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Abstract 
Mashups are a new type of interactive web applications, 
combining content from multiple services or sources at run-
time. While many such mashups are being developed most 
of them support rather simple data integration tasks. We 
therefore propose a framework for the development of more 
complex dynamic data integration mashups. The framework 
consists of components for query generation and online 
matching as well as for additional data transformation. Our 
architecture supports interactive and sequential result re-
finement to improve the quality of the presented result step-
by-step by executing more elaborate queries when neces-
sary. A script-based definition of mashups facilitates the de-
velopment as well as the dynamic execution of mashups. 
We illustrate our approach by a powerful mashup imple-
mentation combining bibliographic data to dynamically cal-
culate citation counts for venues and authors. 

Introduction 
Mashups are a new type of interactive web applications, 
combining content from multiple services or sources into a 
new service or data source. The emergence of such appli-
cations has been fueled by application development frame-
works utilizing AJAX1 technology and the increasing 
number of Web APIs for retrieving content from popular 
web sites such as Google Maps, Flickr or YouTube. Pro-
grammableWeb2 currently (April 2007) lists more than 
1700 mashups and about 3 new mashups are added every 
day. Many mashups annotate some information with geo-
graphical data to visualize the information on a map, e.g., 
the location of selected restaurants or real estate objects. 
Content integration in mashups is typically dynamic, i.e., it 
occurs at runtime based on specific user input. In order to 
achieve short execution times most mashups only support 
rather simple kinds of data integration. For example, they 
often use standardized object identifiers (e.g., lati-
tude/longitude for geographical positions or unique product 
numbers such as EAN or ISBN) for easy interrelation of 
different sources or services. Query access to data sources 
or search engines is typically based on keywords, tags or 
                                                 
1 http://en.wikipedia.org/wiki/AJAX 
2 http://www.programmableweb.com 
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category names but without extensive post-processing to 
match results of different sources.  
We argue that advanced mashups need improved support 
for dynamic data integration on heterogeneous data ob-
jects. As an example for such mashups we consider our 
Online Citation Service (OCS). For a list of publications, 
e.g., all papers of an author or all papers of a conference, it 
dynamically (online) determines the number of citations to 
the individual papers, e.g., to determine the top-cited pa-
pers. In our implementation we obtain the publication lists 
from the DBLP bibliography and the citation counts from 
Google Scholar (GS). Obviously, the data of GS cannot be 
downloaded a priori for arbitrary authors or conferences so 
that we need to query this search engine at runtime. Fur-
thermore, GS has improvable data quality (e.g., duplicate 
publication entries) since it extracts bibliographic data 
automatically from millions of scientific publications 
(mostly available as PDF documents). The OCS example 
illustrates two key problems to be solved for complex data 
integration mashups, namely the adoption of effective 
query strategies (i.e., how to retrieve the relevant GS pub-
lications) as well as precise object matching (i.e., how to 
identify corresponding DBLP and GS publications). The 
main challenge is to solve these problems dynamically 
with sufficient accuracy – two opposing demands as we 
will see.  
In this paper we propose a framework architecture for the 
development of dynamic data integration mashups. It con-
sists of components for query generation and online match-
ing as well as for additional data transformation. Our archi-
tecture supports interactive result refinement to improve 
the result quality by running refining queries when neces-
sary. This is achieved by a script-based definition of mash-
ups facilitating a fast development of mashups as well as 
their dynamic execution. We illustrate our data integration 
approach in detail for the mentioned OCS mashup.  
The remainder of the paper is structured as follows. In the 
next section we present the framework architecture for data 
integration mashups. Afterwards we illustrate the Online 
Citation Service as a mashup implementation in the biblio-
graphic domain. In particular we demonstrate the script-
defined mashup definition and user-driven result refine-
ment, and discuss implementation issues. Finally, we re-
view related work and summarize our work. 



A Framework Architecture for Mashups 
The initial design of the overall framework architecture is 
shown in Figure 1. The framework enables developers to 
specify their mashup algorithm within scripts and thus on a 
higher level than implementing it in a common program-
ming language. The functionality of a mashup script is 
provided as a web service so that it can be invoked by a 
web interface or by another web service, e.g., within an-
other mashup. 
Mashups typically integrate data from heterogeneous data 
sources such as databases, search engines, or local files. 
Wrappers transform the data into a source-specific and 
self-describing XML structure for uniform data access 
within the framework. Typically, the resulting XML struc-
ture describes a set of objects, such as people, products, 
publications, or addresses (e.g., to be displayed using 
Google Maps). Objects are represented by a set of attrib-
utes each having a value or a set of values. Moreover, 
complex objects may contain component objects, e.g., a 
person may have one or multiple addresses.  
The proposed framework uses a high-level script language 
to define mashups similar to [14]. The language consists of 
powerful operators operating on XML data structures. 
Operators are generic and can thus be applied to different 
data sources and services. For example, a query operator 
takes as input the data source (e.g., the URL) and a query 
specification. All (intermediate) results can be stored in 
variables for use by other operators. There are several 
operators for data transformation (e.g., fuse, aggregate) and 
set operations (e.g., union, intersection, and difference). We 
now discuss some of these operators. Further details of the 
script language are outlined in the description of the OCS 
mashup. 
Querying data sources or web services is an integral part of 
data integration mashups. Queries are directed towards a 
specific source and can be defined either explicitly or im-

plicitly. Explicit queries are usually directly specified by 
the user via a web interface, e.g., for which author the 
publication list should be determined by OCS. Implicit 
queries are applied for an XML document (e.g., the result 
of a previous query) and define a query strategy on the 
input document. This can be used to generate a query for 
each input object. For example, given a list of publications 
(each having a <title> element), the query strategy “inti-
tle:<title>” generates one search query for each publication 
where <title> is replaced by the actual publication title. An 
alternative strategy would be to use only one query (e.g., 
on author) to quickly obtain a first, approximate result.  
For query sources such as search engines or hidden data-
bases the definition of query strategies is a crucial task 
since the time for query execution and result transmission 
usually dominates the overall mashup runtime. Hence it is 
important to achieve a maximum of relevant results with a 
minimal number of queries. Reducing the number of que-
ries is also necessary since some services limit the number 
of queries for a given period of time (e.g., the Google Web 
service API accepts only 1000 queries a day for a given 
client).  
In contrast to classical data integration scenarios such as 
data warehouses, mashups heavily rely on user interaction. 
Users expect results in a few seconds and want to process 
the data in different ways such as using them as input for 
other mashups. Web technologies like AJAX only meet 
such user requirements from a technical point of view. We 
therefore identified the refinement of results as an impor-
tant aspect in mashups for data processing. We use such 
refinement steps for result completion and the extension of 
selected result objects. We meet the interaction require-
ments by segmenting a mashup into several scripts, e.g., 
for execution in sequential order. When displaying the 
intermediate results of one script to the user, the frame-
work can already execute the next script in the background 
to refine the query results. The execution of additional 
scripts may be automatic or triggered by the user (e.g., by 
clicking a button). User-driven refinement helps to invoke 
additional queries only when needed. 
The framework provides several transformers that can be 
applied to input data or query results. An important trans-
former is fuse performing object matching and merging. 
Fuse takes as input two XML documents A and B of a 
simple object-attribute-value structure (see Figure 4 for an 
example) and identifies objects referring to the same real 
world entity. In the fuse result, the matching elements of B 
are appended as child elements of their matching counter-
parts in A. Hence the fuse result contains both the input 
objects as well the match result. It can be used as input for 
further querying or additional data transformations (by 
ignoring the child elements) or for a match refinement. 
Fuse determines the similarity of two objects (i.e., the like-
lihood that they are the same) from the similarity of their 
attribute values (e.g., by applying string similarity func-
tions) and component objects. Within the mashup defini-
tion the developer may specify what elements should be 
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Fig. 1: Architecture of data integration framework for mashups



compared using which similarity function and parameters 
(e.g., minimal similarity threshold).  
The transformer aggregate allows matching objects in a 
fuse result to be aggregated for a more concise result. It 
applies a user-specified resolution function on selected 
attributes of the matching objects, e.g., to determine the 
most common value or the sum of all values. The result is 
kept as an additional XML element (see OCS example in 
the next section).  
We plan to implement the sketched framework based on 
our previous data integration platform iFuice [14] (Infor-
mation Fusion utilizing instance correspondences and peer 
mappings). In contrast to many data integration platforms 
that utilize schema mappings, iFuice focuses on instance 
data of different sources and mappings between them. 
Such mappings are sets of correspondences between data 
sources, which may already exist, e.g., in the form of web 
links. iFuice has been successfully applied for an offline 
citation analysis [13], offline object matching [16] and 
instance-based ontology matching [15]. iFuice offers al-
ready a scripting language that can be used as a basis for 
our new framework.  
However, iFuice has been tailored to offline processing so 
far and we therefore need to evolve it into a mashup plat-
form supporting dynamic data integration. The major ex-
tensions will involve the discussed operators for dynamic 
queries and query refinement. Furthermore, we will use 
XML data structures as the internal data format and the 
operators have to be adopted appropriately. The new op-
erator fuse combines object matching with result combina-
tion, i.e., matching objects are represented as nested ob-
jects in the XML data structure. Finally, the generic 
mashup engine should automatically offer iFuice scripts as 
web services so that developers can re-use them for new 
mashup scripts.  

Online Citation Service 
The Online Citation Service1 (OCS) allows the generation 
of citation counts for publication lists of authors and ven-
ues (see Figure 2). In the current implementation, it obtains 
the publication lists from the DBLP bibliography2 that is 
known for high data quality (e.g., complete publication 
lists for venues). The citation counts are obtained from 
Google Scholar3. For example, OCS allows a fast and 
precise ranking of all publications of a given venue (say, 
VLDB 1997) according to their citation counts. Such a 
ranking helps to determine influential papers and can be 
helpful to find candidates for a “10 year best paper” award.  
The user first performs a keyword search within the DBLP 
data source and selects one author or venue out of the 
search results. The left part of Figure 2 illustrates this step 
for an author-based search. OCS then determines the asso-
ciated publications in DBLP and queries Google Scholar 
(GS) to achieve the corresponding GS entries. The re-
trieved GS publications are matched to the DBLP publica-
tions based on the similarity of the publication titles and 
years. An exact comparison for title equality fails in most 
cases due to spelling errors, special characters and title 
extensions (e.g., “(Demo)” for demonstration papers). 
Therefore OCS utilizes a string distance function with a 
given threshold. OCS additionally requires the years to be 
equal in case GS provides a year information.  
The right part of Figure 2 illustrates the aggregated result 
shown to the end-user. It lists all DBLP publications of the 
specified author sorted by citation counts. The citation 
count per publication is determined by the sum of citations 
of all matching GS publications. Users may see the list of 
aggregated GS publications by clicking on the “+” icon. 
Moreover, users can retrieve the list of citing publications 
(as provided by GS) by following the hyperlink of the GS 
publication counts. 
                                                 
1 http://labs.dbs.uni-leipzig.de/ocs 
2 http://www.informatik.uni-trier.de/~ley/db/ 
3 http://scholar.google.com 

Figure 2: Screenshot of Online Citation Service for author “Erhard Rahm” 

Strategy Query #Queries 
Name Author’s / venue’s name 1 
Title pattern Disjunction of title patterns ≈ #Pubs/10 
Keywords Title as keywords #Pubs 

Table 1: Query strategies of Online Citation Service



Query strategies 
After specifying a DBLP author or venue, OCS consecu-
tively applies multiple query strategies to find matching 
GS publications and their citation counts. The strategies 
currently used are summarized in Table 1. The name strat-
egy is very simple and fast since it only requires one GS 
query. It is especially effective for authors with uncommon 
names having a short publication list, but can lead to many 
irrelevant results for authors with very common names. 
Similarly, for smaller venues with unique names (e.g., 
IIWeb) the name strategy produces good results. On the 
other hand, a query for the term ‘VLDB’ often leads to 
irrelevant results (e.g., due to VLDB Journal or VLDB 
workshop publications) and misses relevant results that are 
only assigned to “Very Large Databases” instead of 
VLDB. 
The second strategy, title pattern, determines the most 
important terms of the title based on the TF/IDF string 
metric. It determines the minimal list of terms that charac-
terizes a publication title unambiguously within DBLP. 
(Different publications with the same title, e.g., a confer-
ence and journal version of a paper, result in the same term 
list but are differentiated in the matching step later on.) For 
querying GS, a title pattern is then constructed based on 
the title where all other (i.e., irrelevant) terms are blanked 
out by the GS wildcard character “*”. For example, publi-
cation title [12] contains many common words and its title 
pattern (“survey * approaches * * schema matching”) 
therefore contains four terms, whereas one single word is 
already sufficient for [14] (“iFuice”) due to the uncommon 
acronym iFuice1. Since Google allows up to 32 such search 
terms per query, the strategy on average combines 10 title 
patterns in a conjunctive query, i.e. “intitle:<Pattern1> OR 
intitle:<Pattern2> …”. This approach allows a precise and 
parallel search for a number of publications within one 
single query. 
The keyword strategy is only applied for publications that 
do not have matching counterparts (see below) in one of 
the previous two strategies. For each publication the title is 
                                                 
1 Leading and trailing “*” are removed from the title pat-
tern. 

used as the query pattern (without quotes). This strategy 
focuses on finding a certain publication but accepts a sig-
nificant number of irrelevant results. 
After finishing the first query strategy (name), the author 
already receives the complete publication list with ap-
proximated citation counts from the first GS query. The 
end-user can start inspecting the results, e.g., re-order the 
publication list, get the list of citing publications etc. In the 
meantime OCS refines the result by applying the second 
strategy (title pattern) and – once finished – automatically 
updates the displayed result table using AJAX technology. 
The third strategy (keyword) is executed analogously on 
user’s demand, but only for DBLP publications that are 
still unmatched to GS. 

Mashup scripts 
Figure 3 illustrates the OCS implementation based on the 
framework prototype. On the left hand side the Web GUI 
functionality is depicted that invokes three iFuice scripts 
(right, lines 1-4, 5-7, and 8-11), one for each query strat-
egy. It illustrates the three-step refinement process where 
the result of each step is used in the following steps. The 
user decides “how far” the mashup is executed by invoking 
the particular scripts via the Web GUI. 
Line 1 retrieves all DBLP publications for a given author 
(stored in variable $DBLPAuthor) and line 2 queries Google 
Scholar using the author name. The resulting publications 
(from DBLP and GS) are fused in line 3 so that $Result1 
contains the set of corresponding DBLP-GS publications. 
The sum of citations for each DBLP publication is com-
puted by the aggregate step in line 4. The second query 
strategy refines the result by querying GS using title pat-
terns (line 5). The retrieved GS publications are matched to 
the DBLP publications, too, and the result is unified with 
the result of the first query strategy (line 6). Line 7 per-
forms the aggregation that updates the number of citations 
based on the new result. Finally, lines 8-11 implement the 
third strategy, but only for DBLP publications that do not 
have match counterparts, i.e., that do not have GS child 
elements (line 8). In contrast to the previous queries the 
query string only contains the title (line 9) and the results 
are fused, unified (line 10), and aggregated (line 11).  
Figure 4 illustrates the query, fuse and aggregate operators 
for the third query strategy of OCS. The query operator is 

01: $DBLPPubs := query (DBLP, “author=[name]”);
02: $GSPubs1 := query (GS, “author:[name]”);
03: $Result1 := fuse ($DBLPPubs/Pub/{Title,Year}, $GSPubs1/Entry/{Title,Year});
04: $Result1 := aggregate ($Result1, “[DBLP/Pub/NoOfCit]”, “sum([./Entry/Citations])”); 

05: $GSPubs2 := query (GS, $DBLPPubs, “intitle:”[ [DBLP/Pub/Titlepattern]””);
06: $Result2 := union (fuse ($DBLPPubs/Pub/{Title,Year}, $GSPubs2/Entry/{Title,Year}), $Result1);
07: $Result2 := aggregate ($Result2, “[DBLP/Pub/NoOfCit]”, “sum([./Entry/Citations])”); 

08: $DBLPPubs3 := query ($Result2, “count([./Entry/Citations])=0”);
09: $GSPubs3 := query (GS, $DBLPPubs3, “intitle:[DBLP/Pub/Title]”);
10: $Result3 := union (fuse ($DBLPPubs/Pub/{Title,Year}, $GSPubs3/Entry/{Title,Year}), $Result2);
11: $Result3 := aggregate ($Result3, “[DBLP/Pub/NoOfCit]”, “sum([./Entry/Citations])”); 

User selects author from list, e.g., Erhard Rahm

Result1 is displayed to the user

Result1 is replaced by Result2

If user wants exhaustive search (e.g., button click)

Result2 is replaced by Result3

Web Interface Mashup script (iFuice representation)

 

Figure 3: Illustration of OCS mashup execution 



invoked for the obtained DBLP publications (only one 
DBLP publication is illustrated in Figure 4 due to space 
constraints). The queries for Google Scholar use the “inti-
tle:<title>” pattern where <title> is replaced by the actual 
publication title specified by the XPath expression 
“DBLP/Pub/Title”. The resulting GS publications are then 
matched to the DBLP publications based on the title and 
year similarity. Matching GS publications are inserted into 
the XML representation of the corresponding DBLP publi-
cation by the fuse operation. In the aggregation step the 
numbers of citations are summed up and stored in a new 
XML element1. Therefore, the name of the new element 
(“NoOfCit”) as well as the XPath function are specified. 
The presented script is tailored to the publication list of a 
selected DBLP author. However, only the first two lines 
have to be changed for venues. This underlines the reus-
ability of scripts within different mashups and shows the 
potential of our framework for the fast creation of mash-
ups. 

Related Work 
By their nature data integration mashups touch many re-
search areas such as data extraction, object search, hidden 
web crawling, and object matching. Data extraction tech-
niques (see [8] for a survey) play an important role because 
not all data sources can be accessed via Web services. 
Such techniques are also needed in our framework and 
existing tools (e.g., using templates [1]) can be used to 
speed-up the development of wrappers.  
Recent work deals with entity search engines (e.g., [4][10]) 
to shift search engine results from the document level to 
the object (entity) level where the results represent more 
                                                 
1 Only two GS publications are used in the example lead-
ing to a citation count of 472 in contrast to 475 of Figure 2. 

specific objects such as products or publications. Such 
search engines would nicely fit into our framework as they 
support more complex queries involving context pattern 
and content restriction and improved result quality. Google 
Scholar can be seen as an example of an entity search en-
gine used within OCS.  
The querying of data sources using search interfaces is 
strongly related to the crawling of the hidden Web [2][11]. 
In contrast to the dynamic nature of mashups, hidden Web 
crawling usually is an offline process with the goal to 
download complete copies of the “hidden databases”. 
Since the query execution and result transmission are cru-
cial performance aspects, there exists work on minimizing 
the number of queries [17][3]. While our framework can 
adopt query strategies to completely download relevant 
parts of data sources, it is also able to dynamically query 
sources for fast results and ad-hoc exploration.  
Object Matching aims at identifying object instances in 
(different) data sources that refer to the same real world 
entity (see [5] for a recent survey). It is a crucial task for 
data integration and data cleaning but it is usually per-
formed as an offline process for relational data with a 
strong focus on data quality. Some of the proposed algo-
rithms can be adopted for online matching within mashups 
and we will investigate this further in future work.  
Several frameworks exist for facilitating the implementa-
tion of mashups and Web 2.0 applications, e.g. ASP.NET 
AJAX2, Direct Web Remoting3, Echo4, and Google Web 
Toolkit5 (the latter is used for OCS). Such frameworks 
focus on implementation issues, such as easy-to-use pro-
gramming languages or libraries for frequently executed 
operations (e.g., Web service call) whereas our framework 
                                                 
2 http://ajax.asp.net/ 
3 https://dwr.dev.java.net/ 
4 http://nextapp.com/platform/echo2/echo/ 
5 http://code.google.com/webtoolkit/ 
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focuses on a high level description of mashup algorithms 
or workflows. 
A VLDB2006 keynote presented a mashup fabric [7] that 
covers the whole mashup process from the import of exter-
nal data sources to the end-user presentation using different 
formats (e.g., HTML, RSS). Our work resides in between 
the ingestion and augmentation component, i.e., it ad-
dresses what data should be retrieved (queried), how the 
data should be combined, and how intermediate results can 
be refined. 
The “mash-o-matic” tool [9] supports mashup developers 
in the preprocessing of data. Developers can select and 
clean data from different sources, transform it into a ge-
neric XML format and store all in a data container called 
sidepad. The mashup application makes use of this sidepad 
and the functionality provided by mash-o-matic. However, 
mash-o-matic focuses on the data infrastructure for mash-
ups but can not be used for defining a dynamic mashup 
application. 
The MashMaker [6] approach is a generic mashup applica-
tion that allows users for interactive editing, querying, 
manipulating, and visualizing data. Based on an untyped 
tree data model users can operate with so-called widgets 
that may import data from external data sources or visual-
ize data on a map. Moreover, users can create and share 
their own custom widgets by combining existing widgets. 
Thereby the MashMaker enables non-expert users to ex-
plore data sources by querying and browsing but it does 
not offer support for ad-hoc data integration. Similar to our 
framework, MashMaker tries to simplify the achievement 
and combination of data but is tailored to end-users 
whereas our framework supports mashup developers by 
building mashups and offering them as Web services. 

Conclusions and Future Work 
Mashups implement dynamic data integration by combin-
ing content from multiple sources at application runtime. 
At present, the data integration found in most mashups is 
fairly simple due to the lack of suitable frameworks for ad 
hoc data integration and the harsh response time require-
ments in web applications. We therefore proposed a frame-
work architecture supporting the development of more 
complex mashups incorporating dynamic data integration. 
The framework supports a script-based definition of mash-
ups and the use of multiple query strategies for accessing 
external data sources. Query results can be dynamically 
refined to reach a good trade-off between fast execution 
times and high result quality. Generic operators such as 
fuse, aggregate, union, and intersect help to perform dy-
namic object matching and data transformation within 
mashup scripts. As an example mashup implementation we 
presented the Online Citation Service for generating cita-
tion counts for publication lists of authors and venues. 
In future work we are completing the design and imple-
mentation of the proposed framework. We further will 
evaluate different query strategies w.r.t. the achievable 
result improvement and execution time. 
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