
On the Performance of
Parallel Join Processing in

Shared Nothing Database Systems

Robert Marek
Erhard Rahm

University of Kaiserslautem, GERMANY

Abstract: Parallel database systems aim at providing high throughput for OLTP transactions as well as short
response times for complex and data-intensive queries. Shared nothing systems represent the major architec­
ture for parallel database processing. While the performance of such systems has been extensively analyzed
in the past, the corresponding studies have made a number of best-case assumptions. In particular, almost all
performance studies on parallel query processing assumed single-user mode, i.e., that the entire system is
exclusively reserved for processing a single query. We study the performance of parallel join processing un­
der more realistic conditions, in particular for multi-user mode. Experiments conducted with a detailed sim­
ulation model of shared nothing systems demonstrate the need for dynamic load balancing strategies for
efficient join processing in multi-user mode. We focus on two major issues: (a) determining the number of
processors to be allocated for the execution of join queries, and (b) determining which processors are to be
chosen for join processing. For these scheduling decisions, we consider the current resource utilization as
well as the size of intermediate results. Even simple dynamic scheduling strategies are shown to outperform
static schemes by a large margin.

1 Introduction
Parallel database systems are the key to high performance transaction and database processing
[DG92]. These systems utilize the capacity of multiple locally distributed processing nodes inter­
connected by a high-speed network. Typically, fast and inexpensive microprocessors are used as
processors to achieve high cost-effectiveness compared to mainframe-based configurations. Par­
allel database systems aim at providing both high throughput for on-line transaction processing
(OL TP) as well as short response times for complex ad-hoc queries. Efficient query processing
increasingly gains importance due to the wide-spread use of powerful query languages and user
tools. Next-generation database applications for engineering, VLSI design or multi-media support
will lead to substantially increased query complexity [SSU91). Since these complex queries typ­
ically access large amounts of data or/and perform extensive computations, in general the re­
sponse time goal can only be achieved by employing parallel query processing strategies [Pi90].
Furthermore, performance should scale with the number of nodes: adding processing nodes ide­
ally improves throughput for OL TP or response times for complex queries linearly.
Most research and development efforts on parallel database systems have concentrated on so­
called shared nothing architectures [St86, DG92]. Shared nothing systems consist of multiple
functionally homogenous processing nodes or processing elements (PE). Each PE comprises one
or more CPUs and a local main memory, and runs local copies of application and system software
like operating system and database management system (DBMS). Cooperation between PE takes
place by means of message passing over a high-speed network. The characteristic feature of
shared nothing systems is that the database is partitioned and distributed among all nodes so that
every PE "owns" one partition. If a transaction (query) needs access to data owned by another
node, a sub-transaction is started at the respective owner PE to access the remote data. In this case,
a distributed two-phase commit protocol is also to be executed to guarantee the ali-or-nothing
property of the transaction [ML086, OV91]. Existing shared nothing systems supporting parallel
transaction processing include the products Tandem NonStop SQL [Ta89, EGKS90] and Terada­
ta's DBC/1012 [Ne86] as well as several prototypes including Bubba [Bo90], Gamma [De90],
EDS [WT91] and PRISMNDB [WFA92]. With the exception of Tandem, these systems repre­
sent database machines (back-end systems) dedicated to database processing. The database oper­
ations or DML (Data Manipulation Language) statements submitted to the back-end system may
originate directly from the end-user (ad-hoc queries) or from application programs running on
workstations or mainframe hosts.
With respect to parallel transaction processing, we distinguish between inter- and intra-transac­
tion parallelism. Inter-transaction parallelism refers to the concurrent execution of multiple in­
dependent transactions on the same database. This kind of parallelism is already supported in
centralized DBMS (multi-user mode), e.g., in order to overlap l/0 delays to achieve acceptable

623

system throughput. To improve response time, intra-transaction parallelism is needed either in the
form of inter-DML or intra-DML parallelism. Inter-DML parallelism refers to the concurrent
execution of different DML statements (queries) of the same transaction. However, the degree of
parallelism obtainable by inter-DML parallelism is limited by the number of database operations
per transaction as well as by precedence constraints between these operations. Furthermore, the
application programmer would have to specify inter-DML parallelism by means of adequate lan­
guage features.
As a result, current parallel database systems support intra-transaction parallelism only in the
form of intra-DML parallelism1. Relational database systems with their descriptive and set-ori­
ented query languages (e.g. SQL) have made possible this kind of parallelism [DG92]. Intra-DML
parallelism is implemented by the DBMS query optimizer, completely transparent for the data­
base user and application programmer. For each query, the optimizer determines an (parallel)
execution plan specifying the basic operators (e.g. scan, selection, join, etc.) to process the oper­
ation. The optimizer may support two types of intra-DML parallelism: inter- and intra-operator
parallelism. Inter-operator parallelism refers to the concurrent execution of different operators in
an execution plan, while intra-operator parallelism aims at parallelizing a single operator. In both
cases, parallel processing is largely influenced by the database allocation. In particular, the data­
base should be allocated such that operators or sub-operators on disjoint database portions can be
processed in parallel on different PE. Typically, this is achieved by horizontally partitioning re­
lations among several PE.
Despite the fact that several parallel database systems have been benchmarked and numerous per­
formance studies on parallel query processing have been conducted (see section 2), we feel there
is a strong need for further performance evaluations. This is because previous benchmarks and
performance studies mostly assumed a number of best-case conditions that have an overriding ef­
fect on performance. One of the most questionable assumptions is the sole consideration of single­
user experiments in most studies, frequently without even making this assumption explicit. Our
research focus is to study the performance of parallel database systems under more realistic con­
ditions and to identify shortcomings of current query processing approaches. The next step then
is to develop better query processing strategies that work well under ideal and realistic conditions.
For this purpose, we have developed a comprehensive simulation system of a generic shared­
nothing database system. In a previous paper, we have already presented performance results us­
ing this simulation model for the debit-credit workload as well as for real-life workloads repre­
sented by database traces [MR92]. For the present paper, we have extended our simulation model
to study the performance of complex database queries, in particular join queries. In relational da­
tabase systems, joins occur frequently and are the most expensive operations to execute, especial­
ly on large relations. We investigate join performance in single- as well as in multi-user mode.
Our multi-user experiments clearly demonstrate the need for dynamic query processing and
scheduling algorithms that take the current system state into account. Important scheduling deci­
sions that should dynamically be drawn include determination of how many and which processors
should be used for join processing. These decisions should be based on the size of intermediate
results and current processor utilization. Our experiments show that even simple dynamic strate­
gies outperform static schemes by a large margin.
The next section provides a survey of related performance studies. Sections 3 and 4 briefly de­
scribe our simulation system and the workload parameters, respectively. In section 5 we present
and analyze simulation results for different configurations and scheduling strategies. Finally, we
summarize the major findings of this investigation.

2 Related Work
Most benchmarks and performance studies of parallel database systems either concentrated on
throughput for OLTP workloads or response time experiments for complex queries. For simple­
OLTP workloads such as debit-credit, it was shown that transaction rates can be linearly improved
with the number of nodes [Ta88, Bo90, MR92]. The use of intra-transaction parallelism was
found to be similarly effective with respect to decreasing the response time of complex queries,

1. In the case of ad-hoc queries there is only a single DML statement per transaction. Hence, intra-transaction
parallelism is equivalent to intra-DML (intra-query) parallelism.

624

both in benchmarks [EGKS90, De90, WF A92] as well as in many analytical and simulation stud­
ies. However, the majority of the studies on intra-transaction parallelism is based on best-case as­
sumptions like single-user mode, uniform data distribution, uniform load balancing, etc.
Recently, researchers have begun to relax some of the uniformity assumptions by considering the
effects of different forms of "data skew" [WDJ91, DG92]. However, these studies still assume
single-user mode. This also holds for performance studies of different parallel join strategies (e.g.
[SD89, Pa90]) and of schemes for processing N-way joins by means of inter-operator parallelism
[SD90, MS91, CYW92].
While the single-user studies provided many significant insights, it is imperative to evaluate the
effectiveness of intra-transaction parallelism in multi-user mode, i.e., in combination with inter­
transaction parallelism. Assuming that a large system with hundreds of processors is exclusively
reserved for processing a single query is clearly unrealistic since it would result in very poor cost­
effectiveness. Furthermore, single-user operation would prevent meeting the throughput require­
ments for OLTP transactions. One problem with supporting multi-user mode ist that the current
system load may significantly vary during query execution thus making dynamic scheduling strat­
egies necessary. [GW89] already demonstrated that considerable performance gains can be real­
ized by choosing dynamically among multiple query plans - depending on both system load and
the size of intermediate results. However, they restricted their considerations to two alternative
query plans (either B-tree scan and index nested loops join or file scans and hash join) and did not
consider parallelization issues.

3 Simulation Model
Our simulation system models the hardware and transaction processing logic of a generic shared
nothing DBMS architecture. The system has been implemented using the discrete event simula­
tion language DeNet [Li89]. Our system consists of three main components: workload genera­
tion, workload allocation and processing subsystem (Figure 1). The workload generation
component models user terminals and generates work requests (transactions, queries). The work­
load allocation component assigns these requests to the PE of the processing subsystem where the
actual transaction processing takes place. In this section, we summarize the implementation of
these components.
3.1 Workload Generation and Allocation
Database Model
Our database model supports four object granularities: database, partitions, pages and objects (tu­
ples). The database is modeled as a set of partitions that may be used to represent a relation, a
fragment of a relations or an index structure. A partition consists of a number of database pages
which in tum consist of a specific number of objects. The number of objects per page is deter­
mined by a blocking factor which can be specified on a per-partition basis. Differentiating be­
tween objects and pages is important in order to study the effect of clustering which aims at
reducing the number of page accesses (disk I/Os) by storing related objects into the same page.
Funhermore, concurrency control may now be performed on the page or object level. Each rela­
tion can have associated clustered or unclustered B • -tree indices.
We employ a horizontal data distribution of partitions (relations and indices) at the object level
controlled by a relative distribution table. This table defines for every partition Pi and processing
element PEi which portion of Pi is allocated to PEi.This approach models range partitioning and
supports full declustering as well as partial declustering.
Workload Generation
Our simulation system supports heterogeneous workloads consisting of several transaction (que­
ry) types. In this paper we restrict ourselves to queries (transactions with a single DML state­
ment), in particular join queries. Query types may differ in the structure of their operator trees,
referenced relations, selection predicates etc. The simulation system is an open queuing model
and allows definition of an individual arrival rate for each query type.
The join queries studied in this paper use three basic operators: scan, sort and join. These opera­
tors can be composed to query trees representing the execution plan for a query. The scan of a
relation A using a predicate P produces a relational data output stream. The scan reads each tuple
t of R and applies the predicate P to it. If P(t) is true, then the tuple is added to the output stream.
We support relation scans as well as index (B*-tree) scans. The sort operator reorders its input

625

PEn~-iii~il~-~ PE 1 riJ
transaction manager~ '

workload
generation

(user terminals)

workload
allocation

Query Proces~ing System

~~PARoPI

BG
Figure 1: Gross structure of the simulation system.

tuples based on an attribute sort criteria. The join operator composes two relations, A and B, on
some join attribute to produce a third relation. For each tuple ta in A, the join finds all tuples tt, in
B whose join attribute values are equal to that of ta 2. For each matching pair of tuples, the join
operator inserts a tuple built by concatenating the pair into the output stream.
For our study we have implemented a representative parallel join strategy based on hash partition­
ing. It applies a hash function on the join attribute to partition both input relations (scan output
relations) to a specific number of join processors (dynamic data redistribution). This hash parti­
tioning guarantees that tuples with the same join attribute value are assigned to the same join pro­
cessor. This approach has the advantage that it offers a high potential for dynamic load balancing
since the number and selection of join processors constitute dynamically adjustable parameters.
For local join processing we have implemented a sort-merge algorithm. At each join processor
the input relations are first sorted on the join attribute. The sorted relations are then scanned and
matching tuples are added to the output stream. The complete join result is obtained by merging
the results of the distributed local joins.
In the query graphs of our model, parallelism is expressed by means of a so-called parallelization
meta-operator (PAROP). This operator does not perform any semantic data transformations. In­
stead it implements inter- as well as intra-operator parallelism and encapsulates all parallelism is­
sues3. In particular, the PAROP operator comprises two basic parallelization functions: a merge
function which combines several parallel data streams into a single sequential stream, and a split
function which is used to partition or replicate the stream of tuples produced by a relational oper­
ator.
We employ the PAROP operator to parallelize scan and join operators. For this purpose, PAROP
operators are inserted into the query trees. With respect to intra-operator parallelism several strat­
egies can be chosen to allocate parallel suboperations to processors. For scan operators, the pro­
cessor allocation is always based on a relation's data allocation. For join operators, on the other
hand, we support several static and dynamic allocation alternatives, e.g. random allocation or
based on the PE's CPU utilization. More details will be given in section 5 together with the sim­
ulation results.
The example in Figure 2 illustrates the use of the PAROP operator. The query specifies that a join
is to be performed between relations A and B and the result is to be printed. Relation A is parti­
tioned into three fragments Ao. AI> A2 (residing on disjoint PE) and relation B into two fragments
B0, B1• The two lower P AROP operators specify that the scan operations are parallelized accord­
ing to this fragmentation. Furthermore, they indicate that the output streams of the local scans are
to be split onto two join processors (according to some split function). Before the local joins are
processed, the input streams have to be merged. The final P AROP operator specifies that the local
join results are sent to and merged at an output (print) node.
Workload Allocation:
Two forms of workload allocation have to be distinguished. First, each incoming transaction (que­
ry) is assigned to one PE (acting as the coordinator for the transaction) according to a placement

2. We only consider equi-joins in this paper.
3. A similar operator-based parallelization model has been implemented in the Volcano prototype [G90].

626

strategy. Our simulation system supports different placement strategies, in particular a random al­
location or the use of a routing table4

• The second form of workload allocation deals with the as­
signment of suboperations to processors during query processing. As mentioned above, this is
performed according to the chosen strategy for parallel query processing.
3.2 Workload Processing
The processing component models the execution of a workload on a shared nothing system with
an arbitrary number ofPE connected by a communication network. Each PE has access to private
database and Jog files allocated on external storage devices (disks). Internally, each PE is repre­
sented by a transaction manager, a query processing system, a buffer manager, a concurrency con­
trol component, a communication manager and a CPU server (Figure 1).
The transaction manager controls the (distributed) execution of transactions. The maximal num­
ber of concurrent transactions (inter-query parallelism) per PE is controlled by a multiprogram­
ming level. Newly arriving transactions must wait in an input queue until they can be served when
this maximal degree of inter-transaction parallelism is already reached. The query processing sys­
tem models basic relational operators (sort, scan and join) as well as the PAROP meta-operator
(see above).
Execution of a transaction starts with the BOT processing (begin of transaction) entailing the
transaction initialization overhead. The actual query processing is performed according to the re­
lational query tree. Basically, the relational operators process local input streams (relation frag­
ments, intermediate results) and produce output streams. The PAROP operators indicate when
parallel sub-transactions have to be started and perform merge and split functions on their input
data streams. An EOT step (end of transaction) triggers two-phase commit processing involving
all PE that have participated during execution of the respective transaction. We support the opti­
mization proposed in [ML086] where read-only sub-transactions only participate in the first com­
mitphase.
CPU requests are served by a single CPU per PE. The average number of instructions per request
can be defined separately for every request type. To accurately model the cost of query process­
ing, CPU service is requested for all major steps, in particular for query initialization (BOT), for
object accesses in main memory (e.g. to compare attribute values, to sort temporary relations or
to merge multiple input streams), IJO overhead, communication overhead, and commit process­
ing.
For concurrency control, we employ distributed strict two-phase locking (long read and write
locks). The local concurrency control manager in each PE controls all locks on the local partition.
Locks may be requested either at the page or object level. A central deadlock detection scheme is
used to detect global deadlocks and initiate transaction aborts to break cycles.
Database partitions can be kept memory-resident (to simulate main memory databases) or they
can be allocated to a number of disks. Disks and disk controllers have explicitly been modelled
as servers to capture I/0 bottlenecks. Disks are accessed by the buffer manager component of the
associated PE. The database buffer in main memory is managed according to a global LRU (Least
Recently Used) replacement strategy.

~ merge the two join output r streams at the print node

merge the input streams at
~ each join node

split each scan output
stream into two streams

SCAN

A ®®®
Figure 2: A simple relational query graph and the corresponding dataflow graph.

4. The routing table specifies for every transaction type Ti and processing element PE; which percentage of
transactions of type Ti will be assigned to PE;.

627

The communication network provides transmission of message packets of fixed size. Messages
exceeding the packet size (e.g.large sets of result tuples) are disassembled into the required num­
ber of packets.

4 Workload Profile and Simulation Parameter Settings
Our performance experiments are based on the query profile and database schema of the Wiscon­
sin Benchmark [Gr91]. This benchmark has extensively been used for evaluating the performance
of parallel database systems [EGKS90, De90, WF A92]. Although the Wisconsin Benchmark con­
stitutes a single-user benchmark, we use it also for multi-user experiments.
Table 1 shows the major database, query and configuration parameters with their settings. Most
parameters are self-explanatory, some will be discussed when presenting the simulation results.
The join queries used in our experiments correspond to the WisconsinjoinABprime query [Gr91],
but we support selections on both input relations. Each query performs two scans (selections) on
the input relations A and B and joins the corresponding results. The A relation contains 1 million
tuples, the B relation 100.000 tuples. The selections on A and B reduce the siie of the input rela­
tions according to the selection predicate's selectivity (percentage of input tuples matching the
predicate). Both selections employ indices (B* -trees), clustered on the join attribute. The join re­
sult has the same size as the scan output on B. Scan selectivity is varied between 0.1% and 10%,
thus yielding join result sizes between 100 and 10.000 tuples.
The number of processing nodes is varied between 10 and 80, the number of join processors be­
tween I and 80 depending on the experiment. Both database relations are partitioned into an iden­
tical number of fragments and allocated on disjoint PE. Two declustering strategies are studied in
the experiments with each relation allocated to either half of the PE or to a third of the PE.
The parameters for the I/0 (disk) subsystem are chosen so that no bottlenecks occurred (suffi­
ciently high number of disks and controllers). The duration of an 1/0 operation is composed of
the controller service time, disk access time and transmission time. The parameter settings for the
communication network have been chosen according to the EDS prototype [WT91].

Configuration settings Database/Queries settings

number ot Ft (~~t) l U,:.W,:5U,oU,1iU relatiOn A: IC2UUMH)_
CPU speed per PE 20MIPS #tuples 1.000.000

tuple size 200 bytes
avg. no. of instructions: blocking factor 40
BOT 25000 index type (clustered) B* -tree
EOT 25000 storage allocation disk
I/0 3000 allocation to PE l..#PE/2 (l..#PE/3)
send message (8 KB) 5000 relation B: (20MB)
receive message (8 KB) 10000 #tuples 100.000
scan object reference 1000 tuple size 200 bytes
join object reference 500 blocking factor 40
sort n tuples n log2(n) * 10 index type (clustered) B* -tree

storage allocation disk
buffer manager: allocation to PE #PE/2 + l..#PE
page size 8KB (#PE/3 + 1..2#PE/3)
buffer size per PE 250 pages (2MB) join queries:

access method via clustered index
input relations sorted FALSE

disk devices: scan selectivity 0.1%-10% (varied)
controller service time 1 ms (per page) jno. of result tuples 100-10000 (varied)
transmission time per page 0.4ms size of result tuples 400 bytes
avg. disk access time 15 ms degree of parallelism

communication network:
for join: 1-80 PE(varied)
arrival rate single-user,

packet size 128 bytes multi-user (varied)
avg. transmission time 8 microsec query placement random (uniformly

over all PE)

Table 1: System configuration, database and query profile.

5 Simulation Results
Our experiments concentrate on the performance of parallel join processing in single-user and
multi-user mode. The single-user experiments have been performed to validate our simulation

628

0 10 2 30
Figure 3: Influence of parallel query processing on response time and speedup.

system and to clarify the differences to the multi-user results. The base experiment described in
section 5.1 analyses scalability of our join strategy in single-user mode. In sections 5.2 and 5.3
we investigate join performance for different degrees of intra-query parallelism in single-user and
multi-user mode, respectively. Additionally, the performance impact of the size of intermediate
results is analysed. Finally, we compare the performance of four workload allocation alternatives
for parallel join processing in multi-user mode (5 .4).
5.1 Base Experiment
The base experiment measures response time and response time speedup5 of our parallel join
strategy for the parameter settings of Table 1. The number of processing nodes (#PE) is varied
between 10 and 80. The input relations A and B are both partitioned into #PE/2 fragments and
allocated on disjoint nodes. The queries' join operators are executed on the PE holding relation
A. Thus, both scan operators as well as the join operator are processed on #PE/2 nodes using intra­
operator parallelism. Both scans are supported by indices and select 10% of the their input tuples.
Two cases are considered depending on whether or not the join attribute corresponds to the par­
titioning attribute of the relations. If the relations are partitioned on the join attribute, only the
small relation B needs to be redistributed among the A nodes performing the joins. Otherwise,
both relations are redistributed according to a hash function on the join attribute.
Figure 3 shows the obtained response time and speedup results. As expected, response times are
better when the relations are partitioned on the join attribute because of the reduced communica­
tion overhead. Still, the query response time is significantly reduced in both cases as more PE are
added for query execution6. For both query types, we observe a near-linear response time speedup
(speedup factors of 6.8 and 7.7 on 80 PE). This is favored by the large relation sizes and the con­
siderable I/0 overhead for accessing the database files on disks. So approximately 57% of the
query response time is due to disk I/0 for 80 PE (1/0 activity occurs not only for the scan, but also
during the join phase since the temporary relations could not always be kept in main memory).
Since query execution is comparatively expensive, even 80 PE could be employed effectively. We
also conducted the base experiment for memory-resident fragments. In this case the speedup val­
ues were considerably lower, in particular for the joins on non-partitioning attributes. This is be­
cause the communication overhead for redistributing the relations is more significant when no I/0
delays occur.
Even for a disk-based database allocation, perfect linear speedup cannot generally be achieved
over the entire range of processing nodes. This is because start-up costs for the distributed execu­
tion of the (scan and join) operators increase with the number of PE involved, while the total
amount of useful work remains the same. Furthermore, the communication overhead for redistrib­
uting the scan output among the join processors increases quadratically with the number of pro­
cessors. Therefore, the ratio between start-up and communication overhead, and the amount of
useful work per PE deteriorates when the number of PE grows, thereby limiting the effectiveness

5. Response time speedup measures the improvement of complex query response times as more PE are added
to execute the query. For N PE, the speedup is obtained by dividing the response time for the base case (10
PE in our experiments) by the response time result for parallel execution on N PE (N > 10) with the same
database size [Gr91].
6. [De90] observed basically the same behaviour when running similar join queries on the Gamma database
machine.

629

of parallel query processing. This is a general trade-off of parallel query processing and has been
quantified in several previous studies [Bo90, DGSB90, MR92]. In the following experiments,
these effects will be more pronounced than in the base experiment.
5.2 Degree of Join Parallelism in Single-User Mode
In this and the next subsection we study join performance for different degrees of intra-transaction
parallelism and intermediate result sizes. For this purpose, we vary the number of join processors
as well as the selectivity of the scan operators. For these experiments we use a constant system
size of 80 PE and a declustering of both relations across 40 disjoint PE. Thus scan overhead for a
given selectivity factor remains unchanged for the different configurations so that performance
differences are due to join processing. The number of join processors is varied between 1 and 80
and the join PE are chosen at random.
Figure 4 shows the resulting response time and speedup results for different scan selectivities in
single-user mode. We observe that increasing the number of join processors is most effective for

~4rrrrTT~~~rrTTTO~

~
~ 3 scan selectivity 10%
~

scan number of join PE

selectivity 1 10 20 30 60 80

" .§ 2 scan selectivity 1.0% 10% 6177 2082 1837 1797 1767 1736

~
§ 11r" _~--:"~"-Jr
~ scan selectivity
~

1% 677 281 264 266 279 286

0.1% 182 149 151 158 172 178
01 1

response time [ms] #Jozn processors
Figure 4: Influence of the size of intermediate results and the number of join processors on response

time and speedup in single-user mode.

"large" joins, i.e. for high scan selectivity (10%). In this case, response times could continuously
be improved by increasing the degree of intra-operator parallelism, although only slightly for
more than 20 join processors. For small joins (selectivity 0.1%) response times improved only for
up to 10 join processors. This is because the work per join processor decreases with the degree of
intra-operator parallelism, while the communication overhead for redistributing the data increas­
es. Thus even for large joins and despite single-user mode, comparatively modest speedup values
are achieved. Of course, this is also influenced by the fact that the scan portion of the response
times is not improved when increasing the number of join processors.
In the response time table of Fig. 4, the minimal response times are printed in bold-face to indicate
the "optimal" degree of intra-query parallelism (minimum response time point Prnrt)· In single­
user mode when the entire system is at the disposal of a single query, the optimal degree of par­
allelism is solely determined by rather static parameters such as the database allocation, relation
sizes and scan selectivity. Thus the query optimizer can determine the number of join processors
without considering the current system state (no need for dynamic load balancing).
5.3 Degree of Join Parallelism in Multi· User Mode
For the multi-user experiment, we varied the arrival rate for our join query. The resulting response
time results for different degrees of join parallelism and 1.0% and 0.1% scan selectivities are
shown in Figure 5. The results show that multi-user mode significantly increases query response
times. Furthermore, the effectiveness of join parallelism increasingly deteriorates with growing
arrival rates. This is mainly due to increased CPU waits, because CPU requests (for communica­
tion as well as for object references) of concurrent queries have to be served by a limited number
of processors. An important observation is that the optimal degree of join parallelism (PrnrJ for
single-user mode does not yield the best response times in multi-user mode. In fact, for multi-user
mode the optimal degree of join parallelism depends on the arrival rate and thus on the current
system utilization. The higher the system load, the worse the single-user P mrt point performs and
the lower the optimal multi-user P rnrt becomes. This is because the communication overhead in­
creases with the number of join processors which is the less affordable the more restricted the
CPU resources are.

630

selectivity 0.1%
450~-r----~~~~~~

...... 400 e 35o i 300
·.::: 250
~ 200 E,..oo,._,..---

1S 150 ~========tJi!.:f::f.&:=t===~
~100
~ 50

single-user mode

01T--~~1rn0--~~2~_.~0 01
10 20 30 40 50 60

#join processors #join processors
Figure 5: Influence of the system load and the number of join processors on response time.

The differences between single-user and multi-user results are particularly pronounced for small
joins (0.1% selectivity). For an arrival rate of 60 TPS, join execution on a single join processor
achieved here the best response time. In this case, the single-user P mrt of 10 results in a response
time that is 50% higher than for the multi-user P mrt of 1. For 30 TPS, join parallelism also did not
result in any response time improvement but only introduced unnecessary communication over­
head thereby limiting throughput. In the case of 1% scan selectivity, join parallelism was more
effective since more work has to be executed by the join processors. However, Fig. 5 shows that
a good degree of parallelism is difficult to find since it is confmed to a small range. In single-user
mode, on the other hand, more than the optimal number of join processors did not significantly
increase response times. For 1% selectivity, the multi-user P mrt differs from the single-user P mn

as well (for 15 TPS, the multi-user P mrt is 10 rather than 20).
Our experiment clearly demonstrates the need of dynamic load balancing and scheduling for par­
allel join processing in multi-user mode. The optimal degree of intra-query parallelism has to be
chosen according to both the size of intermediate results and the current system load. In the next
experiment we study the performance of a dynamic workload allocation strategy that selects the
join processors based on the current system utilization.
5.4 Processor Allocation of Join Operator
While the processor allocation of scan operators is determined by the data distribution, there is
more freedom for allocating parallel join operators. This is because the join is not performed on
base relations but on intermediate data that can be distributed dynamically. Hence a join operator
may be executed on any PE permitting a wide range of allocation strategies. In our last experi­
ment, we study the performance of the following four join operator allocation strategies:
o Strategy 1 "Minimize Data Transfer":

This strategy tries to minimize the communication cost for data transfers by allocating the join
operators to those PE owning most of the data needed for join processing. The degree of join
parallelism and the selection of join processors are determined by the data distribution. For our
join query, strategy 1 means that the join operators are allocated on the processors holding frag­
ments of the larger relation A.

o Strategy 2 "Assign Join Operators to the Processors With Minimal Work for Scan":
This strategy aims at balancing the load by assigning join operators to processors where no
scans have to be performed. If all processors hold fragments of the input relation, the join op­
erators are assigned to those nodes with the smallest fragments.

o Strategy 3 "Random":
This strategy does not care about any information on the database distribution or query profile.
It tries to avoid that certain nodes become overloaded by simply distributing the join operators
across all available PE at random.

o Strategy 4 "Keep Overall CPU Utilization Balanced":
This strategy uses global information on the processing nodes' CPU utilization. The basic idea
is to keep the overall CPU utilization balanced in order to avoid CPU bottlenecks. The join op­
erators are assigned to those PE which currently offer the lowest CPU utilization7

•

Alternatives 1 to 3 represent static strategies since they do not consider the current system state;
operator allocation is only based on static information such as the database distribution (strategies

631

join allocation responsetime [ms]

strategy 1 378

strategy 2 411

strategy 3 395

strategy 4 400

response ttme [ms] ~~---1~5~--~--~~s~--~
arrival rate [TPS]

arnvalrate
join allocation lOTPS 15TPS 20TPS 25TPS 30TPS

strategy 1 :tU 50 lUU jU /:J DU j!:J.:U:tUU ------------- ------------
strategy 2 23290931 35 44 15 46 46 57 18 63 56702276 65 80 261!.2

strategy 3 22371811 33552816 44 74 35 23 55 88 47 30 64 .25. 59 38

strategy 4 23 23 23 23 34 35 3433 45 464544 56 57 56 55 66 67 66 65

cpu utilization[%] (global, nodes 1 .• 20, 21 •. 40, 41 .. 60)
Figure 6: The influence of the workload allocation strategy and the system load on response time

and processor utilization.

Using these strategies, we performed single-user as well as multi-user experiments on a 60 node
shared nothing system. To provide some alternatives for operator allocation, we determined the
data distribution as follows: relation A is distributed across the nodes 1 to 20 and relation B across
nodes 21 to 40. Nodes 41 to 60 do not hold any data. Both scans select 1% of the relations tuples.
To facilitate a comparison between the different allocation strategies, we employ a fixed degree
of join parallelism in this experiment by always using 20 join processors. Strategy 1 uses the A­
holding PE (1-20) for join processing, while strategy 2 selects the nodes 41-60 as join processors
since they have no scan operations to perform. Strategies 3 and 4 may employ any PE of the sys­
tem for join processing. The selection of the 20 join processors occurs at random (strategy 3) or
based on the current CPU utilization (strategy 4).
Figure 6 plots response time results for single-user and multi-user mode. Furthermore, the average
processor utilization for the multi-user experiments is shown. Each entry in this table consists of
four numbers indicating the average CPU utilization of all PE, of the A-holding PE 1-20, of the
B-holding PE 21-40, and of PE 41-60, respectively.
Single-user performance
As expected, the best single-user response times are achieved by strategy 1 which minimizes com­
munication overhead. Strategy 2 yields the highest response time since the joins are performed on
nodes not holding any data leading to the highest communication and cooperation overhead.
Strategies 3 and 4 offer response times in between of strategies 1 and 2. This shows that in single­
user mode there is no need for dynamic load balancing since all PE have a low CPU utilization.
This also explains the low differences between the four strategies(< 10%) indicating that in sin­
gle-user mode selection of the join processors is less important than finding the right degree of
join parallelism (section 5.2).
Multi-user performance
As the system load increases, the performance impact of the different allocation strategies be­
comes more visible. The ·average query execution time raises rapidly with increasing arrival rates,

7. For this purpose, we assume that information on the global CPU utilization is available when the join op­
erators are allocated. This can be achieved by maintaining such information either at a designated PE or by
periodically broadcasting it among all PE. The overhead for exchanging this information can be kept small
by piggy-backing it to other messages used for query processing.

632

particularly in the case of the static strategies. Strategy 1 which performed best in single-user
mode exhibits the lowest performance in multi-user mode. This strategy caused substantially
higher response times and lower throughput than the other schemes. Throughput is limited to
about 20 TPS since this strategy only uses 40 of the 60 PE. For this arrival rate, the A-holding
nodes are completely overloaded (97%) thus leading to drastically increased response times. This
result underlines that in multi-user mode limiting the communication overhead is by far Jess im­
portant than load balancing.
Strategies 2 and 3 achieved better performance since they use all processors thus supporting about
30 TPS. However, as the table on CPU utilization reveals there are still significant load imbalanc­
es with these two static strategies. In particular, with strategy 2 the B-holding nodes are underuti­
lized so that the other nodes become overloaded at 30 TPS. Strategy 3 (random) is slightly better
than strategy 2 since it spreads the join work equally among all processors. This strategy however,
suffers from the load imbalances due to the different degrees of scan activity on the different
nodes. Here, the A-holding nodes become overloaded first thus limiting throughput
The dynamic workload allocation strategy 4 clearly provided the best throughput and response
time results. This strategy avoids local bottlenecks by assigning the join operators to the PE with
the lowest CPU utilization. As a result, resource utilization is kept balanced among all nodes and
response time raises very slowly with increasing arrival rates. This also supports a higher through­
put than 30 TPS. Thus, the dynamic load balancing strategy is capable of satisfying both short
response times by utilizing intra-query parallelism as well as high throughput.
Although strategy 4 outperformed the static strategies, we observed an interesting phenomenon
in our experiments which is inherent to dynamic load balancing strategies. We found out that
strategy 4 tends towards assigning two consecutive queries' joins to the same processors, since
the impact of the first query's activation on resource utilization does not appear immediately and
since the information on CPU utilization is updated only periodically. Therefore, queries based
on the same information about resource utilization will be assigned to the same processing nodes,
thus impeding each other. By taking this effect into account, the dynamic strategy 4 can be further
improved, e.g., by estimating changes in the resource utilization due to an assignment decision.

6 Summary
We have presented a simulation study of parallel join processing in shared nothing systems. In
contrast to previous studies, we focussed on the performance behavior in multi-user mode since
we believe this will be the operating mode where parallel query processing must be successful in
practice. Multi-user mode means that only limited resources are available for query processing
and that both response time and throughput requirements must be met. This necessitates dynamic
scheduling strategies for assigning operators during query processing.
In contrast to scan operations, parallel join strategies offer a high potential for dynamic load bal­
ancing. In general, a join is not performed on base relations but on derived data obtained by pre­
vious scan operations. These intermediate results are dynamically redistributed among several
join processors to perform the join in parallel. The number of join processors (degree of join par­
allelism) and the selection of these processors represent dynamically adjustable parameters.
Our experiments demonstrated that effectively parallelizing join operations is much simpler in
single-user than in multi-user mode. In single-user mode the optimal degree of join parallelism is
largely determined by static parameters, in particular the database allocation, relation sizes and
scan selectivity. Determining where the join operators should be executed is also unproblematic
since all processors are Jowly utilized in single-user-mode. Thus, the join processors can also be
selected statically so that communication overhead is minimized.
In multi-user mode, the optimal degree of join parallelism depends on the current system state and
is the lower the higher the nodes are utilized. Using the optimal single-user degree of join paral­
lelism in multi-user mode is therefore not appropriate and was shown to deliver sub-optimal per­
formance (up to 50% higher response times in our experiments). Our results demonstrated that
selection of the join processors must also be based on the current utilization in order to achieve
both short response times and high throughput. Even a simple load balancing strategy based on
the current CPU utilization was shown to clearly outperform static strategies. The best workload
allocation strategy in single-user mode achieved the worst performance in multi-user mode. Thus,

633

balancing the load is more important for selecting the join processors in multi-user mode than
minimizing the communication overhead.
In future work, we will study further aspects of parallel query processing in multi-user mode that
could not be covered in this paper. In particular, we plan to investigate dynamic scheduling strat­
egies for mixed workloads consisting of different query and transaction types [RM93]. Further­
more, we will consider the impact of data contention (lock conflicts) and data skew on the
performance of parallel query processing.

7 References
CYW92 Chen, M.; Yu, P.; Wu, K. 1992: Scheduling and Processor Allocation for Parallel Execution of

Multi-Join Queries. Proc. 8th IEEE Data Engineering Conference, 58-67.
Bo90 Bora!, H. et al. 1990: Prototyping Bubba: A Highly Parallel Database System. IEEE Trans. on

Knowledge and Data Engineering 2(1), 4-24.
De90 DeWitt, D.J. et al. 1990: The Gamma Database Machine Project. IEEE Trans. on Knowledge and

Data Engineering 2(1), 4-62.
0092 DeWitt, D.; Gray, J. 1992: Parallel Database Systems: The Future of High Performance Database

Processing. Communications of the ACM 35(6), 85-98.
EGKS90 Englert, S., Gray, J., Kocher, T., Shath, P. 1990: A Benchmark of NonStop SQL Release 2 Dem­

onstrating Near-Linear Speedup and Scale-Up on Large Databases. Proc. ACM S/GMETRICS
Conf., 245-246.

GW89 Graefe, G; Ward, K. 1989: Dynamic Query Evaluation Plans. Proc. 1989 SJGMOD Conf, 358-
366.

G90

Gr91
Li89

MR92

ML086

MS91.

Ne86

OV91
Pa90

Pi90

RM93

SD89

SD90

SSU91

St86
Ta88

Ta89

WDJ91

WT91

WFA92

Graefe, G. 1990: Volcano, an Extensible and Parallel Query Evaluation System. University of Col­
orado at Boulder, Department of Computer Science.
Gray, J. (Editor) 1991: The Benchmark Handbook. Morgan Kaufmann Publishers Inc.
Livny, M. 1989: DeNet Users's Guide, Version 1.5. Computer Science Department, University of
Wisconsin, Madison.
Marek, R.; Rahm, E. 1992: Performance Evaluation of Parallel Transaction Processing in Shared
Nothing Database Systems. Proc. 4th Int. PARLE Conference, LNCS 605, Springer, 295-310.
Mohan, C., Lindsay, B., Obermarck, R. 1986: Transaction Management in the R * Distributed Da­
tabase Management System. ACM TODS 11 (4), 378-396.
Murphy, M.; Shan, M. 1991: Execution Plan Balancing. Proc. 1st Int. Conf. on Parallel and Dis­
tributed Information Systems.
Neches, P.M.1986: The Anatomy of a Database Computer- Revisited. Proc. IEEE CompCon
Spring Conf., 374-377.
Ozsu, M.T., Valduriez, P. 1991: Principles of Distributed Database Systems. Prentice Hall.
Patel, S. 1990: Performance Estimates of a Join. In: Parallel Database Systems (Proc. PRIMSA
Workshop), Lecture Notes in Computer Science 503, Springer Verlag, 124-148.
Pirahesh, H.et al. 1990: Parallelism in Relational Data Base Systems: Architectural Issues and
Design Approaches. In Proc. 2nd lnt.Symposium on Databases in Parallel and Distributed Sys­
tems, IEEE Computer Society Press.
Rahm, E.; Marek, R. 1993: Analysis of Dynamic Load Balancing for Parallel Shared Nothing Da­
tabase Systems. Techn. Report, Univ. of Kaiserslautern, Dept. of Camp. Science, Febr. 1993.
Schneider, D.A., DeWitt, D.J. 1989: A Performance Evaluation of Four Parallel Join Algorithms
in a Shared-Nothing Multiprocessor Environment. Proc. ACM S/GMOD Conf, 110-121.
Schneider, D.A., DeWitt, D.J. 1990: Tradeoffs in Processing Complex Join Queries via Hashing
in Multiprocessor Database Machines. Proc.16th Int. Conf on Very Large Data Bases, 469-480.
Silberschatz, A.; Stonebraker, M.; Ullman, J. 1991: Database Systems: Achievements and Oppor­
tunities. Communications of the ACM 34(10), 110-120.
Stonebraker, M. 1986: The Case for Shared Nothing./£££ Database Engineering 9(1), 4-9.
The Tandem Database Group 1988: A Benchmark of NonStop SQL on the Debit Credit Transac­
tion. Proc. ACM S/GMOD Con[., 337-341.
The Tandem Database Group 1989: NonStop SQL, A Distributed, High-Performance, High­
Availability Implementation of SQL. Lecture Notes in Computer Science 359, Springer-Verlag,
60-104.
Walton, C.B; Dale A.G.; Jenevein, R.M. 1991: A Taxanomy and Performance Model of Data
Skew Effects in Parallel Joins. Proc. 17th Int. Conf on Very Large Data Bases, 537-548.
Watson, P., Townsend, P. 1991: The EDS Parallel Relational Database System. In: Parallel Data­
base Systems (Proc. PRIMSA Workshop), Lecture Notes in Computer Science 503, Springer-Ver­
lag, 149-168.
Wilschut, A.; Flokstra, J.; Apers, P. 1992: Parallelism in a Main-Memory DBMS: The perfor­
mance ofPRISMNDB. Proc. 18th Int. Con[. on Very Large Data Bases, 521-532.

