
Performance Evaluation of
Parallel Transaction Processing in
Shared Nothing Database Systems

Robert Marek

Erhard Rahm

University of Kaiserslautem
Dept. of Computer Science

6750 Kaiserslautem, GERMANY

Abstract. Complex and data-intensive database queries mandate parallel processing strategies
to achieve sufficiently short response times. In praxis, parallel database processing is mostly
based on so-called "shared nothing" architectures entailing a physical partitioning and alloca­
tion of the database among multiple processing nodes. We examine the performance of such
architectures by using a detailed simulation system. We analyse response time performance of
transactions and individual database queries in single-user as well as in multi-user mode. Fur­
thermore, we study the throughput behavior for on-line transactions. Three workload types
covering a wide range of commercial applications are used for performance evaluation: the de­
bit-credit benchmark load, synthetically generated relational queries as well as real-life work­
loads represented by database traces.

1 Introduction

Increasing requirements on performance, availability and modular system growth demand
distributed architectures for transaction and database processing. With respect to on-line
transaction processing (OL TP), high transaction rates (subject to a response time constraint)
for short transactions as debit-credit [An85, TPC89] is the primary performance objective.
For complex database queries, providing short response times acceptable for on-line execu­
tion is the main performance challenge, in particular if such queries are executed on the same
database than concurrent OL TP transactions. Since complex queries typically access large
amounts of data or/and perform extensive computations, in general the response time goal can
only be achieved by employing parallel query processing [Pi90]. Performance should scale
with the number of nodes: ideally adding processing nodes linearly improves throughput for
OL TP or response times for complex queries. Furthermore, viable solutions have to provide
good cost-effectiveness which can be achieved by using a larger number of powerful micro­
processors (instead of mainframes) for database processing. Typically, the price per MIPS
(Million Instructions Per Second) is substantially lower for microprocessors than for main­
frames.

To meet these requirements, research and system developments have concentrated on so­
called shared nothing architectures [St86] for distributed and parallel database processing.
Shared nothing systems consist of multiple functionally homogenous processing nodes or
processing elements (PE). Each PE comprises one or more CPUs and a local main memory,
and runs local copies of application and system software like operating system and database
management system (DBMS). Cooperation between PE takes place by means of message
passing. Typically, the PE are locally distributed so that a high-speed network can be used for
communication. The characteristic feature of shared nothing systems is that the database is
partitioned and distributed among all nodes so that every PE "owns" one partition. If a trans­
action needs to access data owned by another node, a sub-transaction is started at the respec-

296

tive owner PE to access the remote data. In this case, a distributed two-phase commit protocol
[ML086, OV91] is also to be executed to guarantee the aU-or-nothing property [HR83] of the
transaction. Existing shared nothing systems supporting parallel transaction processing in­
clude the products Tandem NonStop SQL [Ta89, EGKS90] and Teradata's DBC/1012
[Ne86] as well as several prototypes like Bubba [Bo90], Gamma [De90], EDS [WT91] and
Prisma [Ke88]. With the exception of Tandem, these systems represent database machines
(back-end systems) dedicated to database processing. The database operations or DML (Data
Manipulation Language) statements submitted to the back-end system may originate directly
from the end-user (ad-hoc queries) or from application programs running on workstations or
mainframes. Some database machines (e.g. EDS) support the management of application pro­
grams (consisting of multiple DML statements) in the back-end system in the form of "stored
procedures" that may be started by a single request.
With respect to parallel transaction processing, we can roughly distinguish between inter- and
intra-transaction parallelism.lnter-transaction parallelism refers to the concurrent execution
of multiple independent transactions on the same database. This kind of parallelism is already
supported in centralized DBMS (multi-user mode), e.g. in order to overlap I/0 delays to
achieve acceptable system throughput. To improve response time, intra-transaction parallel­
ism is needed either in the form of inter-DML or intra-DML parallelism. lnter-DML paral­
lelism refers to the concurrent execution of different DML statements of the same transaction.
The degree of parallelism obtainable by inter-DML parallelism, however, is limited by the
number of database operations of the transaction as well as by precedence constraints be­
tween these operations. Currently, commercial DBMS do not support this kind of parallelism
because the programmer would have to specify the DML dependencies using adequate lan­
guage features.lntra-DML parallelism aims at parallel processing of a single DML statement
based on a parallel execution plan generated by the DBMS query optimizer.
In shared nothing systems, parallel query processing is largely influenced by the chosen da­
tabase allocation. To support response time improvements, the database should be allocated
such that sub-queries on disjoint database portions can be processed in parallel on different
PE (e.g. using a horizontal partitioning of relations). On the other hand, parallel query pro­
cessing entails cooperation and communication overhead for initialization of sub-queries (or
sub-transactions), for exchanging intermediate results and for two-phase-commit. While this
overhead increases with the number of nodes, the response time improvements obtainable by
increasing the degree of intra-transaction parallelism generally decrease. As a result, parallel
query processing is useful only for a limited number of PE in general [Bo90]. Another prob­
lem is to find a database and workload allocation supporting both high transaction rates for
OL TP transactions and a high potential for parallelizing complex queries. OLTP transactions
should be processed locally as far as possible to limit the communication overhead reducing
the attainable transaction rates. On the other hand, parallelizing complex queries introduces
communication overhead in order to support short response times. Frequently, supporting
both locality of reference (by clustering related data and transactions) and intra-transaction
parallelism (by de-clustering data) are contradicting subgoals that may not be achievable at
the same time.
We have developed a comprehensive simulation system to study basic performance trade-offs
of shared nothing architectures. A distinctive feature of our approach is that we support three
different workload types for performance evaluation: the debit-credit workload constituting
the standard load in OLTP benchmarks [An85, TPC89], synthetically generated relational
queries as well as real-life workloads represented by database traces. These workloads are
used to investigate response time and throughput performance for inter- and intra-transaction
parallelism. Former performance studies [DGS88, SD89] were restricted to a single workload
type (e.g. relational queries) or concentrated on comparing the performance of alternative al­
gorithms for parallel query processing (e.g. join strategies). Furthermore, most studies only

297

considered intra-DML parallelism in single-user mode thereby ignoring inter-transaction par­
allelism. Since in reality multi-user mode is inevitable to support acceptable throughput and
cost-effectiveness, inter-transaction parallelism should also be taken into account in perfor­
mance evaluations. Other performance evaluations investigated concrete systems [EGKS90]
or concentrated on specific aspects like the impact of concurrency control [CL89, JTK89].
We are not aware of any other study using real-life traces in the evaluation of parallel query
processing strategies.
The next section provides a survey of our simulation system. In section 3 we describe the
workloads as well as the results of the conducted simulation experiments. Finally, we sum­
marize the major findings of our investigation.

2 Simulation model

Our simulation system models the hardware and transaction processing logic of a generic
shared nothing DBMS architecture. The system has been implemented using the discrete
event simulation language DeNet [Li87, Li89] and encompasses more than 20.000 lines of
source code. Our system consists of two main components: workload generation and process­
ing subsystem. The first component generates the workload and assigns it to the PE of the pro­
cessing subsystem where the actual transaction processing takes place. In this section, we
summarize the implementation of both components; a more detailed description can be found
in [Ma91]. Several architectural features and processing schemes have been chosen according
to the ESPRIT effort EDS [WT91].

2.1 Workload generation and allocation

The database and workload model is of great importance to any database performance eval­
uation. In order to cover a wide range of applications we support three different workload
types: debit-credit transactions, relational queries and real workloads derived from database
traces. In all cases, we use the same database model which is based on four object granulari­
ties: database, partitions, pages and objects (e.g. records). The database is a collection of par­
titions that may be used to represent a file, a record type (relation) or an index structure. A
partition consists of a number of database pages which in tum consist of a specific number of
objects (records). The number of objects per page is determined by a blocking factor which
can be specified on a per-partition basis. Differentiating between objects and pages is impor­
tant in order to study the effect of clustering which aims at reducing the number of page ac­
cesses (disk 1/0s) by storing related objects into the same page. Furthermore, concurrency
control may now be performed on the page or object level. For relational queries, we addi­
tionally support specific index structures (clustered and non-clustered B* -trees).
We employ a horizontal data distribution of partitions (relations) at the object level controlled
by a relative distribution table. This table defines for every partition Pi and processing element
PE; which fragment of Pi is allocated to PE;.
To keep the processing subsystem independent from the various workload generators we de­
fined a uniform interface for representing transactions and queries that supports all workload
types and parallelization forms. In this model, a transaction consists of a BOT step (begin of
transaction), several DML statements and an EOT step (end of transaction). Each DML state­
ment in tum consists of multiple object references, indicating the object and page identifica­
tions and the access mode (read or write).To achieve the mentioned independency between
workload generation and processing subsystem, we determined the distribution and parallel­
ization of DML statements already at load generation time, supporting both inter- and intra­
DML parallelism. Special FORK-WAIT operations are used to specify distributed and paral­
lel execution sequences within a transaction or a DML statement. The transaction and query
representations at the interface to the processing subsystem roughly correspond to the execu-

298

tion plans in real systems that are generated during the compilation (optimization) of transac­
tion programs and queries.
The parallelization forms and parameter settings used for the different workloads will be de­
scribed in section 3.
The simulation system is an open queuing model and supports the definition of an individual
arrival rate for each transaction type. Several strategies can be chosen for workload alloca­
tion, e.g. random routing or the use of a routing table. In the latter case, for every transaction
type Ti and processing element PEi it can be specified which percentage of type Ti will be as­
signed to PEi.

2.2 Workload processing

The processing component models the execution of a workload on a shared nothing system
with an arbitrary number of PE connected by a communication network. Each PE has access
to private database and log files allocated on external storage devices (disks). Internally, each
PE is represented by a transaction manager, a buffer manager, a concurrency control compo­
nent, a communication manager and a CPU server. Figure 1 shows the main components of
the processing subsystem.
The transaction manager controls the (distributed) execution of transactions. The maximal
number of concurrent transactions per PE is controlled by a multiprogramming level. Newly
arriving transactions must wait in an input queue until they can be served when this maximal
degree of inter-transaction parallelism is already reached. The transaction processing starts

workload generation and allocation

e oc
detection and
resolution

transaction manager

Figure 1: Gross structure of the simulation system.

with the BOT processing entailing the transaction initialization overhead. The processing of
DML operations and object references is performed according to the execution structure de­
termined by the workload generator indicating when remote requests and parallel sub-trans­
actions have to be started. The EOT step triggers two-phase commit processing involving all

299

PE that have participated during execution of the respective transaction. We support the op­
timization proposed in [ML086] where read-only sub-transactions only participate in the first
commit phase.
CPU requests are served by a single CPU per PE. The average number of instructions per re­
quest can be defined separately for every request type (e.g. transaction initialization, DML
and object reference processing, communication overhead, I/0 overhead etc.).
For concurrency control, we employ distributed strict two-phase locking (long read and write
locks). The local concurrency control manager in each PE controls all locks on the local par­
tition. Locks may be requested either at the page or object level. A central deadlock detection
scheme is used to detect global deadlocks and initiate transaction aborts to break cycles.
Database partitions can be kept memory-resident (to simulate main memory databases) or
they can be allocated to a number of disks. Disks and disk controllers have explicitly been
modelled as servers to capture 1/0 bottlenecks. Disks are accessed by the buffer manager
component of the associated PE. The database buffer in main memory is managed according
to a global LRU (Least Recently Used) replacement strategy. For update propagation to disk,
either a FORCE or NOFORCE strategy [HR83] can be selected. FORCE requires to write out
all pages modified by a transaction at EOT, while NOFORCE only incurs logging 1/0. Log­
ging is modelled by writing a single page per update transaction or sub-transaction to the local
log file of the respective PE.
The communication network provides transmission of message packets of fixed size. Mes­
sages exceeding the packet size (e.g. large sets of result tuples) are disassembled into there­
quired number of packets.

3 Simulation results

Using the described simulation system, we conducted a large number of simulation experi­
ments with different workloads. Our performance evaluation concentrates on the influence of
parallelism and the number ofPE (scalability) on throughput and response time. With respect
to scalability, the following performance metrics are essential for parallel systems [EGKS90,
Bo90]:

- Throughput scaleup measures the throughput improvement as the number of PE and
the database size are increased. For N PE, scaleup is defined as the quotient of the
throughput for N PE and the throughput for 1 PE. This metric is especially important
for OLTP workloads (e.g. debit-credit).

- Response time speedup, on the other hand, measures the improvement of complex
query response times as more PE are added to execute the query. For N PE, the speedup
is obtained by dividing the response time for a single PE by the response time result
for parallel execution on N PE with the same database size.

Table 1 summarizes the major parameter settings used for all workloads. In general, we varied
the number of nodes between 1 and 64; for the trace-driven experiments only up to 8 PE
proved useful. The parameters for the I/0 (disk) subsystem were chosen so that no bottle­
necks occurred (sufficiently high number of disks and controllers). The duration of an I/0 op­
eration is composed of the controller service time, disk access time and transmission time.
The parameter settings for the communication network have been chosen according to the
EDS prototype [WT91].
In the following three subsections 3.1 to 3.3, we discuss the simulation results for our three
workload types. Workload-specific parameter settings will also be described there.

300

parameters settings

numberofPE 1,2,4,8, 16,32,64

CPU: number of processors per PE 1
processor capacity 30MIPS

avg. #instructions for BOT 25000
forEOT 25000
per object reference 5000 (Debit Credit: 25000)
for message send/receive 5000
per l/0 3000

buffer manager: update strategy NOFORCE

disk devices: avg. controller service time 1 ms (per page)
transmission time per page 0.4 ms
avg. disk access time 15 ms (5 ms for log disks)

comm. network: packet size 128 bytes data
avg. packet transmission time 8 microsec

Table 1: General parameter settings.

3.1 Results for Debit-Credit workload

The debit-credit workload is completely homogeneous and consists of a single transaction
type from a banking application [An85, TPC89]. Every transaction updates one ACCOUNT,
BRANCH and TELLER record. Additionally, a record is inserted into a HISTORY file.
There is a one-to-many relationship between BRANCH and TELLER and BRANCH and
ACCOUNT specifying all accounts and tellers associated with a given branch. According to
[An85, TPC89], 15% of the transactions access an ACCOUNT record of a different branch
than the one where the transaction is processed.

parameters settings

number of objects per partition perPE: 100 BRANCH, 1000 TELLER and
10.000.000 ACCOUNT objects

blocking factor 1 (BRANCH), 10 {TELLER),
(number of objects per page) 20 (ACCOUNT and HISTORY)

concurrency control object level

storage allocation BRANCH, TELLER, HISTORY:
main memory resident
ACCOUNT: disk or main memory resident

main memory buffer size 10 page frames (for ACCOUNT)

transaction routing via BRANCH, RANDOM

Table 2: Parameter settings for debit-credit workload.

301

Table 2 shows the major parameter settings for the debit-credit workload. The database size
is chosen according to the throughput goal (number ofPE) as required by the benchmark def­
inition. The size of the HISTORY partition is immaterial for our purposes as every transaction
adds a new record at the end of this sequential file. Each relation is equally (horizontally) dis­
tributed among all PE. In particular, each PE holds all TELLER, ACCOUNT and HISTORY
records belonging to the PE's BRANCH records. Hence, when a transaction is assigned to the
PE owning the corresponding BRANCH record, accesses to BRANCH, TELLER and HIS­
TORY are local and inter-PE communication may only be required for up to 15% of the AC­
COUNT accesses. Besides such an "intelligent" (BRANCH-based) transaction routing, we
also investigated a random routing of transactions in order to study the influence of sub-opti­
mal workload allocation strategies. Random routing is expected to cause much more inter-PE
communication since both the BRANCH and the ACCOUNT record may be allocated on a
remote PE. Additionally, more transactions are subject to a distributed two-phase commit. In
our experiments the smaller relations (BRANCH, TELLER and HISTORY) were kept resi­
dent in main memory whereas ACCOUNT was allocated either on disks or in main memory.
With the parameter settings from Table 1, the average path-length per transaction is 150.000
instructions (BOT, four object references, EOT) not including the overhead for communica­
tion and I/0.
For debit-credit, the obtainable throughput (using inter-transaction parallelism) is of primary
interest. Fig. 2 shows the achieved transaction rates (in transactions per second, TPS) as well
as the corresponding throughput scaleup for system sizes varying between I and 64 PE. These
results refer to a CPU utilization of 90% (based on simulation results). The experiments are
designated as follows:

- experiment b*: BRANCH-based transaction routing
r*: random transaction routing
*d: ACCOUNT allocated on disk
*m: all relations main memory resident.

;T-········-;············r-·····--:-·f

i
~~~ ~ 

1 

6.0~ 

6.0~ 

i 
; 

,• i 
I~ i 

/·.' !, 

'·· ,,. . 
r/ i 

' l 
• r ! 

400t .. / J'' 1 
/ {... ' 

"i j 

TPSIPE 

tT--.... - .... - .. r---.... - .. -·r--· .. ·:··-; 
16000r 
'~~-----, 

16000 !--...-~-·------------- -;~ 
i I 
: ~ 

1400~ !\ 

120.00 

100.0~ 

60.00' 

sooJ . 

4ooor 

200~ 
' 

'•I 

·.· .... ~ ..... ~- .... -.............. --
"·~-

·---~-- ........ ~---· ..... 

throughput scaleup 

sooo'-

40.00~ 

30.00·-

20.0~ 

100d-

'/ ,. 

I 

./ 

I 

' / 

/ 

/ 

I 

I 
/ 

I 
I 

r 

/ 
I 

r 

I 

/' 

~experi"nieirt ;Iii>·· 
l'e~eriiiieiii ra>·---

li 

' ~-~~cJ._ ______ .J. __________ , _______ _L_J 00~ • 
:~ .. - .... -' ·-·-.. --.. - .... - ... ...!.,_.1 DDti'J _____ i __ , ______ L_i 

number PE 
0.00 ZO.OO 4000 iO.OO 000 1000 4000 6000 0 00 20.00 40.00 60.00 

Figure 2: Debit-credit: throughput and scaleup. 

The curves show that in all cases throughput could almost linearly be increased with the num­
ber ofPE. However, with random routing the throughput increase takes place at a lower level 



302 

due to the considerably higher communication overhead than for the BRANCH-based work­
load allocation. So only a throughput scaleup of 44 was reached for random routing compared 
to 60 for a BRANCH-based routing in the case of 64 PE. The almost linear throughput 
scaleup even for random routing was favored by the short size of this transaction. So the worst 
case in terms of messages per transactions was almost reached for 8 PE already so that addi­
tional PE did not cause any further deterioration. Random routing causes a maximum of 6.9 
messages per transaction vs. 0.9 messages using BRANCH-based routing. However, regard­
ing throughput per PE, the impact of communication on performance can be perceived more 
clearly. In any case throughput per PE actually decreases with growing system size, showing 
best performance using BRANCH-based routing. The storage allocation for ACCOUNT was 
less significant for throughput since the l/0 overhead was small compared to the total path­
length. In fact, throughput scaleup is virtually the same for the disk- and the memory-based 
allocation. 
A similarly ideal throughput behavior for debit-credit transactions has already been achieved 
in real shared nothing systems. For instance, Tandem demonstrated such performance char­
acteristics for NonStop SQL on 2 to 32 processors (using a disk-based storage allocation and 
a BRANCH-based workload allocation) [Ta88]. Since performance predictions of the 256 PE 
EDS prototype state 12000 TPS running at 30% utilization [WT91], our simulation results 
(approx. 10000 TPS on a 64 PE machine running at 90% utilization) proved to be realistic. 
Due to the increased number of remote requests, transaction response time for random routing 
was higher than for the BRANCH-based workload allocation. For debit-credit, the use of in­
tra-transaction parallelism permitted only modest response time improvements. Intra-DML 
parallelism cannot be utilized since each DML statement accesses only a single record. Inter­
DML parallelism, however, is applicable as all four DML statements can be simultaneously 
executed in principle. However, since we assumed a single CPU per PE and most DML state­
ments of a transaction are executed on the same PE, this kind of parallelism did not yield large 
response time improvements, too. On the positive side, the use of inter-DML parallelism does 
not cause any extra messages for debit-credit so that the attainable transaction rates were the 
same as without employing intra-transaction parallelism. 

3.2 Experiments using relational queries 

With respect to the synthetically generated relational workloads, we restrict our consider­
ations to the simple case of read operations on a single relation (no joins). Every transaction 
corresponds to a single SQL SELECT operation and is executed in parallel on all PE holding 
tuples of the corresponding relation (intra-DML parallelism). The transaction's local object 
references are basically determined by the relation's cardinality, the use of index structures, 
the selectivity of the (imaginary) selection predicate as well as the data allocation toPE. In 
our model, every distributed SELECT is followed by a merge statement covering the over­
head for merging the qualifying tuples. 
Table 3 shows the main parameter settings for this workload. We examine the response time 
impact of different access methods (relation scan vs. index scan) and predicate selectivities. 
In addition, multi-user experiments with different arrival rates were conducted. Like many 
existing DBS, our simulation system supports clustered and non-clustered B*-trees for index­
ing. In the case of a clustered index, the tuples of the relations themselves are stored in sort 
order permitting a substantial reduction of disk 1/0s during query evaluation (in general, the 
amount of l/0 savings corresponds to the blocking factor). The height of the B*-trees has 
been determined according to the relation size and the fan-out of index pages. In all experi­
ments, the relation is uniformly distributed among all PE maximizing the potential for parallel 
query processing. To determine the communication overhead for result exchange, we specify 
the average size of qualifying tuples. 



303 

parameters settings 

relation size 1.000.000 objects (tuples) 
blocking factor 10 
index type no index, clustered index, non-clustered index 
storage allocation disk 
allocation to PE uniform 

SELECT selectivity 1%,10% 
size of result tuples 100 bytes 
access method sequential (relation scan) or index scan 
workload allocation random (uniformly over all PE) 

buffer size per PE 1000 pages 

Table 3: Parameter settings for relational queries (SELECT on single relation) 

Fig. 3 plots response time and speedup results against the system size for different access 
methods in single-user mode and a selectivity of 1%. As expected, the use of a clustered index 
supports the best absolute response times while without index (relation scan) query execution 
takes the longest time. On the other hand, without index intra-DML parallelism permitted the 
highest absolute response time improvements by shortening the average execution time from 
about 30 minutes (1 PE) to 30 seconds for 64 PE. Speedup was linear over the entire range of 
number of nodes and almost optimal (factor 60 for 64 PE). Still, response time for 64 PE was 
higher than in the case with a clustered index on 1 PE. This illustrates, that in order to reduce 
query response time the use of an index may be more effective than employing parallel pro­
cessing (Of course, not all queries can be supported by an adequate index. In particular, only 
one clustered index is possible per relation). 

response time [s[ x 1 o3 
~-,··-······-··-·········-··;·-······-······-·---·;·-··-·-·-·-··-·-···;·····-··-~: 

1.81).·· ·+ 
1.6~·· !: 

1.4~· 

1.2~ .. 
1.01). .. 

o.ad.· ~ 
! 

::1 ~ 
i ! 

:::1 ~··~··~-~·w·-•w••••·w•w·----·~-•·w• J 
i .... L ......................... i ........................... i ........... ------t ........ J 

0.00 20.00 40.00 60.00 

response time speedup 

r·r---.................. 1 ................ --... -, -········--;·-- !<no IndeX> 
6o.o~- "l<oon=·crusfered liiifex>-

: J.-... <ciusferetf ln'ilex>----- -· 
500~-

4000! 

! 
30.0~· 

' 
20.0~· ,/ 

,/ 

./ 

/ 

! 
' ' 

10.0~ ,'/ 

.... ~ .. "--

l 

............. "- -~ .. _: 

J 
I l / 

0.01Jt...._ ________ 
1 

___________ ,______ , , 

0.00 20.00 40.00 60.00 
number PE 

Figure 3: Influence of access method on response time and speedup (selectivity 1 %). 



304 

The ideal speedup behavior for relation scans was favored by the comparatively large size of 
the relation. In experiments with a relation size of 10.000 tuples, even for relation scans linear 
speedup was obtained only for up to 8 PE, while parallel processing on 64 PE merely resulted 
in a 35-fold response time improvement. This is because the communication overhead and 
delays per query increase proportionally with the number of PE, while the amount of useful 
work decreases (for 64 PE, each PE performs only l/64 of all object references since the re­
lation size remains constant). Even with a linear speedup, the absolute response time im­
provements decrease when adding more PE. Hence, the useful number of PE is also 
constrained by cost-effectiveness considerations (in Fig. 3, more than 16 or 32 PE only 
achieved comparatively small improvements). 
In the case of index scans, the number of object references per PE is considerably lower than 
for a relation scan resulting in a much lower potential for parallel query processing. This was 
particularly the case for clustered indexes causing an unfavorable ratio between communica­
tion overhead and useful work and modest speedup values. For both index types, no substan­
tial improvements were obtained any more when increasing the number of nodes from 32 to 
64. However, in the case of a non-clustered index even a super-linear throughput could be ob­
tained for 2-32 PE ! This interesting behavior was due to the fact that the aggregate buffer size 
grows with the number ofPE while the database size remains constant. As a result, for a non­
clustered index hit ratios increased with the number of nodes resulting in a response time im­
provement that was more significant than the communication delays for up to 32 nodes. In 
the case of a clustered index or without an index, the incresed buffer size could not be utilized 
since in these cases pages are sequentially processed. Due to the blocking factor 10, hit ratios 

response time [s] x 103 response time speedup 

f'""""""""'"""'"'""""'""'""""""'!'"""""""-T r .................................. _ .......... !'"""""""'l<sel. 1 Oo/o; non- clustered Index> 
:· 6 0 · 0 0j·· ; "]<n.ii'Tn·a·e;;:; ........................................................................... . 

1
·
80

j- ·.·.·.1:,_:. ! / !<seC foo/o;- cfusterecHn'dex>--------
1.soi.. ,. so.ooj.. .. / .. j<sei:"f%; .. non:·c;iusferea .. in.i:fex·> .............. . 
1 .4ol.. ·l_: 1 / .. ... ·· · l<"serT%;-e:TusT£irei:i-rn·aex-;·------------------

!,; j 40.00!·· l:·· "i 
1.20!," "1 . ..··j : ! ! 
1.00i­

J.60J .. 

.. ~ i ! 
' 30.00!.. "l 

.. .. _:. I I 
f i 

.. 1 ZO.Ool.. .----- .. { 

.. ; I · ',>~r--------------·1 
).40!_... i. j /' ! 

1 0.00!" ,_y "] 
l2 o!- , "1 ! ,,;· 

i .. . ~ 

J.OO~ ••..• ~.· .. -.·-~.!r .. -.-.--=.·_"_· .. ~ .... ~ .... -.... -...... -.... -.... -.... -.... -,· .... -.... -.... -· .. • ... ~.: ! · 0.0ot'.t... ........................................... L ........... .: 

0.00 50.00 0.00 50.00 
number PE 

Fig. 4: Influence of selectivity and access method on response time and speedup 
(1 million tuples). 

were always about 90% irrespective of the buffer size. 
Further experiments were conducted to evaluate the influence of different query selectivities. 
In Fig. 4 we have additionally shown two curves for index scans and 10% selectivity. For such 
a high selectivity, the use of a non-clustered index did not prove useful and resulted in virtu­
ally the same response times than without index. Response times with a clustered index close­
ly match the results for a non-clustered index and 1% selectivity. The speedup values for 10% 



305 

selectivity show the same shape than for 1% but are slightly higher due to the increased num­
ber of object references per query improving the potential for intra-DML parallelism. 
Finally, we examine the influence of multi-user mode (inter-transaction parallelism) on the 
effectiveness of intra-DML parallelism. For this purpose, we increased query arrival rates lin­
early with the number of nodes. Fig. 5 shows the resulting response time results for different 
arrival rates per PE and contrasts them with the single-user values (use of a clustered index 
and selectivity of 1% are assumed). We observe that response times increasingly deteriorate 
with growing arrival rates thereby considerably reducing the improvements obtained by intra­
DML parallelism. For 0.2 TPS per PE, response times could be improved by intra-DML par­
allelism only for up to 16 PE, while increasing the number of PE further caused a steep re­
sponse time increase. This behavior is due to the fact that communication overhead grows 
quadratically with the number of PE thereby increasingly causing CPU waits (higher CPU 
contention). The quadratic effect comes from the fact that the number of concurrent queries 
increases with the arrival rates and thus with the number of PE and because the communica­
tion overhead per query grows with the number of PE (intra-DML parallelism). As a result, 
in multi-user mode only for a restricted number of nodes could response times be improved 

response time [s] 
r-···········-...................... ---·---··-..., ....................... -----······ ........ , ........ -·---··-·-·· ..................... _-r--······!<0.2 TPSIPE> 

35 · 0 ~·· i:ccn··i'Fi·s·i'P·t";::·················-··--
3o.o~· ~<o:os-fP-s/PE>-- ----

25 _ 0 ~. ~:;:s·ingre=iis-e·r nio"de>······· 
~ I 

m~~ ~ 
i I 

15.ooj.. -i 
! I 

10.0~·· ~\ .. ; 
~ ··\. . ............. -------·· I 

5. oq- · \~~-::<'-;·········-·-··-· . . ··---·--······· ........................ -···-········· "i 

o.oJ ..L ........ _ ................... ~:~~""··"·;~-~:~:.~.:~:~~~~:.~.:~:.~::~.:~~~~~~~::~:.~.:~::~:.~~~~~----~ numberPE 
0.00 20.00 40.00 60.00 

FigureS: Influence of arrival rate on response time (use of intra-DML parallelism). 

by intra-DML parallelism. Even in this range, speedup was considerably smaller compared 
to single-user mode. Furthermore, the communication overhead introduced by inter-DML 
parallelism significantly limits the attainable throughput and prevents a linear throughput in­
crease with the number of PE. 
Multiple CPUs per PEcan help to reduce the average CPU waiting times so that the negative 
effect of multi-user mode may be less pronounced in this case. However, in the presence of 
update transactions lock contention can further limit the effectiveness of intra-DML parallel­
ism. 

3.3 Experiments using real-life workloads 

The available traces were obtained from real-life database applications using a non-relational 
DBMS. Here we only consider results for the largest of these traces called OOA consisting of 
about 17.500 transactions and more than one million database references. Since the workload 
is dominated by read accesses (merely 1.6% of all accesses are writes), lock contention is ex­
pected to be low in the case of inter-transaction parallelism. The trace represents a "mixed" 
workload with a majority of shorter OL TP transactions and a few ad-hoc queries. While the 



306 

largest query performs more than 11.000 database accesses, a transaction references 58 pages 
on average. Database accesses are spread over 13 database files and a total of about 66,000 
different pages; the total database consists of about one million pages. The reference matrix 
in Table 4 depicts the relative access distribution of the 12 transaction types in the workload 
against the 13 database partitions. Transaction types and database partitions are ordered ac­
cording to their number of references. The matrix value for transaction type x and partition y 
indicates which percentage of the total number of page references are caused by transactions 
of type x on pages of partition y (e.g. 9.1% of all references are issued by transaction type 
TTl against partition Pl). Below the reference matrix, for every partition the relative size is 
specified (in %of the total database size). Furthermore, it is indicated which fraction of a par­
tition has been referenced during the trace period. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Total 

TT1 9.1 3.5 3.3 5.0 0.9 0.4 0.1 0.0 22.3 

TT2 7.5 6.9 0.4 2.6 0.0 0.5 0.8 1.0 0.3 0.2 0.0 20.3 
TT3 6.4 1.3 2.8 0.0 2.6 0.2 0.7 0.1 1.1 0.4 0.0 0.0 15.6 
TT4 0.0 3.4 0.3 6.8 0.6 0.4 0.0 11.6 
TT5 3.1 4.1 0.4 0.0 0.5 0.0 8.2 
TT6 2.4 2.5 0.6 0.7 0.9 0.3 7.4 
TT7 1.3 2.6 2.3 0.1 6.2 

TT8 0.3 2.3 0.2 0.0 0.1 2.9 

TT9 0.0 1.4 0.0 1.1 2.6 
TT10 0.3 0.1 0.3 1.0 0.1 0.0 1.8 
TT11 0.9 0.2 1.1 
TT12 0.1 0.1 

Total 30.3 26.6 11.0 9.4 8.3 4.9 4.1 3.3 1.4 0.6 0.0 0.0 0.0 100.0 

partition 
size(%) 31.3 6.3 8.3 17.8 1.0 20.8 2.6 7.3 2.6 1.3 0.8 0.0 0.0 100.0 

% refe- 11.1 16.6 8.0 2.5 18.1 1.5 9.5 4.4 5.2 2.7 0.2 13.5 5. 6.9 renced 

Table 4: Relative reference matrix of DOA transaction load. 

The table shows that the major areas are accessed by almost every transaction type and that 
the important transaction types access all major areas. This means that in the distributed case 
the database and workload cannot generally be assigned such that transactions of different 
nodes operate on disjoint database partitions. Furthermore, access distribution between dif­
ferent partitions and within the partitions is clearly non-uniform. For instance, almost 27% of 
all references are directed against partition P2 which accounts only for about 6% of all pages. 
Furthermore almost 17% of the pages in P2 have been referenced during the trace period, 
while the corresponding share is merely about 7% for the entire database. Access frequencies 
to individual pages also differ largely within a partition (more than 4500 references are di­
rected to the most frequently accessed page). 

In our experiments, we used a data allocation such that each PE has to process about the same 
number of database accesses. Furthermore, a table-driven workload allocation was employed 
aiming at an approximately uniform PE utilization. Additionally, the algorithm to determine 



307 

the database and workload allocations tried to find assignments minimizing the number of re­
mote database accesses [Ra86]. 
Inter-DML parallelism could not be used for the trace-driven simulations since we have no 
information about precedence constraints between DML statements. To support intra-trans­
action parallelism we therefore use intra-DML parallelism by processing the object referenc­
es of a DML statement in parallel if the respective objects are allocated to different nodes. On 
average, 6.5 objects are referenced per DML statement indicating a comparatively small po­
tential for intra-DML parallelism partially influenced by the use of a non-relational DBMS. 
On the other hand, even with a relational DBMS the average number of accesses per database 
operation may be similar)y low for applications with a high share of OL TP transactions that 
are typically supported by appropriate index structures. 
Since DOA contains several transaction types of different size, transaction response time is 
no adequate performance metric any more. Therefore, we determined the execution time for 
so-called "units of processing" (U) rather than for transactions. Every object reference con-
stitutes such a unit of processing as well as the BOT and EOT steps. .. 

response lime!U ]ms] 
:T"'"'""'"''--"··"!'"_"_'""'-·:----·:--·-"""'"'"""!'"'7' 

5.5~- ·i' 
! 

5.0~ 

! 
4.sof· 

; 

! 
4.oof· 

' 
' 
' 
\ 

== 

•. 

· . 
............ 

i 
' 

i 
! 

l 
' ' ' 
' \ 
' ' ' ·i 

u~ ~ L...I ........ - .......... ;,; .... _____ .. L ___ ,....l ........................ .L .. i 

0.00 2.00 4.00 6.00 8.00 

response t1me speedup 

l.sf' ..................... ,. .................... r--·---·-·r· .. -···-·····-······r··_;<sequentiel> 

/--·---...... ________ \<parallel>-

/ 1 .. 
,/ 

1.5~ 

1.4()!- i 

i 
1.3~· .. 

./ 1.2~ .. 

1 11IT· 
.. 

/ 
I = 

l.ot ................................... ____ _:. ___ ___: ............... -.. _.LJ number PE 
0.00 2.00 4.00 6.00 6.00 

Figure 6: Response time and speedup in single-user mode (DOA). 

Fig. 6 shows the response time and speedup results for DOA in single-user mode for up to 8 
PE. In order to estimate the impact of intra-DML parallelism on response time, we have also 
shown the results for sequential DML processing (not employing intra-DML parallelism). In­
tra-DML parallelism permitted only small response time improvements for up to 4 PE (speed­
up factor 1.5); additional PE resulted in an increased response time. Surprisingly, even with 
a sequential DML processing a response time improvement could be obtained for up to 4 PE 
(by about 20%) despite the communication delay for remote database accesses and two-phase 
commit This was again because the aggregate buffer size increases with the number of nodes 
permitting a significant reduction of the 1/0 delay. Since this effect also happened for intra­
DML parallelism, the actual response time improvements due to parallel query processing 
correspond to the difference to the results for sequential processing. 
One reason for the modest response time improvements is the small potential for intra-DML 
parallelism in the workload. In addition, the number of remote requests per operation in­
creased with the number of nodes without resulting in a corresponding increase of intra-DML 
parallelism. This is because a transaction's object references may be spread over the entire 
database and processing may thus involve the majority of PE while intra-DML parallelism is 



308 

limited by the number of references per DML statement. Another problem typical for real-life 
applications was that the suboperations of a DML statement differ widely in the number of 
their object references. Since the execution time is determined by the slowest suboperation, 
the benefit of intra-DML parallelism is further reduced. 
Finally, we analyse the response time impact of multi-user mode for DO A. The results in Fig. 
7 were obtained for arrival rates of 1-32 TPS per PE and with the use of intra-DML parallel­
ism. Increasing inter-transaction parallelism caused an even higher reduction of the effective­
ness of intra-DML parallelism than for the relational workload (Fig. 5). Only for 
comparatively low arrival rates (system underload) slight response time improvements could 
be achieved for 2 to 4 PE. For higher arrival rates the increased CPU contention (communi­
cation overhead) caused higher response times than for 1 PE and this effect became worse 
with an increasing number of PE. Another problem for the DOA workload was that it was not 
possible to achieve a similarly uniform CPU utilization in all nodes as for the synthetically 
generated (homogeneous) workloads. 

response time/U [ms] 

1 o.oor:·····················································:·····-····· ································:·······························./········:·····················-·······················:······::j<32 TPS/PE> 

i ,.. , -' i<fe···rr·s/PE·;:···· 
a.ooi.. , , _, .. j~a TPSiPE;--

i , " i<iftPSlPE> .... 
! ... _.../ , , " !::r·rr-s7r·E;----

6.ooi·· <-·····... /...... , ' .. ; 

4 J -,~~~~:;:;:;-~:;:;:c;:;;;:;L;;_:~":.::::.::~~~=-::~:=~~ J 
. l ........ •························-················--'·······-····································L. .......................................... i .............. -.............................. L ... .J number PE 

0.00 2.00 4.00 6.00 8.00 
Fig. 7: DOA response times with inter-transaction and intra-DML parallelism 

Our results indicate some of the problems that need to be addressed for real-life applications 
with both OL TP transactions and complex queries. In particular finding appropriate workload 
and database allocations is difficult for workloads such as OOA, especially if a larger number 
ofPE should be utilized. The use of intra-DML parallelism reduces OLTP throughput due to 
the extra communication overhead for parallelism, while the effectiveness of intra-transaction 
parallelism is also impaired by inter-transaction parallelism due to increased resource conten­
tion. Further performance problems are possible due to lock conflicts between OL TP trans­
actions and complex queries unless special concurrency control schemes (e.g. multiversion 
concurrency control) are supported that allow a processing of read-only transactions without 
locking. 

4 Summary 

We have presented a performance evaluation of shared nothing architectures for distributed 
and parallel transaction processing using a detailed simulation system. Different workload 
types were considered representing a wide spectrum of database applications. The focus has 
been on studying the effectiveness ofintra-DML parallelism in single-user as well as in multi­
user mode (inter-transaction parallelism). To evaluate scalability we used response time 
speedup and throughput scaleup as our primary performance metrics. In addition, we inves-



309 

tigated workload allocation aspects and the influence of storage (index) structures for parallel 
query processing. 
For OL TP workloads like debit-credit, we have shown that it is generally easy to achieve lin­
ear throughput scaleup. This simple workload often used in DBMS and OL TP benchmarks 
permits an ideal partitioning of the database and workload so that the communication over­
head per transaction remains small and almost independent of the number of nodes. Although 
a random assignment of transactions results in a higher number of messages, an almost linear 
throughput scaleup (at a lower level) can be achieved even in this case. A (modest) response 
time improvement is possible for debit-credit without introducing extra messages by employ­
ing inter-DML parallelism. 
For complex relational queries, an almost linear response time speedup could be obtained in 
single-user mode by employing intra-DML parallelism. However, this is generally possible 
only until a certain number of nodes since the ratio between communication overhead an use­
ful work per subquery deteriorates when the number of processing elements grows. The 
greatest improvements by employing intra-DML parallelism were observed for queries with 
high response times in the central case (1 PE). On the other hand, only a modest potential for 
parallelization is given for queries with a high selectivity or when an index can be used for 
query evaluation. The effectiveness of intra-DML parallelism was substantially lower in 
multi-user mode where CPU capacity is more constrained and the communication overhead 
introduced by parallel query processing increasingly causes resource contention. As a result, 
response time improvements were much smaller than in single-user mode and could be 
achieved only for a more restricted number of nodes. Furthermore, the high communication 
overhead for parallel query processing significantly reduced transaction rates and prevented 
a linear throughput growth. 
For the real-life workloads represented by database traces, response time improvements by 
using intra-DML parallelism were even lower. This was in part because the number of data­
base accesses per DML statement was comparatively small, but also because of the difficulty 
to find a "good" database and workload allocation for such applications. The real workloads 
consist of multiple transaction types and database files with a highly non-uniform and heter­
ogeneous reference behavior. In particular, the majority of references is by a few dominating 
transaction types and on few database files. These reference characteristics allowed an appro­
priate database and workload allocation only for a small number of nodes; when increasing 
the number of nodes further, the communication requirements per transaction increase with­
out enabling a higher degree of intra-DML parallelism. More research is needed to determine 
database and workload allocation strategies for mixed applications for which both a largely 
local processing ofOLTP transactions as well as intra-DML parallelism for complex queries 
is to be supported. 



310 

References 
An85 Anonymous et al.: A Measure of Transaction Processing Power. Datamation, 112-

118 (April 1985). 
Bo90 Boral, H. et al.: Prototyping Bubba: A Highly Parallel Database System. IEEE 

Trans. on Knowledge and Data Engineering 2, 1, 4-24 (1990). 
CL89 Carey, M.J., Livny, M.: Parallelism and Concurrency Control Performance in Dis­

tributed Database Machines. Proc. ACM SIGMOD Conf. (1989). 
De90 DeWitt, D.J. et al. 1990. The Gamma Database Machine Project. IEEE Trans. on 

Knowledge and Data Engineering 2 ,1, 44-62 (1990). 
DGS88 DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A.: A Performance Analysis of 

the Gamma Database Machine. Proc. ACM SIGMOD Conf (1988). 
EGKS90 Englert, S., Gray, J., Kocher, T., Shath, P.: A Benchmark of NonStop SQL Release 

2 Demonstrating Near-Linear Speedup and Scale-Up on Large Databases. Proc. 
ACM SIGMETRICS Conf, 245-246 (1990). 

HR83 Harder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery. 
ACM Computing Surveys 15 (4), 287-317 (1983). 

JTK89 Jenq, B.P., Twichell, B., Keller, T.: Locking Performance in a Shared Nothing Par­
allel Database Machine. IEEE Trans. on Knowledge and Data Engineering 1 (4) 
(1989). 

Ke88 Kersten, M. et al.: A Distributed, Main-Memory Database Machine. In: Database 
Machines and Knowledge Base Machines (Proc. 5th Int. Workshop on Database 
Machines, 1987), North-Holland, 353-369 (1988). 

Li87 Livny, M.: DeLab- A Simulation Laboratory. Proc. Winter Simulation Conf, 486-
494 (1987). 

Li89 Livny, M.: DeNet Users's Guide, Version 1.5, Computer Science Department, Uni­
versity of Wisconsin, Madison (1989). 

Ma91 Marek, R.: Simulation of a Shared-Nothing System for Parallel Query Processing. 
Master's Thesis (in German), Univ. Kaiserslautem, Dept. ofComp. Science (1991). 

ML086 Mohan, C., Lindsay, B., Obermarck, R.: Transaction Management in the R* Dis­
tributed Database Management System. ACM Trans. on Database System 11 (4), 
378-396 (1986). 

Ne86 Neches, P.M.: The Anatomy of a Database Computer- Revisited. Pro c. IEEE Com­
pCon Spring Conf, 374-377 (1986). 

OV91 Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice 
Hall (1991). 

Pi90 Pirahesh, H. et al.: Parallelism in Relational Data Base Systems: Architectural Is­
sues and Design Approaches. In Proc. 2nd Int.Symposium on Databases in Parallel 
and Distributed Systems, IEEE Computer Society Press (1990). 

Ra86 Rahm, E.: Algorithms for efficient load control in multi-system DBMS. Ange­
wandte Informatik 4/86 (in German), 161-169 (1986). 

SD89 Schneider, D.A., DeWitt, D.J.: A Performance Evaluation of Four Parallel Join Al­
gorithms in a Shared-Nothing Multiprocessor Environment. Proc. ACM SIGMOD 
Conf, 110-121 (1989) 

St86 Stonebraker, M.: The Case for Shared Nothing. IEEE Database Engineering 9 (1), 
4-9 (1986). 

Ta88 The Tandem Performance Group: A Benchmark of NonStop SQL on the Debit 
Credit Transaction. Proc. ACM SIGMOD Conf, 337-341 (1988). 

Ta89 The Tandem Database Group: NonStop SQL, A Distributed, High-Performance, 
High-Availability Implementation of SQL. In Lecture Notes in Computer Science 
359, Springer-Verlag, 60-104 (1989). 

TPC89 Transaction Processing Performance Council (fPC): TPC Benchmark A. (1989). 
WT91 Watson, P., Townsend, P.: The EDS Parallel Relational Database System. In: "Par­

allel Database Systems", LNCS 503, Springer-Verlag, 149-168 (1991). 


