mining graph
patterns additionally provides information about relationships
among items that appear together. For example, let a graph
collection represent business process executions [3] including
master data (e.g., employees, customers, products) and trans-
actional data (e.g., quotations, invoices) as well as their mutual
relationships. Here, an analyst might be interested in frequent
graph patterns representing the joint occurrence of certain
master data objects including their roles, i.e., how were these
objects involved during the process execution. Examples for
such patterns are shown in Figure 1. To identify such patterns,
we do not consider all graphs of the data set, but only such
showing financial loss. Therefore, as part of the analysis, we
need to calculate the financial result for all graphs and select
the lossy ones. Further on, we need to relabel vertices as we
want our patterns to include master data identities (e.g., which
employee or which product) but only types of transactional
data and relationships to understand master data interaction.

Although great research efforts have been made to develop
efficient graph mining algorithms, most implementations are
stand-alone research prototypes. Thus, applying graph mining

SalesQuotation

[SalesQuotationLine

a) ' b)

Frequent Subgraph (0.92)

ERP_EMP00003 ERP_CUS00003

Frequent Subgraph (0.84)

Fig. 1. Example result visualization of the demonstration program using
Graphviz. Graph a) represents a quotation containing a specific product. Graph
b) shows the common involvement of a specific employee (ERP_EMP..) and
a specific customer (ERP_CUS..) in the same quotation.

algorithms to complex analyses like our example requires the
combination of different tools. This quickly becomes a difficult
task as they may differ in regard to the underlying platform,
graph models, availability (source code, binaries, on request
only, etc) or in- and output formats. To support such multi-
step graph analytics in a single system, we started developing
GRADOOP [4]. The system enables flexible evaluation and
modification of graph data by declarative analytical programs
composed from different graph operations. The first graph
mining algorithm provided by GRADOOP is the extraction of
frequent subgraphs from a distributed graph collection. We
demonstrate how our motivating example can be implemented
in a single program that includes frequent subgraph mining.
In the following sections, we provide a brief overview
about GRADOOP and its graph mining capabilities (Section
II), describe our demonstration scenario in more detail (Section
IIT) and summarize our current research focus (Section IV).

II. GRAPH MINING WITH GRADOOP

GRADOOP [4] is a system for declarative graph analytics
supporting the combination of multiple graph operators and
graph mining algorithms in a single program. Graph data
is represented within the so-called extended property graph
model (EPGM). The EPGM is based on the property graph
model [5], i.e., on directed multigraphs supporting identifiers,
labels and named attributes (properties) for vertices as well as
edges. As an extension, it supports so-called logical graphs,
which are logical partitions of a base graph. Thus, it is possible
to analyze single graphs as well as collections of logical graphs
(see Figure 2), for example, to fit the single graph and the
transactional setting of frequent subgraph mining [6]. Logical
graphs further support labels and properties, for example, to
mark a graph to represent a frequent subgraph and to store its
support. The EPGM further contains a set of general-purpose
operators with either single graphs or graph collections as in-
or output. These operators include such extracting a graph

collection from a single graph (e.g. graph pattern matching
queries [7]) and vice versa.

A. Relation to other systems

GRADOOP is implemented on top of the big data processing
platform Apache Flink [8]. The fundamental concepts of plat-
forms like Apache Flink or Apache Spark [9] are distributed
collections of data objects (datasets) and transformations of
these. A complex program is represented by a directed acyclic
graph (DAG) where vertices represent datasets and edges
represent transformations. In comparison to MapReduce [10],
these frameworks offer a wider range of operators as well
as the possibility to hold data in distributed main memory
between single processing steps. There already exist graph
processing libraries based on such systems (e.g., Apache
Spark GraphX [11], Apache Flink Gelly [8]). However, these
libraries neither include a rich data model like the property
graph model nor operators based thereon. Thus, answering
complex analytical questions that involve multiple graph op-
erations still requires notable programming effort. Further
on, there is no abstraction of graph collections to fit the
transactional setting of graph mining algorithms. In contrast,
GRADOOP supports analytical programs in form of DAGs
where vertices represent either graphs or graph collections and
edges represent either built-in operators or custom algorithms,
e.g., such for graph mining. Additionally, GRADOOP supports
different data sources and sinks (e.g., files, HBase). Programs
are declared using a Java API representing our domain spe-
cific language GrALa (Graph Analytical Language). Below
the user-facing API, operators and algorithms are mapped
to Apache Flink datasets and transformations and, thus, are
horizontally scalable by default. The source code of GRADOOP
is available online under the GPL license'.

B. Algorithm integration

We distinguish between general-purpose operators that are
part of our data model (e.g., the union of two graph collec-
tions) and specific algorithms (e.g. frequent subgraph mining).
To support custom graph mining algorithms, GRADOOP offers
the generic call operator and fitting Java interfaces whose
implementations can be included in analytical programs. The
provided interfaces cover all algorithms with one or two
graphs or graph collections as input and a graph or a graph
collection as output in arbitrary constellation. For example, a
graph partitioning algorithm takes a single graph as input and
results into a collection of partitions. To be compatible with
the EPGM, all algorithm implementations must be capable
to handle multigraphs. For example, in a social network the
same user might be member and leader of the same group
which is usually represented by two parallel edges. Further
on, it must be considered that EPGM edges are always
directed. However, to also support undirected graph data (e.g.,
chemical compounds) algorithm implementations may provide
a parameter to optionally ignore edge directions.

Iwww.gradoop.com

— —
data single graph / built-in operator / single graph / data
source | graph collection | custom algorithm ™| graph collection sink

Fig. 2. Basic GRADOOP analytical program.

C. Frequent Subgraph Mining

The first graph mining algorithm provided by GRADOOP
addresses the problem of frequent subgraph mining (FSM)
in the transactional setting, i.e., the input is a collection
of vertex- and edge-labeled graphs G = {Gy,..,G,} and
the output is the complete set of frequent connected graph
patterns F = {P,.., P,}. A graph will be considered to
support a pattern, if at least one subgraph exists that is
isomorphic to the pattern. A pattern will be considered to be
frequent, if its support s(P) (share of graphs supporting a
pattern) is above a given minimum support S,,;, such that
$(P) > Smin & P € F. While existing work [6] including
distributed approaches based on MapReduce [12], [13], [14]
mostly support only undirected graphs without parallel edges,
we extended the well known gSpan algorithm [15] to support
directed multigraphs. It should be noted that the algorithm only
evaluates labels of vertices and edges but relevant property
values can be added to the label, if required (see Section III).

The gSpan algorithm follows the pattern growth approach:
First, starting from k& = 1, every graph reports supported k-
edge graph patterns. Second, s(P) is counted and frequent
graph patterns are determined using S,,;,. Third, every graph
grows k+ 1-edge children of frequent patterns. This procedure
is repeated until no more frequent patterns can be found.
Among similar algorithms, gSpan is an efficient representative
as it applies frequency-based relabeling of vertices and edges,
a systematic pattern growth avoiding multiple discovery of iso-
morphic patterns and has no need for subgraph isomorphism
testing through canonical labeling of graph patterns [16].

In contrast to the existing MapReduce based gSpan derivate
[13], we even adapt the relabeling to our parallel implemen-
tation. We first determine frequent vertex labels and drop ver-
tices showing infrequent labels including their incident edges.
Second, we determine frequent labels of the remaining edges
and drop the ones with infrequent labels. For both, vertices and
edges, input labels are encoded based on their support, whereas
a high support leads to a short label. After the mining process
that includes the gSpan systematic pattern growth, labels of
frequent patterns are decoded using previously stored label
dictionaries.

To support directed graphs, we extended canonical labeling
and its lexicographic order. The gSpan algorithm is using
minimum DFS codes as canonical labels. A DFS code C' =
(s0,81,.-,8k) is a sequence of edge traversals describing a
depth first search. A single traversal step is represented by a
pentuple s = (tq,tp,la,le,lp) expressing the traversal of an
edge with label [, from a vertex with label [, to a vertex
with label ;. Additionally, it contains initial discovery times
of both vertices t,, tp. For example, if ¢, = k, then the vertex

was first visited in the last extension to a k-edge pattern. As
a graph can be traversed in multiple ways, a lexicographic
order is used to determine a minimum among all possible
DFS codes. The original order [16] is a combination of linear
orders over vertex times, traversal start vertex label, edge label
and traversal end vertex label. To support directed graphs, we
extended traversal steps to hextuples s = (tq,tp,la,d,lc, lp)
by an additional direction indicator d expressing wether an
outgoing or incoming edge was traversed and extended the
lexicographic order respectively with outgoing < incoming.

Our multigraph extension affects the representation of em-
beddings (pattern instances). In a simple graph without parallel
edges, an edge is identified by its incident vertices. Thus,
a mapping between vertices and initial discovery times is
sufficient to transitively map edges to DFS traversal steps. In
a multigraph, two or more edges may connect the same pair
of vertices but edges provide an identifier. In consequence,
an embedding needs to contain a mapping between extension
number k and edge identifier. For directed graphs, an explicit
vertex mapping is not required as it can be derived transitively
from edge direction and traversal direction. For undirected
multigraphs, both mappings are required.

D. Selected operators

In the following, we sketch a subset of EPGM operators
used in our demonstration example. A detailed overview about
all operators can be found in [4].

An important preprocessing operator is transformation. The
operator preserves the graph structure but allows to modify
labels and properties of vertices, edges and graphs by three
respective user-defined functions. An example application is
the combination of multiple properties, for example, first and
last name of vertices representing persons. A further primitive
operator enabling the quantitative evaluation of graphs is
aggregation. It stores the scalar result of a built-in or user-
defined aggregate function in a graph property. Within the
scope of an aggregate function, all vertices and edges of a
graph are accessible including their labels and properties. This
allows, for example, to count the number of edges or to sum
all values of a certain vertex property. An operator specific to
graph collections is selection. The operator returns the subset
of an input graph collection for which a user-defined predicate
function evaluates to true. The scope of a predicate function
is limited to graph label and graph properties, for example,
to select graphs by a previously aggregated value (e.g., edge
count, business measure).

E. Data sources and sinks

Every analytical program has to contain one or more data
sources and one data sink. Besides direct HBase storage,
GRADOOP supports multiple in- and output file formats, for
example, JSON, DOT? and a graph list format often used by
FSM prototypes. Similar to algorithms, GRADOOP provides
interfaces to easily implement additional sources and sinks
for arbitrary databases or further file formats.

2http://www.graphviz.org/doc/info/lang.html

III. DEMONSTRATION DESCRIPTION

During the demonstration, we will use a business intelli-
gence scenario to exemplify a complex analytical program
including frequent subgraph mining. The program aims to
identify characteristic patterns for bad business process out-
comes. Therefore, it extracts frequent subgraphs from a graph
collection representing lossy business process executions. Al-
though all included operations are designed to be executed on
shared-nothing clusters, we execute the program on a single
machine to demonstrate functionality and ease of use. In this
setup, the program is executed in a so-called local cluster,
i.e., is parallelized among threads without shared memory. On
site, the program itself as well as operator parameters can be
modified on visitors request. Results will be visualized using
the tool Graphviz [17]. In the following, we will describe the
used data set and the demonstration program in more detail.

A. Input Data

The demonstration input data is a business data network
containing transactional data, master data and their relation-
ships. The data was generated using FoodBroker [18], a data
generator based on business process simulation, and integrated
into a single instance graph using the BIIIG approach [3]. The
data integration process was already demonstrated earlier [19]
which is why we just summarize its result to understand the
starting point of the analytical program:

In the integrated instance graph, every vertex represents a
domain data object and every edge represents a relationship.
Vertices are labeled by the class of their respective data objects
(e.g., SalesQuotation, Employee) and edges are labeled by
their semantic relationship type (e.g. processedBy). Further
on, vertices and edges contain properties representing either
dimensional attributes (e.g. name, group) or facts about the
process execution (e.g. revenue, expense). Additionally, ev-
ery vertex includes two system properties. First, sourceld, an
identifier concatenated from source system, class and local id
and, second, superClass, associating every vertex to represent
either master or transactional data. Both properties result from
data integration [3].

B. Program description

The demonstration program including a data sample is
available online®. The program can be executed by cloning
the GRADOOP repository and running the example program’s
main method. Figure 3 illustrates the program’s DAG, where
varying shapes are used to represent different data formats and
arrows in between indicate applied operators and algorithms.
Following, we will describe its single steps in more detail:

1) The integrated instance graph is read from a data source.
We choose the JSON format for the demonstration
because of its good human readability.

2) An algorithm is applied to the integrated instance graph
to extract a collection of so-called business transaction

3https://github.com/dbs-leipzig/gradoop/blob/master/gradoop-examples/src/
main/java/org/gradoop/examples/biiig/FrequentLossPatterns.java

gbtgs

(4) select
by result

(e
(@

(1) read from
JSON files

(2) extract graph

transactions (3) aggregate result

glossy
btgs

(5) transform
vertex labels

Fo
>min

(6) FSM

(9) visualize
with Graphviz

(7) transform (8) write to
graph labels DOT file

Fig. 3. Example analytical program used in the demonstration.

graphs, where every graph represents a single business
process execution (more details can be found in [3]).

3) To calculate the financial result, a domain-specific aggre-
gate function is applied to every graph and the aggregate
value is stored in a graph property.

4) Lossy graphs are selected (financial result < 0).

5) The remaining graphs are transformed in preparation
for pattern mining. In particular, labels of master data
vertices are modified to show their source identifier
instead of their class, transactional vertices as well as
edges keep their labels and all properties are dropped.

6) The frequent subgraph mining algorithm is applied to
the prepared collection. Every frequent subgraph stores
its support in a graph property.

7) As Graphviz provides no support for graph properties,
the support property value is added to the graph label
in a result transformation.

8) The frequent subgraphs are written to a data sink creat-
ing a file in the DOT format.

9) Graphviz is used to generate a postscript file containing
a single page for every frequent subgraph. Two example
graphs are shown by Figure 1.

Besides changing the program, visitors can modify steps 3

to 7 (the aggregate function, predicates and parameters) and
visually trace the changing result.

IV. ONGOING RESEARCH

The demonstration shows the novel analytical capabilities
enabled by the seamless combination of different approaches
to graph mining and graph analytics. To the best of our
knowledge, GRADOOP is the first system supporting such
analytics within a single declarative program. The foundation
of GRADOOP is ongoing research in the fields of graph data
management, graph analytics and graph mining. Regarding
the latter, we investigate in methods using more meaningful
interestingness measures than minimum support, for example,
to identify patterns correlating with certain business measure
values [20]. Due to the huge data volume in many applica-
tions and the high computational complexity of graph pattern
mining, our second focus is the efficient parallelization of
graph algorithms using shared-nothing clusters. Due to limited
space, we only gave a brief introduction to operator and
algorithm implementations. More details, for example, about
our approach to distributed frequent subgraph mining, will
follow in future publications.

ACKNOWLEDGMENT

This work is partially funded by the German Federal
Ministry of Education and Research under project ScaDS
Dresden/Leipzig (BMBF 011S14014B).

REFERENCES

[1] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer, 2014.

[2] X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen ef al., “Mllib: Machine learning
in apache spark,” JMLR, vol. 17, no. 34, pp. 1-7, 2016.

[3] A. Petermann, M. Junghanns, R. Miiller, and E. Rahm, “BIIIG: En-
abling Business Intelligence with Integrated Instance Graphs,” in Data
Engineering Workshops (ICDEW), 2014, pp. 4-11.

[4] M. Junghanns, A. Petermann, N. Teichmann, K. G6mez, and E. Rahm,
“Analyzing extended property graphs with apache flink,” in Proc. ACM
SIGMOD Workshop on Network Data Analytics, 2016, pp. 3:1-3:8.

[5] M. A. Rodriguez and P. Neubauer, “Constructions from dots and
lines,” Bulletin of the American Society for Information Science and
Technology, vol. 36, no. 6, pp. 3541, 2010.

[6] C.lJiang, F. Coenen, and M. Zito, “A survey of frequent subgraph mining
algorithms,” The Knowledge Engineering Review, vol. 28, no. 01, pp.
75-105, 2013.

[7]1 R. Angles, “A comparison of current graph database models,” in Data
Engineering Workshops (ICDEW), 2012, pp. 171-177.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Data Engineering, p. 28, 2015.

[91 M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing,” in USENIX

Conf. on Networked Systems Design and Implementation, 2012.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: A

Resilient Distributed Graph System on Spark,” in Proc. GRADES, 2013.

S. Hill, B. Srichandan, and R. Sunderraman, “An iterative mapreduce

approach to frequent subgraph mining in biological datasets,” in Proc.

ACM Conf. on Bioinf., Computational Biology and Biomedicine, 2012.

W. Lu, G. Chen, A. K. Tung, and F. Zhao, “Efficiently extracting

frequent subgraphs using mapreduce,” in Big Data, 2013 IEEE Interna-

tional Conference on. 1EEE, 2013, pp. 639-647.

W. Lin, X. Xiao, and G. Ghinita, “Large-scale frequent subgraph mining

in mapreduce,” in Data Engineering (ICDE), Int. Conf. on, 2014, pp.

844-855.

X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”

in Data Mining (ICDM), Int. Conf. on, 2002, pp. 721-724.

, “gspan: Graph-based substructure pattern mining,” in Technical

Report UIUCDCS-R-2002.2296, 2002.

E. R. Gansner, “Drawing graphs with graphviz,” Technical report, AT&T

Bell Laboratories, Murray, Tech. Rep, Tech. Rep., 2009.

A. Petermann, M. Junghanns, R. Miiller, and E. Rahm, “FoodBroker -

Generating Synthetic Datasets for Graph-Based Business Analytics,” in

Proc. WBDB, 2014.

, “Graph-based Data Integration and Business Intelligence with

BIIG,” PVLDB, vol. 7, no. 13, 2014.

A. Petermann and M. Junghanns, “Scalable business intelligence with

graph collections,” it-Information Technology, vol. 58, no. 4, 2016.

[10]
[11]
[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

