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* Data Integration
— Data analytics for domain-specific questions
— Use cases: Bibliometrics & Life Sciences

* Big Data Integration
— Techniques for efficient big data management
— Exploiting cloud infrastructures (MapReduce, NoSQL data stores)

* Lazy Big Data Integration
— (Efficient and) effective goal-oriented data integration
— Integrated analytical approach for big data analytics



Use Case: Bibliometrics

* Does the peer review process actually work?
Does it select the , best” papers?

 Data from reviewing process (e.g., Easy Chair)
— Bibliographic information (title, authors, ...) of submitted papers
— Review score(s) incl. editorial decision

e Data from bibliographic data sources (e.g., Google Scholar)
— Accepted papers and rejected papers that are published elsewhere
— Number of citations

 Determine covariance between review score(s) and #citations



Data Integration

* Combining data residing
at different sources and
providing the user with a
unified view of this data

— Added value by linking &
merging data

— Queries that can only be
answered using multiple
sources

 Schema Matching

— Finding mappings of

corresponding attributes
* Entity Matching

— Finding equivalent
data objects
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Data Quality

e Can/should we use Google Scholar citations for ranking ...
— Papers

Citation indices All Since 2011

— Researchers Citations 1202 970
— Institutions h-index 19 18
_ etc. i10-index 29 23
_ Google Scholar Web of Science

Coverage Huge Limited

Data quality Medium (fully automatic) High (manually curated)

Costs Free Expensive

* Convergent validity of citation analyses?

— Comparison of analysis results for source overlap
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* Prediction of new annotations
— hypothesis for wet lab experiments

Is this annotation
likely to be added in

the future?




Graph Summarization + Link Prediction

 Graph summary = Signature + Corrections

e Signature: graph pattern / structure
— Super nodes = partitioning of nodes

— Super edges = edges between super nodes
= all edges between nodes of super nodes

* Corrections: edges e between
individual nodes

— Additions: e € G but e ¢ signature
— Deletions: e ¢ G but e € signature

. p(PO 20030, CIB5) ~ 0.96

— High prediction score because
itis the “only missing piece” to a
“perfect 4x6 pattern”
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(Big) Data Analytics Pipeline
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(Big) Data Analytics Pipeline
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How to speed up entity matching?

* Entity matching is expensive (due to pair-wise comparisons)
* Blocking to reduce search space

— Group similar entities within blocks based on blocking key
— Restrict matching to entities from the same block

* Parallelization
— Split match computation in sub-tasks to be executed in parallel
— Exploitation of cloud infrastructures and frameworks like MapReduce
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Blocking + MapReduce: Naive

e Data skew leads to unbalanced workload
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Load Balancing for MR-based EM
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BlockSplit

Partition | Overall
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— r=3 reduce tasks, split @, in m=2 sub-blocks
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BlockSplit: MR-Dataflow

MapReduce
Techniques
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(Big) Data Analytics Pipeline

Data Schema & Data
Extraction/ Entity Fusion/ Anulytics /
Cleaning Matching Aggregation | Visualization

Data
Acquisition

Interpre-
tation

Data Integration




Citation Analysis Pipeline

For a given set of Bibtex entries

— Find matching Google Scholar entries

Data
Acquisition

— Determine aggregated citation counts

Data
Extraction/
Cleaning

Schema &
Entity
Matching

Data
Fusion/
Aggregation
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,Lazy Machine: Effectiveness

* Do the right thing! Do only things that are needed!

— Priorization / filtering of data objects to be processed

* Example: Top-5 publications of a researcher

— Entity Matching for highly cited
Google Scholar entries

Cutoff data that does not contribute to
the analytical result (anymore)

,does not” = ,is not likely to“

* Pipeline stages
— Data Akquisition: query strategies
— Data Extraction: on-demand
— Data Matching: relevant entities only
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,Lazy User”: Data Quality

* Automatic data integration does not give 100% data quality
— Data acquisition might miss relevant data
— Matching is imperfect (precision, recall)

* Pipeline & integrated result should effectively point the user
to the “weak points”

 Examples

— What (non-)matching pairs have the most effect on the analytical
result?

— Outlier detection - What pipeline stage caused the effect?



Lazy Big Data Integration

* Integrated approach for both ScaDSall

— Data integration workflow DRESDEN LEIPZIC
— Analytical query

e Current work based on Gradoop (Graph Analytics on Hadoop)

— Graph model + operators for analytical pipelines
Ol [A[O10f0

— Efficient execution in distributed environment

* Next steps
— Operators for complex analytical queries / statistics (e.g., h-index)

— Data provenance model for measuring the impact of data objects to
specific results
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