
Information Sciences xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Management of evolving semantic grid metadata
within a collaborative platform

Michael Hartung a,*, Frank Loebe b, Heinrich Herre c, Erhard Rahm b

a Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
b Department of Computer Science, University of Leipzig, P.O. Box 100920, 04009 Leipzig, Germany
c Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
a r t i c l e i n f o

Article history:
Received 1 December 2008
Received in revised form 24 April 2009
Accepted 1 August 2009
Available online xxxx

Keywords:
Semantic metadata
Grids
Collaborative environments
Schema evolution
Data migration
0020-0255/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.ins.2009.08.008

* Corresponding author.
E-mail addresses: hartung@izbi.uni-leipzig.de

rahm@informatik.uni-leipzig.de (E. Rahm).
1 http://www.d-grid.de.

Please cite this article in press as: M. Hartung
form. Sci. (2009), doi:10.1016/j.ins.2009.08.00
a b s t r a c t

Grid environments, providing distributed infrastructures, computing resources and data
storage, usually show a high degree of heterogeneity and change in their metadata. We
propose a platform for collaborative management and maintenance of common metadata
for grids. As the conceptual foundation of this platform, a meta model is presented which
distinguishes structured descriptions and classification structures that both are modifiable.
On this basis, the system allows for the creation and editing of grid relevant metadata and
provides various search and navigation facilities for grid participants. We applied the plat-
form to the German D-Grid initiative by establishing the D-Grid Ontology (DGO).

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Grid computing offers scientists a distributed infrastructure for collaboration and provides massive amounts of comput-
ing, storage, and data resources. Grid initiatives, e.g., the German D-Grid,1 are highly complex and involve many heteroge-
neous components. They offer resources of different types (e.g., hardware or software resources) which are distributed
among many participating organizations. These include universities, research centers and enterprises, which themselves have
affiliated persons or take part in different grid projects representing individual communities such as medicine or physics.

Metadata at varying levels of detail is needed to describe these grid resources as well as the participating organizations,
projects, and persons. Frequently, grid metadata is managed independently in each participating project, i.e., each particular
project is responsible for its own specific metadata. This may be appropriate for the management of project-specific or do-
main-specific metadata, for example, biomedical grid projects typically use life science ontologies for data annotation. On the
other hand, there are common types of metadata which apply to all grid projects. Information about projects, grid resources
and organizations can be managed in an integrated form, and should be accessible online and directly editable for all autho-
rized participating persons and projects. Furthermore, metadata especially about resources should be offered to grid appli-
cations and services, e.g., through metadata service interfaces. Providing integrated access to grid metadata permits projects
to better exchange information about their ongoing work. For example, grid participants can more easily notice related work
in other projects, so that cooperation can be improved and duplicate efforts be reduced.

It is important that a metadata management system offers simple user interfaces for the extension and change of the
metadata (usability aspect), since persons of different domains with diverse technical backgrounds (e.g., computer scientists,
. All rights reserved.

(M. Hartung), loebe@informatik.uni-leipzig.de (F. Loebe), hherre@imise.uni-leipzig.de (H. Herre),

et al., Management of evolving semantic grid metadata within a collaborative platform, In-
8

http://dx.doi.org/10.1016/j.ins.2009.08.008
mailto:hartung@izbi.uni-leipzig.de
mailto:loebe@informatik.uni-leipzig.de
mailto:hherre@imise.uni-leipzig.de
mailto:rahm@informatik.uni-leipzig.de
http://www.d-grid.de
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins
http://dx.doi.org/10.1016/j.ins.2009.08.008


2 M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx

ARTICLE IN PRESS
physicians, or librarians) meet in a grid’s virtual organization [13]. In addition, providing metadata management over a long-
term period requires the ability to handle changes to the data model of the metadata (evolution aspect), since grid applica-
tions are highly evolving and hence generate new or changed requirements on their metadata. For instance, if new metadata
about special hardware resources or industry organizations should be captured, the current (active) data model needs to be
adapted in order to incorporate these new requirements. Furthermore, initial design errors on the data model may lead to
ineffectiveness and should therefore be corrected. Hence, a metadata management system requires facilities that support the
change of a running data model considering the captured metadata.

We make the following contributions in this paper:

� We propose a simple yet flexible meta model suitable for managing semantic grid metadata. A foundational analysis of
existing systems and their usage leads to a novel explicit distinction between content types for structured information
and ontological categorization for content classification in the meta model.

� We address the evolution of the data model on the basis of meta model elements. In particular, we discuss relevant evo-
lution operations and their data migration effects.

� We describe a web-based and wiki-like platform using the defined meta model. The platform supports the collaborative
creation and editing of grid metadata as well as the evolution of the employed data model. It further addresses usability
issues such as powerful search, navigation and visualization capabilities.

� We present an application of our platform, namely the D-Grid Ontology (DGO) system of the German D-Grid initiative
available under http://buell.izbi.uni-leipzig.de/dgo. In particular, we outline the current organization of the semantic
metadata.

The remainder of the paper is organized as follows: in Section 2 we describe models for the collaborative management of
grid metadata, with a focus on the meta model level. Evolution at the data model level is discussed in Section 3. Section 4
presents the data model of DGO, while specific features of the platform concerning usability are illustrated in Section 5.
Implementation details are provided in Section 6, related work in Section 7. We conclude with a summary and an outlook
on future work.
2. Models of the platform

We build on a three-layered representation for the management of metadata (see Fig. 1) differentiating between the fol-
lowing layers: meta model, data model and instance data. The data model (or schema) is specific to a particular grid or virtual
organization, e.g., D-Grid, and prescribes the structure of possible instances and their semantic annotations. The meta model
defines the constructs which can be used for defining the data model, in particular for describing the structure of instances
(content) and the use of ontologies for semantic annotation of instances. In this section we describe the meta model, whereas
Section 4 focuses on the D-Grid Ontology (DGO) with its data model and instances.
Fig. 1. Three-layered representation of metadata.

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://www.buell.izbi.uni-leipzig.de/dgo
http://dx.doi.org/10.1016/j.ins.2009.08.008


M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
The meta model consists of two main parts, content types and categories. Content types define the meta information for
instantiable information or content (instance data), called content items. Each content item instantiates a particular content
type, i.e., that content type determines the structure of the information held by a content item. Categories, on the other hand,
are not directly instantiable. Content items are merely assigned to categories. Accordingly, categories serve for semantic
annotations of content items and are therefore modifiable with less impact on content items. Given these characterizations
of content types and categories on the meta model level we outline their structure and further details in the following
sections.

2.1. Content types

A content type has a name and a set of attributes describing properties for content items. An attribute has a name, a data
type and a multiplicity of one or many. The latter allows for arbitrarily many values of that attribute within a content item.
Attributes may also be defined as mandatory, i.e., they must be specified during content instantiation (e.g., the first and last
name of a person). The attribute’s data type restricts the permissible values, e.g., date, URL or string. Furthermore, allowed
values can be restricted to an enumeration type to guarantee well-defined terms. We further distinguish between generic
and specific attributes. Generic attributes are predefined and exist for all content types, e.g., the ‘ID’ attribute for unique ob-
ject identification. Specific attributes describe application-specific properties of content types.

Content types can be interrelated by binary relationships of a specified cardinality. Relationships are managed bidirection-
ally and thus consist of a forward and backward relationship. Hence content items participating in a relationship are acces-
sible from both directions. For instance, assume that a content type Person has a relationship with a content type
Organization. When a content item A of Person ‘isAssociatedWith’ a content item B of Organization (forward relation), we
also maintain that B is connected to A through a ‘hasMembers’ relationship (backward). In order to keep our model simple
and flexible, we currently do not use relationship attributes.

In addition to such application-specific relationships we support two general kinds of relationships with predefined
semantics: generalization and partOf. Firstly, content types can be part of generalization hierarchies supporting inheritance.
Hence, derived content types reuse the metadata of their predecessors in the generalization hierarchy and may define addi-
tional attributes or relationships. The topmost (root) nodes of the generalization relation are called base content types. For
instance, a base content type ‘GridResource’ may inherit its attributes and relationships to more specific content types such
as ‘GridHardwareResource’ or ‘GridSoftwareResource’. Secondly, the partOf relationship interrelates content types to con-
struct aggregation hierarchies. For example, we use a recursive partOf relationship between organizations. Such partOf hier-
archies are used in our platform to support navigation and to specify the context of content items. For instance, there may be
several items called ‘Department of Computer Science’. Their meaning only becomes clear by considering their predecessors
within the organizational partOf hierarchy, e.g., to differentiate between ‘University of Leipzig’/‘Department of Computer Sci-
ence’ and ‘TU Munich’/‘Department of Computer Science’.

2.2. Categories

Categories have a name and are hierarchically organized by subCategoryOf relationships. These relationships are assumed
to form directed acyclic graphs (DAGs) of categories. Moreover the subCategoryOf relationship involves different semantics
depending on what categories are interrelated, e.g., in Fig. 1 ‘Germany’ is part of ‘Europe’ or a ‘University’ is an ‘Educational
Organization’. Roots are special categories without predecessor for the subCategoryOf relationship and therefore act as entry
points of a category structure.

We build on this simple yet flexible category model to broadly support semantic annotations, i.e., the ontological struc-
turing and classification of content items (instance data). Categories can be used to manage content items of different con-
tent types independently of the content structure. In particular, content items can be categorized into multiple categories
(e.g., according to distinct aspects). Notably, the assignment of content items to categories exhibits the character of annota-
tions (see ‘assignedTo’ associations in Fig. 1). Such associations may be used in many cases, e.g., to instantiate categories or to
associate objects to a geographical category. For example, the content item ‘University of Leipzig’ may be assigned to a ‘Uni-
versity’ category and a ‘Saxony’ category.

Categories can be used to improve the navigation within the platform and to support semantic queries. For instance, if
someone is interested in all universities participating in a grid, she may navigate through the organization category structure
to the university category to see all associated university organizations.

2.3. Distinguishing content types and categories: motivations and effects

Recently, a number of systems of different kinds implicitly embody facilities to handling data in a way related to the
above explicit distinction of categories and content types in our meta model. Tagging systems [14] like Del.icio.us2 or
BibSonomy3 collect keywords/tags (analogous to our categories) from all users assigned to entries typically sharing their
2 http://delicious.com.
3 http://www.bibsonomy.org.

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://www.delicious.com
http://www.bibsonomy.org
http://dx.doi.org/10.1016/j.ins.2009.08.008


4 M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx

ARTICLE IN PRESS
appearance in a structured form, e.g., bibliographic entries in the case of BibSonomy. Another related case derives from the
application of ontologies in bioinformatics. Ontologies like the Gene Ontology (GO) [2,34] are primarily used for data annota-
tion, e.g., protein data (corresponding to content types) is annotated with GO terms (which is comparable to assigning catego-
ries) specifying the protein’s function or frequent appearance in particular cell components.

The success of many of these systems supports the view that the suggested distinction between categories and content
types is reasonable. In brief, the main idea is to combine benefits from a structured, database-oriented approach with an
ontological approach for classification and annotation. Slightly closer inspection reveals the following observations on exist-
ing systems, in the terminology of our meta model. Content type models form a specific kind of domain model, typically with
a rather small number of content types and their features (i.e., attributes and relations) and very limited use of generalization
and inheritance. Due to the attributes and relations, however, content items capture information at a fine-grained level. The
number of content items usually vastly exceeds the size of the content type models. Accordingly, the purpose of the category
model is to provide means for navigation, filtering, and selection of content items by means of categories in well-known
(poly)hierarchical arrangement.4 In many cases, the assignment of categories to content items captures aspects that are, if
at all, only very weakly related to those features of the content items covered in the content type model. For instance, a protein
database may primarily describe the structure of proteins, whereas annotations to GO terms relate those proteins to functional
aspects or involvement in certain biological processes.

Given these views, a number of potential benefits of the explicit distinction between content types and categories can be
identified:

� Focused, quality-oriented information acquisition

Capturing detailed information via the content model is restricted to that information which is vital for the purposes
of the system. The structure as imposed by the features of content types contributes to high quality of the information.

� Exploitation of category hierarchies

Content items can be classified directly and with minimal effort by users (and therefore browsed and searched seman-
tically), without effects on content type information, yet adding information on content items.

� Mono- vs. polyhierarchical classification

Generalization between content types is limited to a single supertype, which allows for clear management of the
detailed content type model, in particular of feature inheritance. In contrast, the category model may rely on a poly-
hierarchical structure of categories. This is ‘‘more expressive” with respect to classification purposes. It remains man-
ageable because the descriptive features of content types are not entangled with classification.

� Handling changes

The distinction allows for a decoupled evolution of the content type model and the category model of a system (see the
next section).

� Reuse

Accepted category systems, e.g., established externally on a community basis, allow for their reuse as category model.
They provide a common ground for information integration, e.g., for creating mashups of geospatial or temporal data,
without an overall integration with the content type model and its interdependences.

As discussed above, the coverage of distinct aspects in the category and content type model is applicable to an increasing
number of systems. Extensions to the meta model may consider some integration among the two meta model parts, e.g., in
the form of automated category suggestions on the basis of features defined in the content type model.

Since large amounts of content items require long-term maintenance and adaptations at the model level, in the following
section we focus on aspects of model evolution, including the effects of the separation of content types and categories in
greater technical detail.
3. Evolution of data models

An active data model may require changes due to new or revised requirements on metadata or due to errors in the initial
design that must be corrected. Therefore, the data model cannot be tied statically to an implementation of a system based on
the overall meta model.

While changes primarily affect the data model itself, e.g., a content type or a category, it further may have impacts on
other model parts, especially content items. For instance, a modification on a content type predominantly impacts content
items that instantiate the concerned content type. Furthermore, others that are related to the modified content type may
need an update as well, to ensure model consistency. These impacts should be treated automatically wherever applicable
to reduce the manual effort of a user that executes a change on the data model. Hence, automatic migration of a relatively
high number of affected content items saves time and reduces human errors compared to manual migration. Furthermore,
an information preserving evolution of content items should be provided if possible. Utilizing the hierarchically organized
structures of the data model, e.g., the content type generalization, the loss of information on content items resulting from
4 Note that ‘‘category” is used here with a technical bias, rather than its analytical understanding in a (formal) ontological sense. Classification systems or
terminological systems [38] are comparable to category models; likewise our subCategoryOf relation is similar to the ‘‘broader-than” relation, cf. [25].

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://dx.doi.org/10.1016/j.ins.2009.08.008


M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx 5

ARTICLE IN PRESS
some data model changes can be reduced. For instance, the deletion of a content type would typically result in deleting all
instantiated content items. However, the migration to the super content type saves the concerned content items of course
without specific information provided by the deleted content type.

In the following, we describe what types of change exist on the basis of the meta model. Instance level changes like the
creation and modification of content items are assumed for information systems by default. Accordingly, we focus on
changes in the data model and outline their semantics. Particularly, we present a change classification followed by a detailed
description of the basic change operations.
3.1. Change classification

We basically differentiate between three general types of change that are applied to elements at the meta model level in
order to support data model changes. The three general types of change are additions, modifications, and deletions of system
information. Since the data model level is concerned, changes can be related to the notion of information capacity [17] (intu-
itively, the ‘‘expressiveness”) of data models, where they can have different impacts. Additions increase and deletions reduce
the information capacity. Only modifications are not restricted to a particular effect in this regard, since they may simply
preserve information capacity, but likewise can increase or decrease the latter. Modifications further exhibit a variety of op-
tions for refinement, e.g., renaming.

The set of change operations that may generally be considered arises from applying the general change types to the meta
model elements in Fig. 1, augmented by appropriate refinements of modification operations. Fig. 2 provides an overview of
all resulting changes that we consider relevant for most applications of the system. The upper part of the classification is
organized according to the model structure components that change operations apply to, whereas the leaves correspond
to the basic change operations. The next sections summarize and exemplify these change operations in more detail.
3.2. Changes to content type models

As the taxonomy of changes shows, we distinguish between changes on content types, attributes and relationships in the
content type model. Note that these changes are similar to those proposed in related work on object-oriented databases [5]
since the content type model possesses object-oriented-like structures and elements, e.g., the generalization hierarchy or
relationships. Hence, we can reuse experiences and techniques of schema evolution in object-oriented databases to support
Fig. 2. Classification of selected change operations.

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://dx.doi.org/10.1016/j.ins.2009.08.008


Table 1
Changes on content type model.

Change Parameters Description

addCT ct_name
super_ct
attributes
relationships

A new content type with ct_name will be created and added to
content type model by considering the specified attributes, relationships and the optional super_ct

renameCT ct The name of ct will be changed to new_name
new_name

modSuperCT ct The super content type of ct will be changed to super_ct
super_ct

delCT ct Content type ct will be removed from the content type model

addAtt ct A new attribute att_name including properties will be added to the content type ct
att_name
properties

renameAtt ct The attribute att_name of ct will be changed to att_new_name
att_name
att_new_name

modAttProps ct Properties of attribute att_name of ct will be changed to property settings specified in properties
att_name
properties

delAtt ct The attribute with name att_name will be removed from ct
att_name

addRel ct
forward_name
backward_name
ct_ref

A new relationship with forward relation forward_name and backward relation
backward_name will be created between content type ct and the reference content type ct_ref

renameRel ct The relationship rel_name of ct will be changed to rel_new_name
rel_name
rel_new_name

modRelProps ct Properties of relationship rel_name of ct will be changed to property settings specified in properties
rel_name
properties

delRel ct The relationship rel_name will be removed from ct
rel_name

6 M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx

ARTICLE IN PRESS
changes in the content type model. Particularly, we describe changes on content types followed by attribute and relationship
changes (including partOf) as displayed in Table 1.

Utilizing addCT, a new content type will be added to the content type model. The specified attributes and relationships
consist of further meta information expressed as properties, e.g., mandatory or multiplicity (for unspecified properties a de-
fault property value is used). Note that both addCT and renameCT may have an impact on other content types due to rela-
tionships with the new/renamed content type. modSuperCT for changing the super content type and delCT for removing
an existing content type affect further model parts to an even greater extent. Particularly, affected content items of a deleted
content type can be treated variedly depending on the intension of the user. Accordingly, migration to the super content type
(if one exists) or immediate deletion are possible. Furthermore, sub content types may be assigned a new super content type
or will become base content types. Finally, content types related to the removed content type need an update in their rela-
tionships and consequently an adaptation of their content items. For instance, removing ‘GridHWResource’ from the content
type model in Fig. 1 may result in migration of content items to ‘GridResource’. An immediate deletion of affected content
items is also conceivable, however with the consequence that these content items are no longer accessible within the plat-
form. Furthermore, the content type ‘Organization’ needs an update to remove its relationship to ‘GridHWResource’.

addAtt enables the addition of a new attribute to an existing content type and accordingly to its sub content types. Con-
cerning content items, additions of optional attributes have no immediate impact since values of a newly added attribute are
considered as null until they are explicitly specified by a user. Furthermore, the name and the properties of an attribute, e.g.,
mandatory or multiplicity, can be changed with renameAtt and modAttProps, respectively. Altered properties are captured in
a properties set consisting of (property – new value) entries. Properties not included in properties remain unchanged. Note
that impacts of property modifications depend on the altered property. For instance, an increase of multiplicity from ‘1’
to ‘3’ has no effects on instantiated content items. In contrast a change of the mandatory status from ‘no’ to ‘yes’ results
in an adaptation (default value setting) of content items who currently have no captured attribute values. No longer used
attributes can be removed from a content type by applying delAtt which always results in an instance migration in order
to exclude the concerned attribute and corresponding values from instantiated content items.

A new bidirectional relationship between two content types is created with addRel. Due to the bidirectionality of relation-
ships an addition has effects on both ends, i.e., both involved content types, sub content types and consequently all instan-
tiated content items need to be altered to include the new relationship. Renaming (renameRel) and property modification
(modRelProps) of relationships are similar to those of attributes. Finally, deleting an existing relationship (delRel) always
Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://dx.doi.org/10.1016/j.ins.2009.08.008


M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx 7

ARTICLE IN PRESS
impacts other model parts. For instance, the deletion of the relationship belongsTo/hasHWResource can be specified as del-
Rel(GridHWResource, belongsTo) or delRel(Organization, hasHWResource). The bidirectionality thus leads to changes of both
content types. Hence, content items of ‘GridHWResource’ and ‘Organization’ need to be migrated in order to remove relation-
ship entries for belongsTo and hasHWResource, respectively.

3.3. Changes to category models

Changes in the category model concern categories and their position in the hierarchy. We identified four basic change
operations summarized in Table 2. addCat with parameters name of category and optional super categories is applied to cre-
ate and add a new category to the category model. As an example, a new category ‘StorageResource’ with super category
‘Resource’ is created by addCat(StorageResource, {Resource}). With modSuperCat the structure (hierarchy) of categories
can be altered. For instance, a super category change from ‘Resource’ to ‘HardwareResource’ for ‘StorageResource’ (modSu-
perCat(StorageResource, {HardwareResource})) describes a move within the category hierarchy. Note that such a change has
no impact on associated content items since they are merely assigned to categories. In contrast, the renaming of a category
(renameCat), e.g., ‘StorageResource’ is renamed to ‘DataResource’ (renameCat(StorageResource, DataResource)), has effects on
associated content items. Particularly, assignments of content items need to be migrated to the renamed category otherwise
the assignments will become obsolete.

The deletion of an outdated category is supported by delCat, e.g., the deletion of ‘DataResource’ with delCat(DataRe-
source). This change operation has two consequences that need to be considered. On the one hand, sub categories of the re-
moved category need to be migrated. For instance, the sub categories of ‘DataResource’ will be given new super categories
caused by the deletion of their current super category. Thus, these categories will become sub categories of ‘HardwareRe-
source’ since this is the super category of ‘DataResource’. If no super category exists, these categories will become root cat-
egories with no super category. On the other hand, assignments to the removed category need to be adapted. Basically,
assignments of content items can be migrated to the super category, e.g., ‘HardwareResource’ for ‘DataResource’. In the ab-
sence of a super category the concerning assignments will be lost.

3.4. Comparing content type and category evolution

The previous sections have described data model change operations and their possible impacts on other model parts for
the content type and the category model. This section compares evolution aspects of both models with each other. Partic-
ularly, we outline specifics of evolution in each model and describe benefits of managing changes (evolution) in a decoupled
way.

A content type model usually exhibits a relatively flat structure in terms of the content type generalization hierarchy. By
contrast, content type attributes and relationships support detailed representation of structured information, i.e., they de-
scribe content types in more detail and act as a schema for content items. The development and refinement of a content type
model is normally performed in the following way. Designers typically start with a small number of general content types
and refine them over time, e.g., by adding extra attributes or more specific sub content types. The focus of evolution is there-
fore rather on attribute and relationship changes than on complex modifications of the generalization hierarchy (e.g., content
type restructuring). Changes on content types primarily have impacts on content items due to the instantiation between
content items and content types. These impacts mainly result in adaptation of content items to include (exclude) attributes
or relationships of content types. However, content type changes mostly do not influence the category model and category
assignments of content items (an exception form content item deletions caused by a base content type deletion).

Category models are usually complex, i.e., they are often possibly deep and cross-linked hierarchical structures. The focus
of changes is more on the enhancement of those hierarchies (e.g., by adding or moving categories) for categorization than on
the detailed description of a category itself. Contrary to content types, content items are at most affected indirectly when
category changes occur. Particularly, only the assignments of content items to categories need to be adapted since a content
item does not instantiate a category directly, it is ‘only’ annotated with a number of categories. This fact allows for more
complex changes in the category model (e.g., moves or restructuring of categories) resulting in no, or only a few, simple
Table 2
Changes on category model.

Change Parameters Description

addCat cat_name
super_cat

A new category with cat_name and super categories specified in super_cat
will be created and added to the category model

renameCat cat The category cat will be renamed to new_cat_name
new_cat_name

modSuperCat cat The super categories of cat will be replaced by the entries in super_cat
super_cat

delCat cat The category cat will be removed from the category model

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://dx.doi.org/10.1016/j.ins.2009.08.008


8 M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx

ARTICLE IN PRESS
changes in the instance data (adaptation of category assignments for content items). Analogous to changes in the content
type model, category model changes do not influence the other model part. Altogether, this is a clear improvement over evo-
lution approaches that, e.g., operate on complex graph structures where even more and complicated side effects of changes
need to be considered.

Comparing evolution and its impacts for the two decoupled models a potential use case of the system arises. Ontology
engineers may provide the current version of an ontology under development in terms of the content type model, whereas
users may categorize content items according to their intuitions by means of the category model. The combined information
may then be used for evaluating hypothetical extensions to the content type model (i.e., the ontology under development).
4. Sample application – the D-Grid Ontology

D-Grid started in 2005 as a Germany-wide grid initiative. Its aim is to provide a common grid infrastructure for e-Science
projects in Germany and to prove the viability and advantages of grid usage in different scientific domains. D-Grid entails
many community projects, e.g., for medical and physics applications, and a common integration project (DGI).

Currently, metadata about D-Grid and its structures is highly heterogeneous and distributed across many websites and
project-specific repositories, e.g., information about projects, persons, or available hardware and software resources. Fur-
thermore, there are almost no relations or explicit semantic links between these independently maintained information ob-
jects. The goal of our metadata platform is to integrate and semantically categorize this heterogeneous information in a
common system and to offer it to all D-Grid participants, applications and interested users. New participants in D-Grid
can thus quickly inform themselves about ongoing work in D-Grid projects and the organizations and persons involved. Fur-
thermore, resource providers, i.e., institutes providing hardware or software to the grid, can specify parameters about their
resources which may be useful for scheduling and distribution of grid applications. Our platform semantically categorizes its
content within a so-called D-Grid Ontology (DGO). It simplifies the manual creation and maintenance of metadata using a
collaborative, wiki-like platform. Through the use of the meta model including content types and ontological annotations
high data consistency and quality is pursued.

On the basis of our meta model described in Section 2, we use four basic grid content types in the DGO model, namely
Person, Project, Organization and GridResource (see content type model in Fig. 1). As an example, the content type Person uses
attributes such as first name, last name, email or phone number for the registration of personal information. Furthermore,
relationships to content items of other content types show a person’s semantic neighborhood, e.g., the projects a person is
working in (‘isMemberOf’) or the organization to which a person is affiliated (‘isAffiliatedWith’). Furthermore, DGO exploits
recursive partOf relationships for projects and organizations. In particular, ‘D-Grid’ is the topmost project of DGO and con-
tains a number of sub projects such as ‘MediGRID’, ‘HEP-Grid’ or the ‘Integration Project (DGI)’, which themselves include
further sub projects. Furthermore, DGO uses several category hierarchies for ontological classification of content items
(see category model in Fig. 1). Every content item of DGO is assigned to a minimum of one category. For instance, a commu-
nity project such as ‘MediGRID’ is assigned to the category ‘Community Project’ (in terms of project type) and ‘D-Grid I’
(funding aspect) since it was funded as one of the starting projects of the D-Grid initiative.

The current version of DGO (as of November 2008) categorizes and interrelates about 40 projects, 150 organizations, 300
persons, and 75 grid resources. There are about 950 bidirectional relationships between content items.
5. Usability features

In the following, we describe some of the features of our platform to illustrate its usability. In particular, we firstly illus-
trate how semantic metadata is displayed within the platform. Furthermore, we present navigation and search capabilities as
well as options for creation, classification and editing of content. For hands-on experience the interested reader may directly
use the system (after registration) under http://buell.izbi.uni-leipzig.de/dgo.

5.1. Content visualization

Each content item is shown on its own article page, providing information about its name, basic attributes, relationships,
category classifications, explanations (free text), images and versioning. Relationships to other content items are presented
as hyperlinks. Specific tabs allow for the direct change of content pages, in particular editing, renaming or category
assignment.

Our platform exploits Web 2.0 techniques, such as maps and navigable trees, to display semantic metadata in different
forms. In particular, we use Google Maps5 to geographically locate content items such as organizations or D-Grid hardware
resources on a map. This feature may be helpful for users to find regionally close D-Grid participants to promote a possible
cooperation. For instance, the sample map in Fig. 3 (left) includes all organizations currently participating in D-Grid. When
selecting a location, e.g., Leipzig, all organizations in this place participating in D-Grid are listed and may be further explored.
For each location on the map, we use the partOf structure among content items to aggregate all corresponding items for display.
5 http://maps.google.com.

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://www.buell.izbi.uni-leipzig.de/dgo
http://www.maps.google.com
http://dx.doi.org/10.1016/j.ins.2009.08.008


M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
Furthermore, we employ the partOf relationships to generate trees representing hierarchical structures such as organization or
project structures.

5.2. Search and navigation facilities

The platform provides different search and navigation facilities. A simple text search supports keyword-based search over
all attributes of content items. Furthermore, semantic query capabilities on content types and categories are provided. In
particular, a query generator (Fig. 3 right) for interactive specification of semantic queries is available so that users need
not learn a complex query syntax. The results are presented in tables which can be interactively sorted on different attributes
or relationships, e.g., person name or the affiliated organization.

The platform also provides extensive navigation capabilities for content retrieval with the help of a category browser
(Fig. 4 left). It dynamically generates a navigation tree representing categories and content items in an integrated form,
by associating content items to their most specific categories. For instance, with a few clicks a user can navigate from the
top category ‘Person’ to ‘Researcher’ or ‘Professor’ to see all associated content items. Every node of the tree links to the cor-
responding category page or content item article.
Fig. 4. Category browser and editing of content.

Fig. 3. Organizations of D-Grid on a map and query generator.

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://dx.doi.org/10.1016/j.ins.2009.08.008


10 M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx

ARTICLE IN PRESS
5.3. Creation and editing of content

For every content type the system provides an interactive input form to create and change content items including their
assignments to categories (Fig. 4 right). These forms are dynamically created from the current meta information (attributes,
relationships) of a content type. They consist of different kinds of form fields, in particular mandatory, autocomplete-aware,
single-/multivalued and category assignment fields and free text boxes. The different kinds of fields are marked with differ-
ent background colors and labels to improve user interaction and the input dialog.

As soon as a user clicks on an autocomplete field or types some letters into it, typed value suggestions are offered for
selection, which simplifies input and reduces the number of duplicate entries. For example, an input field capturing a rela-
tionship to the content type ‘Organization’ (e.g., a person’s affiliation) suggests organization items matching the input. Fur-
thermore, if an attribute is restricted to a controlled vocabulary (i.e., an enumeration datatype), we suggest values matching
current entries of such a vocabulary. In multivalued fields a common separator divides multiple entries for a single attribute
or relationship. Category assignment fields employ autocompletion to simplify categorization and to guarantee correct cat-
egory assignments.
6. Implementation

The presented platform builds upon a widely used semantic wiki implementation, the Semantic Media Wiki (SMW) [21].
SMW, in turn, extends the MediaWiki6 implementation, which is also used by Wikipedia. MediaWiki provides a powerful infra-
structure for collaborative management of text-based articles. It is also aware of categories and sub categories, but links between
articles in MediaWiki are untyped (have no semantics) and search capabilities are limited to simple text searches. SMW intro-
duces semantic properties for wiki articles and thus supports a semantic annotation and enhanced querying of wiki contents.

We extended MediaWiki and SMW in several directions. Firstly, we introduce content types to capture semantic meta-
data in the form of structured content. Particularly, the template feature of MediaWiki is utilized to describe content types.
Hence, for each defined content type of the content model a corresponding template exists. For instance, the content type
Person is described by a Person template including specifications such as the email attribute or relationships to other content
types (e.g., the affiliation relationship). Furthermore, templates are used for the visualization of content items within the
platform as well as the automatic generation of graphical edit forms based on content type descriptions.

We introduced bidirectional relationships (on the basis of SMW semantic properties) between content types to automat-
ically maintain referential integrity and to provide better navigation capabilities. The implementation of this feature requires
checks during the edit of a content item to ensure the integrity. Particularly, if new or changed relationship values are in-
serted the referenced content items need to be updated as well. For instance, if Person A leaves Project P, i.e., the project
entry is removed from A, the implementation ensures that A is also removed from the project member list of P (backward
relationship). Furthermore, if a relationship references an unknown content item, we automatically generate this based on
knowledge from the bidirectional relationship and corresponding values.

We support graphical UIs for content creation and change, e.g., autocompletion to avoid duplicates. As mentioned before
the UIs are automatically generated based on content type descriptions captured in templates. Moreover, we utilize Web
2.0 techniques for novel visualization and interaction options, e.g., dynamic generation of maps for content items and inter-
active specification of semantic queries. In order to generate these maps, we utilize location attributes of a content type as well
as partOf relationships between content items. Currently, the location attributes represent the city, e.g., of an organization. The
geographical coordinates (latitude/longitude) of a city needed for the map visualization is obtained from a publicly available
web service.7 Another implemented feature is the display and usage of contexts. This feature utilizes partOf relationship entries to
compute the context of content items. For instance, one can differentiate between a ‘Department of Computer Science’ located at
the ‘University of Leipzig’ or the ‘TU Munich’. Hence, confusions are reduced, e.g., during the creation of content or in query results.

An evolution environment supports changes on a running data model, i.e., content types and categories can be altered to
incorporate new or changed requirements. The implementation is based on the concept of data model evolution discussed in
Section 3. Particularly, users can use the operations presented in Fig. 2 to modify the content type model as well as the cat-
egory model. Possible adaptations on content items are performed automatically, i.e., the system checks what content items
are affected by a particular data model change and migrates them to be consistent with the modified data model. For instance,
the deletion of a content type attribute adapts affected content items by removing the attribute and corresponding values.
7. Related work

7.1. Semantic wikis

Our approach builds upon established wiki technology [22] and its combination with semantic technology, cf. [29,36]. The
initially visible distinction between semantic wikis originating from ‘classical’ wikis, e.g., the Semantic MediaWiki (SMW)
6 http://www.mediawiki.org.
7 http://www.geonames.org.

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://www.mediawiki.org
http://www.geonames.org
http://dx.doi.org/10.1016/j.ins.2009.08.008


M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx 11

ARTICLE IN PRESS
[21], and editors for knowledge bases or ontologies with wiki-like, collaborative features, e.g., IkeWiki [31] or OntoWiki [3],
is currently diminishing [6]. Classical ontology editors such as Protégé8 focus on the initial design of ontologies at the schema
level. They support many advanced ontology language features (e.g., logical class definitions such as unions, intersections and
complements) making their user interfaces rather complex. By contrast, our platform aims at the web-based collection and
maintenance of content items and their categorization.

Another difference to related systems concerns our meta model. The meta models of many semantic wikis are based on
Semantic Web standards, most often RDF [23] and OWL [24] (e.g., WikSAR [4], SweetWiki [6], IkeWiki and OntoWiki). In
these systems the ontology categories describe the structure of the content items. In contrast, our meta model explicitly sup-
ports both a database-oriented and an ontological part so that the content structure is independent of the ontological con-
tent categorization using multiple category hierarchies. These aspects result in a clearly structured system configuration and
facilitate a straightforward access and maintenance of grid metadata. While the different parts of our meta model could be
expressed by standard ontology languages such as OWL, we do not need the full complexity of OWL and wanted to concep-
tually differentiate between a database-oriented and an ontological part. The built-in support for these two parts is not found
in other wiki implementations. An interesting extension of our platform is import/export functionality for standard lan-
guages. For instance, initial category as well as content models can be designed with other tools (e.g., Protégé) and could
be imported into the platform. Similarly, a currently developed data model can be exported, e.g., for usage in other
applications.

Another feature of our platform is the bidirectionality of the relationships. This can be considered as a simple form of rea-
soning which still allows for efficient system behavior (cf. also the extension of RDFS termed RDFS-Plus in [1, chapter 7]).
Many semantic wikis avoid the use of Semantic Web reasoning for efficiency reasons (cf. [20], [6, p. 87]; exceptions are,
e.g., IkeWiki and BOWiki [16]), but offer limited forms, e.g., type inferences. IkeWiki is comparable to our platform in this
respect, since users can follow relations in both directions (without offering forward and backward readings). SMW does
not support inverse relations itself, but there are some workarounds to produce corresponding behavior.9

Finally, we are not aware of semantic wikis with a special semantics for the partOf relationship. In our case, this rela-
tion is primarily used for sophisticated labeling of content items. Thus it can partially avoid the use of – in many cases
manually maintained – context modifiers, e.g., the component in parentheses of ‘Dept. of Computer Science (University of
Leipzig)’.
7.2. Schema evolution

Evolution of data models (schemas) was primarily studied in the area of databases and closely related disciplines. The
online bibliography on schema evolution presented in [28] and available online10 categorizes relevant literature along the
various research fields and models. Particularly, schema evolution is investigated for relational database systems, object-ori-
ented systems, XML and ontologies. A survey on schema evolution in database systems is given in [30]. Effects of relational
schema changes are discussed in [10,17]. In particular, Hull introduced the concept of information capacity [17] to measure
effects of changes on instance data. We reuse the definition of information capacity in our system to categorize possible evo-
lution operations for content types and categories regarding their effects on instance data (content items) as described in
Section 3.1.

Schema evolution for object-oriented databases was investigated in [5,35], in particular they defined possible changes
and proposed techniques for their realization. Evolution in OO databases is similar to the evolution of our content types since
we utilize a content type model with inheritable content types which consist of attributes and relationships for structural
information representation. The evolution of XML was studied from two directions. While a first scenario dealt with the
adaptation of XML schemas (e.g., DTD) if instance documents evolve [19], another scenario investigated evolution on the
schema level [8,15,33]. Particularly, change operations for schema elements were proposed and techniques for migrating in-
stance documents were evaluated. Note that the second scenario is more similar to our evolution approach since we study
evolution on the data model level (content types and categories) and migrate instances in case of inconsistency. In other
words, we do not investigate data model adaptation if instance data (content items) evolve.

Recently a lot of work addressed the evolution and versioning of ontologies (see [11] for a survey) especially in the
Semantic Web and for specific ontology representations such as OWL [24] or Frame Logic [18]. Noy and Klein [26] defined
change operations to describe the evolution between ontology versions. A formalization of the ontology evolution process
was described in [32]. The authors proposed a 6-phase evolution process which can handle critical changes on ontologies
unambiguously. The evolution of ontologies is similar to the evolution of our category model. However, our work differs from
previous work on ontology evolution since we investigate evolution of both categories (ontological part) and content types
(structural part) independently. This distinction allows for a lightweight and decoupled evolution of our models compared to
a uniform approach operating on, e.g., a complex graph structure, where even more and complicated side effects of a change
need to be considered.
8 http://protege.stanford.edu.
9 http://semantic-mediawiki.org/wiki/Help:Inferencing.

10 http://se-pubs.dbs.uni-leipzig.de/.

Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://www.protege.stanford.edu
http://www.semantic-mediawiki.org/wiki/Help:Inferencing
http://www.se-pubs.dbs.uni-leipzig.de/
http://dx.doi.org/10.1016/j.ins.2009.08.008


12 M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx

ARTICLE IN PRESS
7.3. Grid ontologies

The development and application of grid ontologies was already studied in the area of the Semantic Grid [9]. The S-OGSA
architecture [7] of the OntoGrid project is a reference architecture for the Semantic Grid extending OGSA [12] to support
explicit handling of semantics. Knowledge represented in ontologies (e.g., a VO ontology to describe virtual organizations)
can be accessed by ontology services provided within the grid.

Other grid ontologies partly focussing on specific grid sub domains were developed in [27,37,39]. Particularly, the OWL-
based Core Grid Ontology proposed in [39] differentiates between core classes such as GridUser, GridMiddleware, GridAp-
plication or GridResource to represent knowledge about grid infrastructures. Furthermore, the authors of [27] investigated a
knowledge architecture including reference ontologies for grid computing. The approach provides the foundation for seman-
tic description of grid resources/services to enable interoperability in a grid. The myGrid ontology presented in [37] describes
the bioinformatics research domain by a service and a domain ontology to support service discovery. While the domain
ontology acts as a vocabulary for describing core bioinformatics data types, the service ontology describes physical and oper-
ational features of available services. In contrast to our work these ontologies do not differentiate between a data-oriented
and an ontological part. Our D-Grid ontology aims at uniformly and semantically describing the D-Grid initiative, especially
persons, projects and organizations involved in D-Grid. Furthermore, none of the approaches proposed an interactive plat-
form to maintain and manage semantic grid metadata collaboratively and online.
8. Summary and future work

We presented a meta model and a platform for the collaborative management of semantic metadata in grids. The plat-
form provides grid participants of large-scale grid initiatives such as D-Grid with a collaborative and web-based way of cre-
ating, editing and using grid metadata, e.g., on grid resources, projects, and participating organizations and persons.
Furthermore, change management for a running data model including the automatic migration of affected instance data
is provided. Particularly, the independence of the content type and the category model allows for a lightweight and simpli-
fied evolution of both in comparison to evolution on highly complex and cross-linked data models. We applied the platform
within the German D-Grid initiative in order to build a semantic metadata repository for D-Grid and to improve the collab-
oration between participating projects. The platform is currently running under http://buell.izbi.uni-leipzig.de/dgo and is ac-
tively used by D-Grid members.

We see several opportunities for future work. First, the platform can be extended based on new requirements from the D-
Grid communities. Second, the utilization of multiple category models for different virtual organizations of a grid can be
investigated. So content items may be categorized along individual category models that represent the perception of a spe-
cific domain (e.g., physics or medicine). Another point for future work is the automatic categorization of content items. Par-
ticularly, attribute values of content items or relationship entries may contain information that should be used for
categorization suggestions in order to reduce the manual effort for users. For instance, if a content item is located in Leipzig,
a possible category assignment suggestion would be Saxony. Furthermore, if a super organization is assigned to a particular
geographic category all its sub organizations will likely possess the same annotation as well.
Acknowledgements

This work is supported by the German Federal Ministry of Education and Science research project MediGRID – Module
Ontology Tools (01AK803E) as part of the D-Grid initiative. We are grateful to the anonymous reviewers for their suggestions
that helped to improve the paper.
References

[1] D. Allemang, J. Hendler, Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, Morgan Kaufman Publishers, Burlington,
Massachusetts, 2008.

[2] M. Ashburner et al, Gene ontology: tool for the unification of biology, Nature Genetics 25 (1) (2000) 25–29.
[3] S. Auer, S. Dietzold, T. Riechert, Ontowiki – a tool for social, semantic collaboration, in: I.F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika,

M. Uschold, L. Aroyo (Eds.), The Semantic Web – ISWC 2006: Proceedings of the Fifth International Semantic Web Conference, Athens, Georgia, USA,
November 5–9, Springer, Berlin, 2006, pp. 736–749.

[4] D. Aumüller, S. Auer, Towards a semantic wiki experience – desktop integration and interactivity in WikSAR, in: S. Decker, J. Park, D. Quan, L.
Sauermann (Eds.), Proceedings of the ISWC 2005 Workshop on The Semantic Desktop: Next Generation Information Management and Collaboration
Infrastructure, Galway, Ireland, November 6, CEUR-WS.org, Aachen, Germany, 2005, pp. 212–217.

[5] J. Banerjee, W. Kim, H.-J. Kim, H.F. Korth, Semantics and implementation of schema evolution in object-oriented databases, in: U. Dayal, I.L. Traiger
(Eds.), SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD International Conference on Management of Data, ACM, New York, 1987, pp. 311–322.

[6] M. Buffa, F.L. Gandon, G. Ereteo, P. Sander, C. Faron, SweetWiki: a semantic wiki, Journal of Web Semantics 6 (1) (2008) 84–97.
[7] O. Corcho, P. Alper, I. Kotsiopoulos, P. Missier, S. Bechhofer, C. Goble, An overview of S-OGSA: a reference semantic grid architecture, Journal of Web

Semantics 4 (2) (2006) 102–115.
[8] T. Dalamagas, A. Meliou, T. Sellis, Modeling and manipulating the structure of hierarchical schemas for the web, Information Sciences 178 (4) (2008)

985–1010.
[9] D. De Roure, N. Jennings, N. Shadbolt, The semantic grid: past, present, and future, Proceedings of the IEEE 93 (3) (2005) 669–681.

[10] C. Ewald, M. Orlowska, Characterization of the effects of schema change, Information Sciences 94 (1–4) (1996) 23–39.
Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://www.buell.izbi.uni-leipzig.de/dgo
http://dx.doi.org/10.1016/j.ins.2009.08.008


M. Hartung et al. / Information Sciences xxx (2009) xxx–xxx 13

ARTICLE IN PRESS
[11] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, G. Antoniou, Ontology change: classification and survey, Knowledge Engineering Review 23
(2) (2008) 117–152.

[12] I. Foster, C. Kesselman, J. Nick, S. Tuecke, Grid services for distributed system integration, Computer 35 (6) (2002) 37–46.
[13] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable virtual organizations, International Journal of High Performance

Computing Applications 15 (3) (2001) 200–222.
[14] S.A. Golder, B.A. Huberman, Usage patterns of collaborative tagging systems, Journal of Information Science 32 (2) (2006) 198–208.
[15] G. Guerrini, M. Mesiti, D. Rossi, Impact of XML schema evolution on valid documents, in: A. Bonifati, D. Lee (Eds.), WIDM ’05: Proceedings of the

Seventh Annual ACM International Workshop on Web Information and Data Management, ACM, 2005, pp. 39–44.
[16] R. Hoehndorf, J. Bacher, M. Backhaus, S.E.J. Gregorio, F. Loebe, K. Prüfer, A. Uciteli, J. Visagie, H. Herre, J. Kelso, BOWiki: an ontology-based wiki for

annotation of data and integration of knowledge in biology, BMC Bioinformatics 10 (Suppl. 5) (2009) S5.
[17] R. Hull, Relative information capacity of simple relational database schemata, SIAM Journal on Computing 15 (3) (1986) 856–886.
[18] M. Kifer, G. Lausen, J. Wu, Logic foundation of object-oriented and frame-based languages, Journal of the ACM 42 (4) (1995) 741–843.
[19] M. Klettke, H. Meyer, B. Hansel, Evolution: the other side of the XML update coin, in: ICDEW ’05: Proceedings of the 21st International Conference on

Data Engineering Workshops, IEEE Computer Society, 2005, p. 1279.
[20] M. Krötzsch, S. Schaffert, D. Vrandečić, Reasoning in semantic wikis, in: G. Antoniou, U. Aßmann, C. Baroglio, S. Decker, N. Henze, P.-L. Patranjan, R.

Tolksdorf (Eds.), Reasoning Web: Tutorial Lectures of the Third International Summer School 2007, Dresden, Germany, September 3–7, Springer, Berlin,
2007, pp. 310–329.

[21] M. Krötzsch, D. Vrandečić, M. Völkel, H. Haller, R. Studer, Semantic wikipedia, Journal of Web Semantics 5 (4) (2007) 251–261.
[22] B. Leuf, W. Cunningham, The Wiki Way: Collaboration and Sharing on the Internet, Addison-Wesley Professional, Reading, Massachusetts, 2001.
[23] F. Manola, E. Miller, RDF Primer, W3C Recommendation, World Wide Web Consortium (W3C), Cambridge, Massachusetts, 2004.
[24] D.L. McGuinness, F. van Harmelen, OWL Web Ontology Language Overview, W3C Recommendation, World Wide Web Consortium (W3C), Cambridge,

Massachusetts, 2004.
[25] A. Miles, S. Bechhofer, SKOS Simple Knowledge Organization System Reference, W3C Working Draft, World Wide Web Consortium (W3C), Cambridge,

Massachusetts, 2008.
[26] N.F. Noy, M. Klein, Ontology evolution: not the same as schema evolution, Knowledge Information Systems 6 (4) (2004) 428–440.
[27] M. Parkin, S. van den Burghe, O. Corcho, D. Snelling, J. Brooke, The knowledge of the grid: a grid ontology, in: M. Bubak, M. Turala, K. Wiatr (Eds.),

Proceedings of the Sixth Cracow Grid Workshop, Cracow, Poland, ACC Cyfronet AGH, 2006, pp. 111–118.
[28] E. Rahm, P.A. Bernstein, An online bibliography on schema evolution, ACM SIGMOD Record 35 (4) (2006) 30–31.
[29] D. Riehle, J. Noble (Eds.), Proceedings of the 2006 International Symposium on Wikis, ACM, New York, 2006.
[30] J.F. Roddick, Schema evolution in database systems: an annotated bibliography, ACM SIGMOD Record 21 (4) (1992) 35–40.
[31] S. Schaffert, IkeWiki: a semantic wiki for collaborative knowledge management, in: Proceedings of the 15th IEEE International Workshops on Enabling

Technologies: Infrastructures for Collaborative Enterprises, WETICE 2006, Manchester, UK, June 26–28, IEEE Computer Society, Los Alamitos,
California, 2006, pp. 388–396.

[32] L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic, User-driven ontology evolution management, in: A. Gómez-Pérez, V.R. Benjamins (Eds.), EKAW ’02:
Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management, Ontologies and the Semantic Web,
Springer, London, UK, 2002, pp. 285–300.

[33] H. Su, D. Kramer, L. Chen, K. Claypool, E.A. Rundensteiner, XEM: managing the evolution of XML documents, in: K. Aberer, L. Liu (Eds.), Proceedings of
the Eleventh International Workshop on Research Issues in Data Engineering, RIDE 2001, IEEE Computer Society, 2001, pp. 103–110.

[34] The Gene Ontology Consortium, The Gene Ontology project in 2008, Nucleic Acids Research 36 (2008) D440–D444.
[35] M. Tresch, M.H. Scholl, Schema transformation processors for federated objectbases, in: S.C. Moon, H. Ikeda (Eds.), Proceedings of the Third

International Symposium on Database Systems for Advanced Applications, DASFAA 1993, Daejon, Korea, World Scientific Press, 1993, pp. 37–46.
[36] M. Völkel, S. Schaffert (Eds.), SemWiki2006 – From Wiki to Semantics: Proceedings of the First Workshop on Semantic Wikis, Budva, Montenegro, June

12, CEUR Workshop Proceedings, vol. 206, CEUR-WS.org, Aachen, Germany, 2006.
[37] K. Wolstencroft, P. Alper, D. Hull, C. Wroe, P. Lord, R. Stevens, C. Goble, The myGrid ontology: bioinformatics service discovery, International Journal of

Bioinformatics Research and Applications 3 (3) (2007) 303–325.
[38] S.E. Wright, G. Budin (Eds.), Handbook of Terminology Management, John Benjamins, Amsterdam, 1997.
[39] W. Xing, M. Dikaiakos, R. Sakellariou, A core grid ontology for the semantic grid, in: Sixth IEEE International Symposium on Cluster Computing and the

Grid (CCGrid 2006), IEEE Computer Society, 2006, pp. 178–184.
Please cite this article in press as: M. Hartung et al., Management of evolving semantic grid metadata within a collaborative platform, In-
form. Sci. (2009), doi:10.1016/j.ins.2009.08.008

http://dx.doi.org/10.1016/j.ins.2009.08.008

	Management of evolving semantic grid metadata within a collaborative platform
	Introduction
	Models of the platform
	Content types
	Categories
	Distinguishing content types and categories: motivations and effects

	Evolution of data models
	Change classification
	Changes to content type models
	Changes to category models
	Comparing content type and category evolution

	Sample application – the D-Grid Ontology
	Usability features
	Content visualization
	Search and navigation facilities
	Creation and editing of content

	Implementation
	Related work
	Semantic wikis
	Schema evolution
	Grid ontologies

	Summary and future work
	Acknowledgements
	References


