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Abstract
In this study, we propose a new approach for cross-lingual biomedical concept normalization, the process of mapping text in 
non-English documents to English concepts of a knowledge base. The resulting mappings, named as semantic annotations, 
enhance data integration and interoperability of documents in different languages. The US FDA (Food and Drug Adminis-
tration), therefore, requires all submitted medical forms to be semantically annotated. These standardized medical forms are 
used in health care practice and biomedical research and are translated/adapted into various languages. Mapping them to the 
same concepts (normally in English) facilitates the comparison of multiple medical studies even cross-lingually. However, 
the translation and adaptation of these forms can cause them to deviate from its original text syntactically and in wording. 
This leads the conventional string matching methods to produce low-quality annotation results. Therefore, our new approach 
incorporates semantics into the cross-lingual concept normalization process. This is done using sentence embeddings gener-
ated by BERT-based pretrained language models. We evaluate the new approach by annotating entire questions of German 
medical forms with concepts in English, as required by the FDA. The new approach achieves an improvement of 136% in 
recall, 52% in precision and 66% in F-measure compared to the conventional string matching methods.

Keywords Biomedical concept normalization · BERT · Sentence embedding · Cross-lingual · UMLS

Introduction

Concept normalization, also named as semantic annotation 
or entity linking, aims to map a sequence of text to a concept 
of a given knowledge base, such as an ontology, taxonomy 
or thesaurus. Those mappings or annotations have been 
applied to enhance search engines, data integration or drug 
discovery. For example, the MEDLINE database contains 
journal citations and abstracts for biomedical literature. The 

data in MEDLINE are annotated using the MeSH (Medical 
Subject Headings) vocabulary. PubMED,1 the search engine 
accessing the MEDLINE database, uses these annotations to 
improve retrieval speed and quality.

Semantic annotations enhance interoperability of the doc-
uments and facilitates data integration. The CDISC Stand-
ards, jointly developed by the US Food and Drug Adminis-
tration (FDA) and the Clinical Data Interchange Standards 
Consortium (CDISC), define the baselines of the interchange 
format of medical research data. Since 2016, regulatory sub-
missions to the FDA such as new drug applications have 
to comply with those standards, that incorporate semantic 
annotation of any submitted medical form. These study data 
standards ensure the FDA to process the submissions more 
efficiently. Furthermore, they also facilitate the FDA to solve 
research questions that need to integrate data from multiple 
studies. The vocabulary used for the annotations are defined 
in the Study Data Tabulation Model Controlled Terminol-
ogy (SDTM-CT), which is maintained and distributed as 
part of the NCI Thesaurus. This terminology covers a large 
set of medical forms, clinical studies and questionnaires, 

This article is part of the topical collection “Biomedical 
Engineering Systems and Technologies” guest edited by Hugo 
Gamboa and Ana Fred.

 * Ying-Chi Lin 
 lin@informatik.uni-leipzig.de

 Phillip Hoffmann 
 ph30gabo@studserv.uni-leipzig.de

 Erhard Rahm 
 rahm@informatik.uni-leipzig.de

1 ScaDS.AI/Department of Computer Science, Leipzig 
University, Augustusplatz 10, 04109 Leipzig, Germany 1 PubMed https:// www. ncbi. nlm. nih. gov/ pubmed.

http://orcid.org/0000-0003-4921-5064
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01295-7&domain=pdf
https://www.ncbi.nlm.nih.gov/pubmed


 SN Computer Science           (2022) 3:387   387  Page 2 of 20

SN Computer Science

for instance, the Epworth Sleepiness Scale (ESS) Question-
naire and the Hamilton Depression Rating Scale (HAMD). 
Here, an entire question is assigned to a unique correspond-
ing concept of the ontology. In this study, we focus on such 
type of annotations.

Cross-lingual concept normalization denotes the process 
of annotating non-English documents using English con-
cepts. This process is needed because the portion of English 
concepts still dominates most of the knowledge bases. For 
instance, one of the largest biomedical ontology sources, 
the Unified Medical Language System (UMLS) Metathe-
saurus,2 contains more than 16.1 million terms in its current 
version, 2021AA. Thereof, 71% are in English, followed by 
10% in Spanish and only 3% of all terms are in French or 
Portuguese, respectively. To augment the interoperability of 
non-English documents, cross-lingual concept normalization 
is indispensable. It is especially a necessity for finding the 
corresponding concepts of entire question as such concepts 
are not available in non-English languages.

It is common that medical forms are translated into 
other languages for the application in non-English speak-
ing regions, such as for clinical or epidemiological studies. 
Annotating these non-English forms using the same English 
concepts is not only a requirement of the FDA but also ena-
bles the comparison between multiple studies carried out 
in different languages. Figure 1 presents examples of such 
cross-lingual semantic annotations. The same standardized 
forms in various languages shall retain conceptually equiva-
lent meaning. Hence, many of these forms have not only 
been translated into a new language but also gone through 
some cultural adaptation and validation processes. For exam-
ple, the GAD-7 (Generalized Anxiety Disorder-7) form was 
first published in English in 2006 [2]. It has been translated 
and adapted/validated into Portuguese [3], into German [4] 
and into Spanish [5]. The adaptation might result in further 

modifications on the question text, which can complicate the 
cross-lingual concept normalization process.

Mapping questions to concepts in the same language 
(normally in English) is a trivial task as the concepts are 
mostly syntactically identical to the question, since the con-
cepts are derived from standardized forms. In fact, our previ-
ous studies [1, 6] show that the conventional string matching 
methods can already deliver good results. On the contrary, 
such methods perform poorly in a cross-lingual context due 
to text deviation caused by translation and adaptation. How-
ever, no matter cultural adaption or (machine/manual) trans-
lation, the semantics of the questions shall still be preserved. 
As a consequence, we proposed the idea of using deep neural 
network models to generate sentence embeddings as seman-
tic representations of the questions and the concepts [1]. We 
achieved a substantial improvement of the annotation quality 
and proved that semantic embedding methods are superior 
to string matching based methods in a cross-lingual setting.

In this work, we expand our previous work [1] and aim to 
further improve the annotation quality by three means: (1) 
by applying new encoders (2) by injecting UMLS into new 
models and (3) by refining the post-processing through re-
ranking annotation candidates. This study has the following 
main contributions: 

(1) We refine the workflows of using deep network sen-
tence encoders for cross-lingual biomedical concept 
normalization.

(2) We investigate the annotation quality using Biomedical 
Pretrained Language Models (BPLMs) as encoders.

(3) We include more state-of-the-art (SOTA) Sentence 
BERT (SBERT) encoders.

(4) We perform UMLS injection into the SBERT encoders 
and evaluate their performance.

(5) We apply candidate re-ranking using Cross-
Encoder and test its impact on the annotation quality.

(6) We further enhance performance by combining single 
model results with set operations.

Fig. 1  Cross-lingual annotation examples of two questions of medi-
cal forms. On the left, the original English questions (OE), their Ger-
man version (DE) and their translations using Google Translate (GO) 

are listed. On the right, the mapped UMLS concepts are shown. In 
UMLS, each concept is assigned with a CUI (Concept Unique Identi-
fier). (adapted from [1])

2 https:// www. nlm. nih. gov/ resea rch/ umls/ knowl edge_ sourc es/ metat 
hesau rus/ relea se/ stati stics. html.

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
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Background and Related Work

In this section, we briefly describe the recent development 
of the pretrained language models with the main focus on 
BERT (Bidirectional Encoder Representations from Trans-
formers, [7]) and its derivatives. The BERT-models have 
achieved many SOTA results in various natural language 
processing tasks (examples see GLUE3 and SuperGLUE4 
benchmarks). This also motivates us to integrate some of 
these models in our workflows for solving the concept nor-
malization problem.

BERT consists of multi-layer bidirectional Transformer 
encoder based on the Transformer implementation in [8]. It 
was released as two sizes: BERTbase consists of 12 Trans-
former layers and BERTlarge has 24 layers. BERT is trained 
using two unsupervised tasks: (1) masked language model 
(MLM) objective and (2) next sentence prediction (NSP). 
With the MLM, a certain percentage (usually 15%) of the 
input tokens are masked at random and BERT learns to 
predict those masked tokens. With the NSP task, BERT is 
trained to understand the relationship between sentences 
such as in Question Answering (QA) and Natural Language 
Inference (NLI) tasks. The initial BERT is pretrained on the 
BooksCorpus (800 M words) [9] and the English Wikipedia 
(2500 M words).

Liu et al. [10] modified the BERT’s pretraining approach 
and proposed RoBERTa (robustly optimized BERT 
approach). Here, they remove the NSP objective, use 
dynamic masking for the MLM and increase the mini-batch 
size. In addition, RoBERTa is trained for more steps and 
with much more data (use 160 GB instead of 13 GB). These 
approaches have advanced BERT to a better performing 
model.

Since BERT is relatively resource intensive to apply, Sanh 
et al. [11] developed a light-weighted version of BERT, the 
DistilBERT. The model is compressed using the so-called 
knowledge distillation [12, 13], where a compact model—
the student—is trained to reproduce the behavior of a more 
complex model—the teacher—by minimizing the differ-
ences between the model features. The DistilBERT com-
prises only 6 Transformer layers and has 40% fewer param-
eters. Nevertheless, it is 60% faster and still retains roughly 
97% of BERT’s performance on the GLUE benchmark.

MiniLM [14] is another light-weighted variant of BERT. 
The compression method of MiniLM, termed as deep self-
attention distillation, is also based on knowledge distilla-
tion principles but with some modifications. The approach 
distills the self-attention distribution and self-attention value 

relation of the last Transformer layer of the teacher model. 
In addition, it also incorporates an intermediate-size stu-
dent model, named as teacher assistant [15]. The teacher 
assistant distills the teacher model first and is subsequently 
used as the teacher to guide the training of the final student 
model. MiniLM outperforms DistilBERT in the majority of 
GLUE benchmark tasks and achieves a slightly lower aver-
age GLUE score compared to BERTbase [14].

MPNet (masked and permuted language modeling [16]) 
was proposed to overcome two problems. The first prob-
lem is that the MLM of BERT ignores a potential depend-
ency of the masked tokens. To address this disadvantage, 
XLNet [17] was introduced that uses permuted language 
modeling (PLM) as pretraining method. PLM inherits the 
benefits of autoregressive modeling but also allows the 
model to be trained in a bidirectional manner. However, it 
suffers from position discrepancy between pretraining and 
fine-tuning, which evokes the second problem. With MLM, 
BERT captures the position information and sees 85% of 
the input (if 15% of the tokens are masked). On the other 
hand, PLM does not have any position information, as the 
input sequence is presented in a permuted manner and the 
model only sees the preceding tokens of the to-predict token. 
This leads inevitably to the above-mentioned discrepancy 
between pretraining and fine-tuning of downstream tasks, 
where the model can see the entire input sequence. Conse-
quently, MPNet introduces position compensation to PLM 
and alleviates the previously mentioned issues [16].

Sentence-BERT (SBERT) and SBERT-WK In this study, 
we incorporate many pretrained SBERT models [18] as our 
sentence encoders. Our concept normalization task involves 
finding the most similar pair of sentences in a large dataset. 
Using BERT for such type of comparison is computationally 
expensive as it requires each sentence pair to be input into 
the network separately. For a comparison of 10,000 sen-
tences, BERT needs 50 million inference computations ( ∼ 
65 h, [18]). It is infeasible for us as the ontologies we use 
contain over 1 million entries. Hence, Reimers et al. [18] 
proposed SBERT to overcome such inefficiency. SBERT 
uses the above-mentioned BERT variants as backbone and 
adds a pooling operation (generally the mean pooling) to 
generate a fixed-sized sentence embedding. The models are 
trained using Siamese or triplet networks. The generated 
embeddings can be compared using similarity measures such 
as cosine similarity.

The SBERT-WK5 [19] aims to refine the sentence embed-
dings generated by SBERT. It modifies the SBERT word 
embeddings based on how informative/important the word 
is. The importance of a word is defined by its neighbor-
ing words of the same layer and the changes of its cosine 

3 General Language Understanding Evaluation https:// glueb enchm 
ark. com.
4 SuperGLUE https:// super. glueb enchm ark. com/ leade rboard. 5 WK stands for the initials of the two authors.

https://gluebenchmark.com
https://gluebenchmark.com
https://super.gluebenchmark.com/leaderboard
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similarities through layers. When a word aligns well with its 
neighboring word vectors, it is less informative. Similarly, 
a word which evolves faster across layers (larger variance 
of the pair-wise cosine similarity), it is more important. 
Since this pooling strategy only alters the already generated 
embeddings, no further training is needed.

BERT-based biomedical pretrained language models 
(BPLMs) Since the publication of the BERT model in 2018 
[7], various efforts have been made to adapt it for the bio-
medical domain. We name these as BERT-based Biomedical 
Pretrained Language Models (BPLMs). The earliest BPLM 
is BioBERT [20]. It uses the original pretrained BERT (pre-
trained on BooksCorpus and English Wikipedia) as base 
model and is further trained with PubMed abstracts and Pub-
Med Central full-text articles (PMC). A few months later, 
Alsentzer et al. [21] published Clinical BERT. One of its 
best performing variants uses BioBERT as base model and is 
trained with approximately 2 million MIMIC-III v1.4 clini-
cal notes [22]. The BlueBERT [23] can be understood as a 
combination of BioBERT and Clinical BERT. It has four 
variants depending on base model size (either BERTbase or 
BERTlarge ) and used training corpus (trained on the PubMed 
corpus solely or additional with the MIMIC-III corpus). 
Interestingly, the large-models do not perform better than 
the base-models. The BERTbase-variant trained solely on 
the PubMed corpus is analogous to BioBERT, yet the Blue-
BERT variant is trained for more steps (5 M steps instead 
of 0.2 M steps). Experiments on various NLP tasks show 
that this increase in training steps does improve the results.

The above-mentioned BPLM models are all derivatives 
of BERT which is already pretrained on BooksCorpus and 
English Wikipedia. Gu et al. [24] challenge such contin-
ual pretraining and argue that training BERT from scratch 
using domain-specific corpora is more beneficial when deal-
ing with domain-specific tasks. They pretrained the BERT 
model from scratch using the PubMed corpus and name their 
model as PubMedBERT. In addition to PubMedBERT, the 
authors also create a new benchmark, the Biomedical Lan-
guage Understanding and Reasoning Benchmark (BLURB), 
which comprises biomedical NLP tasks focusing on Pub-
Med-based applications. PubMedBERT outperforms the 
above-mentioned models in almost every BLURB task 
(only BioBERT is better in 2 of the 13 tasks). Hence, they 
conclude that to solve domain-specific tasks, it is better to 
use models entirely pretrained on domain-specific corpora 
than to use models that have already been trained with out-
domain corpora.

UMLS injected BPLMs Various studies have shown that 
for named-entity recognition or concept normalization tasks 
extra training of the language models on a given knowledge 
base is beneficial [16, 25–28]. Thus, we incorporate two 
such models in our workflows: CODER [27] and SapBERT 
[26]. Both approaches propose pretraining using UMLS 

synonyms, referred to as UMLS injection. In addition, 
CODER also embeds the relationships between the concepts 
into the vector representation. CODER has two versions. 
The English version, CODERENG , uses PubMedBERT as 
base model and the multilingual version, CODERALL , uses 
multilingual BERT as base model. Both versions differ also 
in training corpus: CODERENG utilizes only the English 
concepts in the UMLS while CODERALL is trained on con-
cepts of all languages. CODER applies contrastive learning. 
Here, term representations are learnt by maximizing cosine 
similarity between positive term-term pairs (i.e., between 
synonyms of a given concept) and term-relation-term pairs.

The SapBERT achieves many SOTA results on the medi-
cal entity linking (MEL) benchmark. The Self-Alignment 
Pretraining (SAP) is a procedure that learns to self-align 
synonyms in the UMLS and can also be used for fine-tuning 
on task-specific datasets. During pretraining, an online hard 
triplet mining is necessary to locate the most informative 
training examples. With each mini-batch, all possible triplets 
for all terms are constructed. A triplet (xa, xp, xn) contains an 
anchor xa , an arbitrary term in the mini-batch and the xp and 
xn denote each either a positive or a negative match of the xa . 
Only the triplets are retained for pretraining if they satisfy 
the following constraint :

where f is modeled by a BERT model and � is a predefined 
margin. In other words, only triplets with negative samples 
that are very similar (in the paper they use cosine similarity) 
to the positive sample by a margin of � are kept for pretrain-
ing. They use Multi-Similarity loss function [29] as learning 
objective that leverages the similarities among and between 
positive and negative pairs.

Multilingual pretrained language models In the current 
study we apply several multilingual pretrained language 
models. We choose the pretrained models developed by 
the same authors of SBERT. Further, we also include the 
multilingual versions of CODER (described previously) and 
SapBERT in our workflows.

Reimers et al. [30] proposed multilingual knowledge dis-
tillation that seeks to reinforce better alignment of the mul-
tilingual sentence embeddings, i.e., the sentence embeddings 
of different languages shall be mapped to the same vector 
space if they are semantically equivalent. Through the distil-
lation, the student model M̂ , generally (but not restricted to) 
a smaller multilingual pretrained model, learns the behav-
ior of the teacher model M, generally an intensively trained 
monolingual (English) model. The pretraining requires a 
set of parallel (translated) sentences ((s1, t1),… , (sn, tn)) 
where ti is the translation of si . The learning objective is to 
minimize the mean squared loss so that M̂(si) ≈ M(si) and 
M̂(ti) ≈ M(si).

‖f (xa) − f (xp)‖2 < ‖f (xa) − f (xn)‖2 + 𝜆
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The multilingual version of SapBERT, later referred to as 
SapBERT-XLMR, differs from the English version in two 
folds. Firstly, it is trained with UMLS terms of all languages. 
Secondly, the pretraining also incorporates general-domain 
translation data, including “muse” word translations [31] 
and parallel Wikipedia article titles. The original and the 
translated sequences are considered as synonyms for the 
SAP training process.

Methods

Corpus and Ontology

This study uses the same 21 German medical forms and 
the 497 questions as in [1]. Many of the forms are utilized 
in the LIFE6 Adult Study [32], a large scale cohort study 
investigating the factors leading to civilization diseases, such 
as vascular disease, heart function, allergies and depression. 
Examples of the included medical forms are the Patient 
Health Questionnaire (PHQ, [33]) and the GAD-7.

The UMLS Metathesaurus is one of the largest biomedi-
cal ontology sources by far. We consequently choose UMLS 
so that we can maximize the semantic interoperability for 
our corpus. Since some of the pretrained models that are 
applied in this study (namely CODER and SapBERT) use 
the UMLS version 2020AA for concept injection, we also 
limited ourselves to the same version for our annotation task 
for a fair comparison. The UMLS version 2020AA inte-
grates 214 source vocabularies and contains approximately 
4.28 million concepts. To improve annotation efficiency 
and since not all ontologies in the UMLS are relevant, we 
selected three source ontologies from the UMLS that still 
cover 99.1% of the GSC annotations [1]. The selected subset 
contains all concepts from (1) the NCI Thesaurus, (2) the 
LOINC, and (3) the Consumer Health Vocabulary. In total, 
the subset includes 1,115,090 terms belonging to 399,758 
concepts.

In order to evaluate the annotation quality, we manually 
annotated the medical forms using the selected UMLS sub-
set and built a Gold Standard Corpus (GSC) [1]. Overall, 
we identified 1105 GSC annotations. Their frequency dis-
tribution of number of annotations per question is shown 
in Fig. 2. In the GSC, most of the questions have up to 2 
annotations and about 10% of the questions have 3 or 4 
annotations. There are only a few questions being mapped 
to more than 5 UMLS concepts. From our observations, the 
duplication is mainly due to (1) same question of a form 
might be given multiple CUIs in the UMLS or (2) the same 

question occurs in different forms and hence has different 
CUIs. Figure 1 shows such examples.

Annotation Workflows

We design two workflows: (1) Workflow-Multi and (2) Work-
flow-MT to tackle the cross-lingual concept normalization 
problem (Fig. 3). In Workflow-Multi we input the German 
forms directly into a given multilingual sentence encoder to 
generate sentence embeddings. We use the same encoder 
to encode the embeddings for the English concepts in the 
UMLS (Fig. 3a). In Workflow-MT (MT stands for Machine 
Translation), we first translate the German forms into Eng-
lish using three machine translators (DeepL,7 Microsoft 
Translator8 and Google Translate9) (Fig. 3b). We then gener-
ate the embeddings of the translated questions and the Eng-
lish UMLS concepts using a given sentence encoder. The 
sentence encoders we used in Workflow-MT are not limited 
to English encoders but also include multilingual ones. In 
a preliminary study we observed that multilingual encoders 
we selected to generate English sentence embeddings can 
also achieve good annotation quality. After the encoding 
process, cosine similarity is computed between each pair of 
question and a candidate concept embeddings. These map-
pings are ranked and the Top k results are retained for evalu-
ation, where k ∈ {1, 2, 3, 5} . We apply the metrics precision, 
recall and F-measure to evaluate our results. We also use 
Workflow-MT to annotate the original English corpus for the 
reference comparison.

There are four optional components in the Workflow-
MT, which are presented in dashed lines in Fig. 3. First, 
the UMLS injection indicates that we train the sentence 
encoders using concepts in the UMLS to refine the sentence 
encoders. The methods and encoders used for training are 
detailed in "UMLS Injected SBERTv2 Models ( MGSapFull 
and MGSapSubset)". Second, we incorporate the SBERT-WK 
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Fig. 2  Frequency distribution of number of annotations of a question 
in the GSC (adapted from [1])

6 LIFE stands for Leipzig Research Center for Civilization Diseases 
https:// life. uni- leipz ig. de/ en/ life_ health_ study. html.

7 https:// www. deepl. com/ trans lator.
8 https:// www. micro soft. com/ en- us/ trans lator/.
9 https:// trans late. google. com.

https://life.uni-leipzig.de/en/life_health_study.html
https://www.deepl.com/translator
https://www.microsoft.com/en-us/translator/
https://translate.google.com
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[19] as we observed that applying SBERT-WK to the Eng-
lish embeddings generated by SBERT models does improve 
the annotation quality significantly [1]. The third and forth 
optional components in the Workflow-MT are extra post-
processing steps. The Cross-Encoder is used to rerank 
the candidates. In the combination step, set operations are 
applied to the result sets generated by different translated 
corpora. See "Post-processing" for more details about these 
post-processing methods.

Baseline: AnnoMap

AnnoMap [34, 35] is a conventional string matcher that gen-
erates candidates using three string similarity functions: TF/
IDF, Trigram and LCS (longest common substring). After 
candidate generation, an optional group-based selection can 
be applied to improve precision. AnnoMap retains candi-
dates whose similarity scores are above a given threshold � . 
We set two thresholds � ∈ {0.6, 0.7} that generally generate 
the best F-measures. We also retain the same result sizes 
k as in workflows using language pretrained models, i.e., 
k ∈ {1, 2, 3, 5} . To be able to obtain the desired result set 
sizes, we did not apply group-based selection in this study 
because it might return fewer candidates than a given k. We 
annotate the same three translated corpora as in the Work-
flow-MT and also the original English corpus as reference.

Model‑Groups

In total, we applied 53 English and multilingual BERT-
based pretrained language models that are grouped into five 
Model-Groups: MGSBERTv1 , MGBPLM , MGSBERTv2 , MGSapFull 
and MGSapSubset . First group, MGSBERTv1 , includes the ten 
English SBERT models we used in our previous study [1] as 
reference. These models are selected from SentenceTrans-
formers-v1 and are listed in Table 1. Be noted that since 
we use different UMLS versions in both studies (2019AB 

Fig. 3  Two workflows to generate cross-lingual annotations using sentence encoders

Table 1  Selected models from SentenceTransformers-v1 ( MGSBERTv1)

Mean pooling was applied in the SBERT training phase of all models

Model name Base model Size Training

BERTbase-N BERT Base NLI
BERTbase-NS BERT Base NLI + STSb
BERTlarge-N BERT Large NLI
BERTlarge-NS BERT Large NLI + STSb
RoBERTabase-N RoBERTa Base NLI
RoBERTabase-NS RoBERTa Base NLI + STSb
RoBERTalarge-N RoBERTa Large NLI
RoBERTalarge-NS RoBERTa Large NLI + STSb
DistilBERT-N DistilBERT 6 layers NLI
DistilBERT-NS DistilBERT 6 layers NLI + STSb
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in [1] and 2020AA in current work), the results differ. The 
description of other Model-Groups are detailed as follows.

Biomedical Pretrained Language Models ( MGBPLM)

We select nine BERT-based BPLMs from BioBERT, Pub-
MedBERT, SapBERT and CODER (Table 2). Six of them 
are English encoders, which are trained using English text 
and the other three are multilingual encoders. PubMedBERT 
differs from BioBERT in that it is trained from scratch using 
PubMed corpus while BioBERT was also pretrained with 
English Wikipedia and BookCorpus. There are two ver-
sions of PubMedBERT, one version is pretrained only with 
abstracts of PubMed (named PubMedBERTabstract ) whereas 
the other one is also trained on full text of PubMed articles 
( PubMedBERTfull ). Both SapBERT and CODER use Pub-
MedBERT as base-model and are injected with the UMLS 
2020AA full version. Pretrained SapBERT models are 
available in two versions: one with [CLS] representation 
( SapBERTCLS ) and one with mean-token ( SapBERTmean ). 
We applied both the English and the multilingual encoders 
in MGBPLM for the Workflow-MT and eventually only the 
multilingual encoders for Workflow-Multi.

SBERTv2 Models ( MGSBERTv2)

Since the publication of our previous study [1], various new 
models are trained into Sentence-BERT and are included in 
the SentenceTransformers-v2.10 Among them, we selected 
ten English models and four multilingual models that have 

shown to yield good results in NLP tasks and vary in effi-
ciency (Table 3).

English encoders The selected ten English SBERTv2 
models are mainly derived from MPNet, RoBERTa, Dis-
tilRoBERTa and MiniLM. They are fine-tuned on three 
different training sets: NLI + STSb, paraphrase and ALL. 
The NLI + STSb training set includes the NLI datasets11 
and the STSb dataset [38]. Additional corpora12 are used to 
train the models using the paraphrase training set. The ALL 
corpus further expands the paraphrase training set into a 
dataset including one billion sentence pairs from various 
sources.13 We also apply the optional SBERT-WK to the 
new SBERTv2 English encoders.

Multilingual encoders We choose three new multilin-
gual models from the SentenceTransformers-v2, which are 
listed as M2-M4 in Table 3. We retain the best performing 
model in our previous study (M1) for comparison. Unlike 
the models in MGBPLM , we apply only the English encoders 
in MGSBERTv2 for Workflow-MT as, according to our pre-
liminary study, the SBERTv2 multilingual encoders do not 
generate good annotation results using Workflow-MT.

UMLS Injected SBERTv2 Models ( MGSapFull and MGSapSubset)

Among the BPLM models, CODER and SapBERT are 
both with UMLS injection. Based on our research results, 

Table 2  Selected English and multilingual BPLM models

All models consists of 12 transformer layers as BERTbase except SapBERT-XLMRlarge is based on BERTlarge

PubMed PubMed abstracts, PMC PubMed Central full-text articles

Model name Base model Representation Pretraining UMLS injection

(a) English encoders
BioBERT BERT (Wikipedia, Book-

Corpus)
[CLS] PubMed –

PubMedBERTabstract BERT from scratch [CLS] PubMed –
PubMedBERTfull BERT from scratch [CLS] PubMed, PMC –
SapBERTCLS PubMedBERTfull [CLS] PubMed, PMC 2020AA English
SapBERTmean PubMedBERTfull Mean-token PubMed, PMC 2020AA English
CODERENG PubMedBERTabstract [CLS] PubMed 2020AA English
(b) Multilingual encoders
SapBERT-XLMRbase XLMRbase [CLS] Multilingual CommonCrawl 2020AB multilingual
SapBERT-XLMRlarge XLMRlarge [CLS] Multilingual CommonCrawl 2020AB multilingual
CODERALL mBERT [CLS] Multilingual Wikipedia 2020AA multilingual

10 https:// www. sbert. net/ index. html.

11 Containing the Stanford Natural Language Inference dataset [36] 
and the Multi-Genre NLI dataset [37].
12 Sentence-compression, SimpleWiki, altlex, msmarco-triplets, 
quora-duplicates, coco-captions, flickr30k-captions, yahoo-answers-
title-question, S2ORC-citation-pairs, stackexchange-duplicate-ques-
tions, wiki-atomic-edits.
13 https:// huggi ngface. co/ sente nce- trans forme rs/ all- mpnet- base- v2.

https://www.sbert.net/index.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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SapBERT models perform significantly better than CODER 
(see Table 8). Consequently, we use the method proposed in 
SapBERT [26]14 to inject UMLS 2020AA into the English 
models of MGSBERTv2 . For the injection, we use either the 
full version of the UMLS ( MGSapFull ) or the selected subset 
of the UMLS ( MGSapSubset , subset selection see "Corpus and 
Ontology"). Since these UMLS injected models are SBERT-
based, we are also able to apply SBERT-WK to them.

In the Workflow-MT, a configuration, denoted as config 
in the following text, is determined by a given model, with 
or without SBERT-WK, different translated corpora and the 
various result sizes. Table 4 shows the number of models of 
each Model-Group and the corresponding number of con-
figs used to generate annotation results.

Post‑processing

Combination using set operations Our previous studies [1, 
6, 39] show that combining annotation results using set 
operations can further improve annotation quality. We also 
conclude that combining result sets of the three different 
translated corpora deliver the best quality [1]. Hence, within 
each Model-Group, we combine the annotation candidates 
generated by the single configs of the three different 
translated corpora (Google Translate, DeepL and Microsoft 
Translator) using intersection, union and 2-vote-agreement 

(an annotation is considered as correct by at least two of the 
three configs) in this study.

Cross-Encoders For finding the most similar sentence 
pair, if two sentences are passed into the encoder-net-
work simultaneously, such a network is named Cross-
Encoder [40]. Thakur et al. [41] show that a fine-tuned 
Cross-Encoder (BERT) delivers better results for the 
STS Benchmark than a fine-tuned Bi-Encoder (SBERT). 
However, since the sentences are passed to the network in 
pairs, using Cross-Encoder for finding most similar sen-
tences is computationally expensive as it demands quadratic 
time complexity. To overcome this inefficiency and still tak-
ing the advantage of the better result quality of the Cross-
Encoder, we apply the Cross-Encoder on a limited 

Table 3  Selected models from SentenceTransformers-v2

Mean pooling was applied in the SBERT training phase of all models

(a) English encoders

Model name Base model Size Training

MPNet-STSb MPNet Base NLI + STSb
RoBERTa-STSb RoBERTa Base NLI + STSb
DistilRoBERTa-STSb DistilRoBERTa 6 layers NLI + STSb
MPNet-Paraphrase MPNet Base Paraphrase
MiniLM(L12)-Paraphrase MiniLM Base Paraphrase
MiniLM(L6)-Paraphrase MiniLM 6 layers Paraphrase
MPNet-ALL MPNet Base All
DistilRoBERTa-ALL DistilRoBERTa Base All
MiniLM(L12)-ALL MiniLM Base All
MiniLM(L6)-ALL MiniLM 6 layers All

(b) Multilingual encoders

Model code Teacher model Student model Languages

M1 mUSE DistilmBERT 15 languages
M2 mUSE DistilmBERT 50+ languages
M3 MPNet-Paraphrase XLM-R 50+ languages
M4 MiniLM(L12)-Paraphrase XLM-R 50+ languages

Table 4  Number of models and configurations used in Workflow-MT 

In column SBERT-WK, “n.a.” indicates that SBERT-WK is not appli-
cable to BPLM models
GO Google Translate, DL DeepL, MS Microsoft Translator

Model-
Group

Mod-
els

SBERT-
WK

Cor-
pus

Result size config

MGSBERTv1 10 With or w/o GO

DL

MS

k ∈ {1, 2, 3, 5} 192

MGBPLM 9 n.a. 108
MGSBERTv2 10 With or w/o 160
MGSapFull 10 160
MGSapSubset 10 160

14 https:// github. com/ cambr idgel tl/ sapbe rt.

https://github.com/cambridgeltl/sapbert
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candidate list. We first reduce the search space by generating 
a short list of candidates using the standard cosine similarity 
ranking. We then use the Cross-Encoder to rerank these 
candidates and evaluate the Topk results accordingly. We 
utilize the implementation of Cross-Encoder in the Sen-
tenceTransformers-v2.15 We select the Cross-Encoder 
model stsb-roberta-large as it delivers the best results for 
the STS benchmark. The Cross-Encoder returns a score 
for each given sentence pair. Given an encoder config, a 
sentence pair comprises a question of the given translated 
corpus (the reference sentence) and one of the candidates 
found by that config. For each single config, we retain 
the best 50 candidates for reranking. For each combination, 
we first rerank the 50 candidates generated by each single 
config and then apply the set operations to combine the 
reranked candidates to obtain the final annotation results.

Evaluation

In this section, we first present the annotation quality of 
AnnoMap, the conventional string matching method. We 
then report the results of the proposed workflows: Workflow-
Multi and Workflow-MT. In addition to annotation quality, 
we also investigate the computation efficiency of the models 
used in Workflow-MT and the combination results. Further, 
we give a reflection on the relationship between recall and 
result size. At the end of the section, we summarize our 
main findings.

Baseline: AnnoMap

The best results of the conventional string matching method, 
AnnoMap, are shown in Table 5. When using the original 
English corpus, AnnoMap obtain the best precision of 
93.6%, best recall of 86% and best F-measure of 79.49%. 
However, when annotating translated corpora, the AnnoMap 
performs far less well: 32% reduction in precision, 50.4% 
in recall and 41.13% in F-measure. The large drop in recall 
indicates that the paraphrase of the questions after trans-
lation/cultural adaptation prevents the conventional string 
matching method from finding the correct annotations, espe-
cially in recall. The results of AnnoMap also show that the 
most suitable machine translator is Google Translate while 
the annotation quality using DeepL and Microsoft Transla-
tor are worse.

Annotation Using Pretrained Language Models

Workflow‑Multi

The Workflow-Multi has the advantage of not requir-
ing machine translators but uses the German questions 
as input. We applied the three multilingual encoders in 
the MGBPLM (Table 2) and the four multilingual encod-
ers in the MGSBERTv2 (Table 3) for this workflow. Table 6 
presents the averaged annotation quality of these multi-
lingual models. Among the MGBPLM models, SapBERT 
models perform significantly better than the CODERALL . 
Actually, CODERALL is the worst performing multilingual 
model among all. Among the MGSBERTv2 models, M3 per-
forms best and is better than the best model we tested in 
our previous study [1]. The best multilingual encoder is the 
SapBERT-XLMRlarge . It gains approximately 8% more than 
its base model ( SapBERT-XLMRbase ) in every averaged met-
ric and also outperforms the best MGSBERTv2 multilingual 
model (M3). When comparing results of single configs, 

Table 5  The best precision, recall and F-measure obtained from 
AnnoMap with thresholds � ∈ {0.6, 0.7} and of result sizes 
k ∈ {1, 2, 3, 5}

The last row of each metric in grey is the best corresponding result 
obtained using the original English corpus (OE)
GO Google Translate

Corpus � Result size Precision Recall F-measure

Precision
GO 0.7 Top1 61.60 13.94 22.73
OE 0.7 Top1 93.60 41.00 57.02
Recall
GO 0.6 Top5 35.50 36.11 35.80
OE 0.6 Top5 50.91 86.15 64.00
F-measure
GO 0.6 Top2 53.04 30.05 38.36
OE 0.6 Top2 86.32 73.67 79.49

Table 6  Averaged annotation quality using Workflow-Multi 

For the model names refer to Table 2 and Table 3. Models are ranked 
by F-measure within each Model-Group

Model name MPrecision MRecall MF-measure

MGBPLM

   SapBERT-XLMRlarge 48.22 50.59 45.85
   SapBERT-XLMRbase 40.48 42.15 38.34
   CODERALL 14.48 16.13 14.13

MGSBERTv2

   M3 44.18 46.76 42.11
   M1 43.88 45.95 41.63
   M2 41.40 43.46 39.32
   M4 37.55 39.30 35.62

15 https:// www. sbert. net/ examp les/ appli catio ns/ cross- encod er/ 
README. html.

https://www.sbert.net/examples/applications/cross-encoder/README.html
https://www.sbert.net/examples/applications/cross-encoder/README.html
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the superiority of the model over other multilingual encod-
ers can be seen again (Table 7). Using Workflow-Multi, 
SapBERT-XLMRlarge generates 60.16% as the best preci-
sion, 68.69% as best recall and 52.33% as best F-measure.

Workflow‑MT

The following presents the results of Workflow-MT. We test 
if integrating machine translators into cross-lingual biomedi-
cal concept normalization workflow improves the annotation 
quality. For this workflow, we also use multilingual encoders 
in MGBPLM to encode English corpora (original English and 
the three translated English corpora).

BPLM models Table 8 presents the performance of the 
nine models in the MGBPLM , including 6 English encod-
ers and 3 multilingual encoders. Interestingly, the best two 
models are the multilingual models ( SapBERT-XLMRlarge 
and SapBERT-XLMRbase ). The models with UMLS injec-
tion (SapBERT and CODER models) outperform the 
models without UMLS injection (PubMedBERT and 
BioBERT) remarkably. All SapBERT models exceed 
CODER models. Notably, the two multilingual SapBERT 
models ( SapBERT-XLMRlarge and SapBERT-XLMRbase ) 
achieve better results than the two English SapBERT 
models ( SapBERTmean and SapBERTCLS ). Similarly, the 

multilingual CODER ( CODERALL ) is also better than the 
English CODER ( CODERENG).

When comparing the averaged results of the same mul-
tilingual models but using different workflows (Table 6 and 
Table 8), we observe that the multilingual models deliver 
better results using Workflow-MT than Workflow-Multi. 
The SapBERT-XLMRlarge improves 3.37% in F-meas-
ure using Workflow-MT (from 45.85 to 49.22%) and the 
SapBERT-XLMRbase gains an even larger increase of 8.38% 
in F-measure (from 38.34 to 46.72%). The CODERALL per-
forms dramatically different on using different workflows, 
in Workflow-Multi it only reaches an averaged F-measure of 
14.13% while using Workflow-MT it achieves an averaged 
F-measure of 38.10%.

UMLS injection of SBERTv2 models Table 9 presents the 
averaged annotation quality of models without UMLS injec-
tion ( MGSBERTv2 ), those injected with 2020AA UMLS full 
version ( MGSapFull ) and those injected with the selected sub-
set ( MGSapSubset ). UMLS injection is beneficial for 8 of the 
10 models (except MiniLM(L12)-ALL and MiniLM(L6)-
ALL). We also observe that UMLS injection improves dif-
ferent models in various magnitudes. The most significant 
improvement is seen by DistilRoBERTa-ALL. Before UMLS 
injection, RoBERTa-STSb delivers the best averaged annota-
tion quality (colored in blue). After UMLS injection (with 
either full version or subset), DistilRoBERTa-ALL becomes 
the best model. The second best model, MPNet-ALL, can 
also outperform RoBERTa-STSb after UMLS injection.

We conduct pairwise t-test to compare the annotation 
metrics of the same model between different Model-Groups 
to test the effect of UMLS injection statistically. Each com-
parison is done between the identical configs of the same 
model between two Model-Groups: MGSBERTv2 against 
MGSapFull , MGSBERTv2 against MGSapSubset and MGSapFull 
against MGSapSubset . The results are shown as superscripts 
in Table 9. Only one model, MiniLM(L6)-ALL, performs 
better without UMLS injection statistically (p-value < 
0.01). Among the eight models that benefit from the UMLS 
injection, five (of MGSapFull ) and six (of MGSapSubset ) of 
them perform significantly better than uninjected models 
(denoted with ** in the table). When comparing the results 

Table 7  Best performing 
config for each metric using 
Workflow-Multi in MGBPLM and 
MGSBERTv2

Metric Model name Result size Precision Recall F-measure

MGBPLM

   Precision SapBERT-XLMRlarge 1 60.16 27.06 37.33
   Recall SapBERT-XLMRlarge 5 31.74 68.69 43.42
   F-measure SapBERT-XLMRlarge 2 56.44 48.78 52.33

MGSBERTv2

   Precision M1 1 56.74 25.52 35.21
   Recall M3 5 28.98 63.62 39.82
   F-measure M1 2 51.69 45.70 48.51

Table 8  Averaged annotation quality of BPLM models

For the model details refer to Table 2. Models are ranked by F-meas-
ure

Model name M
Precision

M
Recall

MF-measure

SapBERT-XLMRlarge 51.94 54.22 49.22
SapBERT-XLMRbase 49.28 51.48 46.74
SapBERTmean 43.80 45.85 41.55
SapBERTCLS 43.16 45.17 40.98
CODERALL 39.92 42.35 38.10
CODERENG 39.10 41.85 37.49
PubMedBERTabstract 25.51 27.66 24.59
PubMedBERTfull 20.22 21.63 19.36
BioBERT 15.99 17.34 15.43
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between injection using full version ( MGSapFull ) or selected 
subset ( MGSapSubset ), the differences are mostly insignifi-
cant: merely two models are better using selected subset 
(MiniLM(L12)-Paraphrase and MiniLM(L6)-Paraphrase, 
in bold), while one model (MPNet-Paraphrase) is better 
using full version. Hence, we can conclude that UMLS 
injection into SBERTv2 models is generally beneficial for 
our biomedical concept normalization task, though various 

effectiveness is observed. Moreover, injection using a rel-
evant subset is sufficient and also more efficient than inject-
ing the full version of the UMLS.

Best configs of Workflow-MT The best performing sin-
gle configs in precision, recall and F-measure are shown 
in Tables 10, 11, 12, respectively. We present the best 5 
results within each Model-Group. The last row in gray of 
each model group is the best results using original English 
corpus as an indication of upper bound. The first three met-
ric columns are the results using standard workflow, i.e., the 
candidates are ranked using the cosine similarities of the 
mappings. The last three metric columns show the results 
that are reranked using Cross-Encoder. Overall, we 
can exceed our previous results in [1] (comparable results 
shown as MGSBERTv1 models in Tables 10, 11, 12) in all met-
rics. The best annotation quality generated by Workflow-
MT on annotating original English corpus exceeds that of 
conventional string matching. We can push the upper limit 
for a further 6.04% in recall (92.04 vs 86%) and 2% in the 
best precision and F-measure (precision: 95.98 vs. 93.6%, 
F-measure: 81.34 vs 79.49%).

We achieve the best precision of 71.23% with both 
standard ranking and reranking with Cross-Encoder 
(Table  10). Reranking using Cross-Encoder  can 
improve the precision results for almost all the 25 configs 
(only 4 cases in MGSapFull and MGSapSubset are exceptions). 
The best recall of standard ranking is 73.67% by the best 
BPLM model ( SapBERT-XLMRlarge with Google Translate 
corpus, Table 11). Using Cross-Encoder for reranking, 
we can improve the best recall further to 74.84% with RoB-
ERTa-STSb using Google Translate and with SBERT-WK. 
Actually, this config delivers the best recalls within each of 
the SBERTv2 Model-Groups. Similar to the best precision 
results, reranking using Cross-Encoder improves most 
best recall results except from three configs (two con-
figs in MGBPLM and one config in MGSBERTv2 ). The best 
F-measure, 61.90%, is delivered by DistilRoBERTa-ALL 
using Google Translate with SBERT-WK in MGSapSubset 
(Table 12). On the other hand, the best F-measure using 
Cross-Encoder does not exceed this result. But in gen-
eral, reranking using Cross-Encoder is also beneficial 
for F-measure results. The F-measures of only 4 configs 
(two in MGSapFull and two in MGSapSubset ) are not improved 
by reranking.

The best performing model in MGBPLM is the 
SapBERT-XLMRlarge . It achieves the best 3 results in 
every metric using the 3 different translated corpora in 
the order of Google Translate, DeepL and Microsoft 
Translator (Tables 10, 11, 12). An interesting observa-
tion is, since the model is a multilingual encoder, it is 
also applied in the Workflow-Multi. Comparing its best 
results using Workflow-Multi (Table 7) and those using 
Workflow-MT, using translated corpora can deliver even 

Table 9  Averaged annotation quality of MGSBERTv2 , MGSapFull and 
MGSapSubset models

For the model details refer to Table  3. The best models of 
each Model-Group are in blue. The a indicates the models of 
MGSBERTv2  are significantly better than models in both MGSapFull and 
MGSapSubset using pairwise t-tests (p-value < 0.01). Contrastingly, b 
shows the models of MGSapFull and MGSapSubset are statistically bet-
ter than those of MGSBERTv2 . c specifies the models of MGSBERTv2 are 
better than those of MGSapSubset . The better models are in bold when 
comparing the metrics between MGSapFull and MGSapSubset

Model name MPrecision MRecall MF-measure

MGSBERTv2

 MiniLM(L12)-ALL 49.74 51.72 47.08
 MiniLM(L6)-ALL 48.88a 50.90a 46.30a

 DistilRoBERTa-ALL 48.77 50.88 46.21
 MPNet-ALL 49.47 51.64 46.90
 MiniLM(L12)-Paraphrase 45.63 47.97 43.37
 MiniLM(L6)-Paraphrase 44.20 46.59 42.09
 MPNet-Paraphrase 50.26 52.10c 47.50
 DistilRoBERTa-STSb 48.52 51.14 46.15
 MPNet-STSb 50.48 52.62 47.80a

 RoBERTa-STSb 50.58 53.22 48.08
MGSapFull

 MiniLM(L12)-ALL 47.80 49.71 45.24
 MiniLM(L6)-ALL 45.48 47.48 43.12
 DistilRoBERTa-ALL 52.65b 54.34b 49.65b

 MPNet-ALL 52.28b 54.09b 49.40b

 MiniLM(L12)-Paraphrase 48.47b 50.44b 45.87b

 MiniLM(L6)-Paraphrase 44.39 46.46 42.10
 MPNet-Paraphrase 50.78 52.48 47.95
 DistilRoBERTa-STSb 50.81b 53.19b 48.19b

 MPNet-STSb 50.58 52.27 47.76
 RoBERTa-STSb 52.00b 54.21b 49.24b

MGSapSubset

 MiniLM(L12)-ALL 47.79 49.72 45.24
 MiniLM(L6)-ALL 45.43 47.43 43.08
 DistilRoBERTa-ALL 52.58b 54.34b 49.61b

 MPNet-ALL 52.24b 54.04b 49.36b

 MiniLM(L12)-Paraphrase 48.63b 50.62b 46.03b

 MiniLM(L6)-Paraphrase 45.59b 47.82b 43.32b

 MPNet-Paraphrase 50.19 51.49 47.25
 DistilRoBERTa-STSb 49.98b 52.32b 47.39b

 MPNet-STSb 50.80 52.41 47.92
 RoBERTa-STSb 51.95b 54.11b 49.17b
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better results. When inputing the German forms directly 
into SapBERT-XLMRlarge , the best precision, recall and 
F-measure are 60.16, 68.69 and 52.33%. On the other 
hand, using Google Translate translated corpus as input, it 
achieves 67.61% in precision, 73.69% in recall and 58.37% 
in F-measure. This implies that the alignment of multilin-
gual sentences of the model is still not as good as aligning 
solely the English sentences.

Notably, DistilRoBERTa-ALL of MGSapSubset with the set-
ting of including SBERT-WK and using Google Translate 
corpus delivers the best precision and F-measure of all sin-
gle configs. Without UMLS injection ( MGSBERTv2 ), RoB-
ERTa-STSb using Google Translate and with SBERT-WK 
delivers the best precision, recall and F-measure. However, 
after UMLS injection, DistilRoBERTa-ALL is able to out-
perform RoBERTa-STSb in best precision and F-measure. 

Table 10  Best single configs in precision within each Model-Group using only cosine similarity for ranking or additionally reranked with 
Cross-Encoder 

In column SBERT-WK, “n.a.” indicates that SBERT-WK is not applicable to BPLM models. The last row of each metric in gray is the best cor-
responding result obtained using the original English corpus (OE). The best precision of all configs of translated corpora and OE are in bold
GO Google Translate, DL DeepL, MS Microsoft Translator, P precision, R recall, F F-measure

Model SBERT-WK Corpus Result size Standard Cross-Encoder

P R F P R F

MGSBERTv1

   DistilBERT-NS With GO Top1 66.80 30.05 41.45 70.62 31.76 43.82
   BERTlarge-NS W/o GO Top1 66.60 29.95 41.32 70.62 31.76 43.82
   RoBERTabase-N With GO Top1 65.79 29.59 40.82 70.02 31.49 43.45
   BERTbase-N With GO Top1 65.59 29.50 40.70 70.02 31.49 43.45
   RoBERTalarge-NS W/o GO Top1 65.39 29.41 40.57 69.82 31.40 43.32
   BERTlarge-NS W/o OE Top1 94.77 42.62 58.80 92.35 41.54 57.30

MGBPLM

   SapBERT-XLMRlarge n.a. GO Top1 67.61 30.41 41.95 69.22 31.13 42.95
   SapBERT-XLMRlarge n.a. DL Top1 66.40 29.86 41.20 70.02 31.49 43.45
   SapBERT-XLMRlarge n.a. MS Top1 63.98 28.78 39.70 69.01 31.04 42.82
   SapBERT-XLMRbase n.a. GO Top1 63.98 28.78 39.70 65.19 29.32 40.45
   SapBERT-XLMRlarge n.a. GO Top2 62.75 54.57 58.37 63.38 57.01 60.03
   SapBERT-XLMRbase n.a. OE Top1 94.57 42.53 58.68 91.95 41.36 57.05

MGSBERTv2

   RoBERTa-STSb With GO Top1 67.81 30.50 42.07 70.22 31.58 43.57
   MPNet-Paraphrase With DL Top1 66.60 29.95 41.32 70.62 31.76 43.82
   MPNet-STSb With DL Top1 66.40 29.86 41.20 70.22 31.58 43.57
   MiniLM(L12)-ALL With DL Top1 66.40 29.86 41.20 71.23 32.04 44.19
   MPNet-STSb With GO Top1 66.00 29.68 40.95 69.42 31.22 43.07
   MiniLM(L12)-ALL With OE Top1 95.17 42.81 59.05 92.76 41.72 57.55

MGSapFull

   DistilRoBERTa-ALL With MS Top1 70.42 31.67 43.70 67.00 30.14 41.57
   DistilRoBERTa-ALL With GO Top1 70.22 31.58 43.57 69.22 31.13 42.95
   DistilRoBERTa-ALL With DL Top1 68.81 30.95 42.70 69.82 31.40 43.32
   RoBERTa-STSb With GO Top1 68.61 30.86 42.57 70.02 31.49 43.45
   MPNet-ALL With GO Top1 68.21 30.68 42.32 69.22 31.13 42.95
   MiniLM(L6)-Paraphrase W/o OE Top1 95.98 43.17 59.55 93.16 41.90 57.80

MGSapSubset

   DistilRoBERTa-ALL With GO Top1 71.23 32.04 44.19 69.62 31.31 43.20
   RoBERTa-STSb With GO Top1 69.22 31.13 42.95 70.42 31.67 43.70
   DistilRoBERTa-ALL With MS Top1 69.22 31.13 42.95 66.00 29.68 40.95
   DistilRoBERTa-ALL With DL Top1 69.01 31.04 42.82 69.82 31.40 43.32
   MPNet-ALL With GO Top1 68.01 30.59 42.20 69.01 31.04 42.82
   DistilRoBERTa-ALL W/o OE Top1 95.98 43.17 59.55 91.95 41.36 57.05
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RoBERTa-STSb delivers not only the best recalls among all 
SBERTv2 models, with the help of Cross-Encoder, it 
achieves the best recall of all models compared in this study. 
All the best metrics of the SBERT-based models (models 
in MGSBERTv1 , MGSBERTv2 , MGSapFull and MGSapSubset ) are 
produced by configs with SBERT-WK. This consents 
to our previous observation that adding SBERT-WK does 
improve annotation quality [1]. However, we also observe 
that many of the configs without SBERT-WK also perform 

well in recall and F-measure (Tables 11, 12). Furthermore, 
these best configs all achieve the best results using Google 
Translate corpora with only one exception (best precision 
of MGSapFull ). Consent to the AnnoMap results, the Google 
Translate is the most suitable machine translator also in the 
pretrained language model workflow.

The best precisions are delivered with configs of result 
size as Top1 and as expected, the best recalls of result size as 
Top5. The best F-measures are generated by configs with 

Table 11  Best single configs 
in recall within each Model-
Group using only cosine 
similarity for ranking or 
additionally reranked with 
Cross-Encoder 

In column SBERT-WK, “n.a.” indicates that SBERT-WK is not applicable to BPLM models. The last row 
of each metric in grey is the best corresponding result obtained using the original English corpus (OE). The 
best recall of all configs of translated corpora and OE are in bold
GO Google Translate, DL DeepL, MS Microsoft Translator, P precision, R recall, F F-measure

Model SBERT-WK Corpus Result size Standard Cross-Encoder

P R F P R F

MGSBERTv1

   RoBERTabase-NS With GO Top5 31.73 70.41 43.74 32.64 73.39 45.18
   RoBERTalarge-NS W/o GO Top5 31.86 70.32 43.85 31.67 71.22 43.84
   RoBERTabase-N With GO Top5 31.35 69.59 43.23 31.79 71.49 44.01
   BERTbase-N With GO Top5 31.15 69.14 42.95 32.35 72.76 44.79
   RoBERTabase-NS With DL Top5 30.91 68.51 42.60 32.39 72.85 44.85
   BERTbase-N With OE Top5 41.27 91.95 56.97 40.24 90.50 55.71

MGBPLM

   SapBERT-XLMRlarge n.a. GO Top5 33.66 73.67 46.21 32.43 72.94 44.90
   SapBERT-XLMRlarge n.a. DL Top5 33.17 72.49 45.51 32.56 73.21 45.07
   SapBERT-XLMRlarge n.a. MS Top5 32.38 70.86 44.45 31.15 70.05 43.12
   SapBERT-XLMRbase n.a. GO Top5 31.91 69.59 43.76 32.27 72.58 44.68
   SapBERT-XLMRbase n.a. MS Top5 31.10 68.05 42.69 31.10 68.05 42.69
   SapBERT-XLMRlarge n.a. OE Top5 41.89 91.58 57.48 39.96 89.86 55.32

MGSBERTv2

   RoBERTa-STSb With GO Top5 32.98 73.30 45.49 32.39 72.85 44.85
   RoBERTa-STSb With DL Top5 32.03 70.95 44.13 32.39 72.85 44.85
   MPNet-STSb With GO Top5 32.04 70.86 44.13 31.95 71.86 44.23
   DistilRoBERTa-STSb W/o GO Top5 31.70 70.32 43.70 32.56 73.21 45.07
   MPNet-Paraphrase W/o GO Top5 32.24 70.23 44.19 32.60 73.30 45.13
   MPNet-STSb With OE Top5 41.23 91.49 56.85 40.00 89.95 55.38

MGSapFull

   RoBERTa-STSb With GO Top5 33.09 73.57 45.65 33.16 74.57 45.91
   MPNet-Paraphrase W/o GO Top5 33.71 73.03 46.13 32.72 73.57 45.29
   MPNet-STSb W/o GO Top5 33.72 73.03 46.14 32.80 73.76 45.40
   DistilRoBERTa-ALL With GO Top5 33.02 72.85 45.44 32.52 73.12 45.01
   MPNet-ALL W/o DL Top5 33.40 72.22 45.68 32.23 72.49 44.62
   RoBERTa-STSb W/o OE Top5 42.18 92.04 57.85 40.08 90.14 55.49

MGSapSubset

   RoBERTa-STSb With GO Top5 33.05 73.48 45.59 33.28 74.84 46.07
   DistilRoBERTa-ALL With GO Top5 33.14 73.12 45.61 32.56 73.21 45.07
   MPNet-ALL W/o GO Top5 33.66 72.49 45.97 32.72 73.57 45.29
   MPNet-ALL With GO Top5 33.42 72.04 45.66 32.27 72.58 44.68
   MPNet-ALL W/o DL Top5 33.28 71.95 45.51 32.15 72.31 44.51
   DistilRoBERTa-STSb W/o OE Top5 41.71 91.76 57.35 40.04 90.05 55.43
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Top2 as result size. Only 2 of the 75 configs in Tables 10 - 
12 are exceptions. They are the config SapBERT-XLMRlarge 
using Google Translate ranked 5th in both the precision 
table (result size = 2 instead of 1) and the F-measure table 
(result size = 3 instead of 2). These exceptions are mainly 
due to that the SapBERT-XLMRlarge performs the best in the 
MGBPLM and therefore, even with sub-optimal result size, it 
still outperforms other configs. The configs with Top2 

result size generates the best F-measure can be explained by 
that in our corpus most of the questions have 2 GSC annota-
tions (as shown in Fig. 2).

Computation efficiency We used two NVIDIA V100 Ten-
sor Cores as GPUs to encode the questions and the UMLS 
concepts. Table 13 presents the computation time of the 
models in MGSBERTv1 , MGBPLM and MGSBERTv2 . Since the 
UMLS injection using SAP does not change the model 

Table 12  Best single configs in F-measure within each Model-Group using only cosine similarity for ranking or additionally reranked with 
Cross-Encoder 

In column SBERT-WK, “n.a.” indicates that SBERT-WK is not applicable to BPLM models. The last row of each metric in grey is the best cor-
responding result obtained using the original English corpus (OE). The best F-measure of all configs of translated corpora and OE are in bold
GO Google Translate, DL DeepL, MS Microsoft Translator, P precision, R recall, F F-measure

Model SBERT-WK Corpus Result size Standard Cross-Encoder

P R F P R F

MGSBERTv1

   RoBERTabase-N With GO Top2 61.51 53.94 57.47 63.48 57.10 60.12
   DistilBERT-NS With GO Top2 61.09 53.85 57.24 63.38 57.01 60.03
   RoBERTalarge-NS W/o GO Top2 60.74 53.48 56.88 62.98 56.65 59.65
   RoBERTabase-NS With GO Top2 60.78 53.30 56.80 63.58 57.19 60.22
   BERTbase-N With GO Top2 60.49 53.48 56.77 62.98 56.65 59.65
   RoBERTabase-NS With OE Top2 86.36 75.66 80.66 81.59 73.39 77.27

MGBPLM

   SapBERT-XLMRlarge n.a. GO Top2 62.75 54.57 58.37 63.38 57.01 60.03
   SapBERT-XLMRlarge n.a. DL Top2 61.86 53.57 57.42 63.18 56.83 59.84
   SapBERT-XLMRlarge n.a. MS Top2 59.92 51.95 55.65 59.96 53.94 56.79
   SapBERT-XLMRbase n.a. GO Top2 59.42 51.67 55.28 62.68 56.38 59.36
   SapBERT-XLMRlarge n.a. GO Top3 48.02 62.62 54.36 47.48 64.07 54.55
   SapBERT-XLMRbase n.a. OE Top2 87.29 75.84 81.16 81.79 73.57 77.47

MGSBERTv2

   RoBERTa-STSb With GO Top2 62.54 55.29 58.69 63.78 57.38 60.41
   MPNet-STSb With DL Top2 61.65 54.12 57.64 63.58 57.19 60.22
   DistilRoBERTa-STSb W/o GO Top2 61.48 54.03 57.51 63.38 57.01 60.03
   RoBERTa-STSb With DL Top2 61.13 53.94 57.31 63.58 57.19 60.22
   MiniLM(L12)-ALL With DL Top2 61.21 53.85 57.29 63.48 57.10 60.12
   MiniLM(L6)-ALL W/o OE Top2 86.95 75.38 80.76 81.59 73.39 77.27

MGSapFull

   DistilRoBERTa-ALL With GO Top2 65.94 57.47 61.41 63.18 56.83 59.84
   DistilRoBERTa-ALL With MS Top2 65.63 57.19 61.12 61.07 54.93 57.84
   RoBERTa-STSb With GO Top2 64.33 56.47 60.14 64.19 57.74 60.79
   DistilRoBERTa-ALL With DL Top2 63.73 55.66 59.42 63.48 57.10 60.12
   MPNet-STSb W/o GO Top2 63.73 55.02 59.06 63.38 57.01 60.03
   MiniLM(L6)-Paraphrase W/o OE Top2 87.83 75.75 81.34 81.49 73.30 77.18

MGSapSubset

   DistilRoBERTa-ALL With GO Top2 66.46 57.92 61.90 63.78 57.38 60.41
   DistilRoBERTa-ALL With MS Top2 64.80 56.47 60.35 60.36 54.30 57.17
   RoBERTa-STSb With GO Top2 64.43 56.56 60.24 64.39 57.92 60.98
   DistilRoBERTa-ALL With DL Top2 63.21 55.20 58.94 63.18 56.83 59.84
   MPNet-ALL W/o DL Top2 63.56 54.93 58.93 63.18 56.83 59.84
   MiniLM(L6)-Paraphrase W/o OE Top2 87.55 75.75 81.22 81.29 73.12 76.99
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structure, the encoding time of the models in MGSapFull and 
MGSapSubset remains the same as those in MGSBERTv2 . Simi-
larly, the same model but pretrained on different corpora 
(e.g., MPNet-STSb and MPNet-ALL) also have the same 
computation time and therefore are not shown separately in 
the table. We can conclude that the newly selected SBERTv2 
models not only outperform the SBERTv1 models in annota-
tion quality, they are also more efficient. MiniLM(L6) and 
DistilRoBERTa are the fastest models. Applying SBERT-
WK drastically increases the computation time because it 
relies on CPU to operate. Owing to the fact that all BPLM 
models are direct derivatives of the initial BERT, their effi-
ciency are alike. They are approximately 10% faster than the 
fastest SBERTv2 models with SBERT-WK.

Combination of results In our previous study [1] we 
showed that combining using set operations on the result 
sets of different translated corpora can improve annotation 
quality further. Therefore, we applied the combinations 
and obtained the best precisions by intersecting the result 
sets (Table 14), the best recalls by union (Table 15) and the 
best F-measures by 2-vote-agreements (Table 16). In each 
table, we present the best combination result of each Model-
Group on the given metric. The last three columns of these 
tables also show the results of reranking the candidates using 
Cross-Encoder before combination.

Table 13  Computing time per embedding of models in each Model-
Group

“n.a.” indicates that SBERT-WK is not applied to the large models 
and the BPLM models

Model W/o SBERT-WK (ms) With 
SBERT-
WK (ms)

MGSBERTv1

   BERTbase 0.99 46.47
   BERTlarge 1.48 n.a.
   RoBERTabase 0.79 35.92
   RoBERTalarge 1.37 n.a.
   DistilBERT 0.55 12.78

MGBPLM

   BioBERT 19.54 n.a.
   PubMedBERT 19.43 n.a.
   SapBERT 19.64 n.a.
   CODER 19.79 n.a.

MGSBERTv2

   MPNet 0.51 34.17
   RoBERTa 0.51 33.24
   DistilRoBERTa 0.30 22.59
   MiniLM(L12) 0.46 33.78
   MiniLM(L6) 0.27 22.55

Table 14  The best combination results in precision by combining three different corpora within each Model-Group using intersection

In column SBERT-WK, “n.a.” indicates that SBERT-WK is not applicable to BPLM models. The result size of Cross-Encoder results are in 
brackets
GO Google Translate, DL DeepL, MS Microsoft Translator, P precision, R recall, F F-measure

Model SBERT-WK Corpus Result size Standard Cross-Encoder

P R F P R F

MGSBERTv1

   DistilBERT-N With MS Top1 (Top2) 93.46 9.05 16.50 82.80 44.43 57.83
   RoBERTabase-NS With GO
   RoBERTalarge-N W/o DL

MGBPLM

   CODERALL n.a. MS Top1 (Top2) 92.94 7.15 13.28 87.32 38.64 53.58
   SapBERT-XLMRlarge n.a. DL
   SapBERTmean n.a. GO

MGSBERTv2

   MPNet-STSb With GO Top1 (Top2) 93.00 8.42 15.44 86.30 39.91 54.58
   DistilRoBERTa-STSb With MS
   MiniLM(L12)-Paraphrase W/o DL

MGSapFull

   MPNet-STSb W/o DL Top1 (Top2) 90.62 10.50 18.82 85.35 30.59 45.04
   RoBERTa-STSb With GO
   MPNet-STSb With MS

MGSapSubset

   RoBERTa-STSb With GO Top1 (Top2) 91.26 8.51 15.56 84.18 29.86 44.09
   MiniLM(L6)-Paraphrase With DL
   DistilRoBERTa-STSb With MS
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Overall, we are able to improve the best precision of using 
translated corpora to 93.46% by combining the results of 
the MGSBERTv1 models (Table 14). This is an improvement 
of 22.23% compared to best single config result (71.23%, 
Table 10). Combining three models in MGSapSubset achieves 
the best recall of 85.25% (Table 15), an increase of 11.58% 
compared to the best single config (73.67%, Table 11). On 
the other hand, combination only raises the best F-measure 
of 1.84% compared to single config (from 61.90 to 63.74%). 
Again, this best F-measure result is delivered by combin-
ing models in MGSapSubset as in best recall result. Unlike 
the enhancement we could see in the single config results, 
reranking using Cross-Encoder can not improve the 
combination results further but rather worsens them.

Recall vs result size It is clear, that applying union to 
three config result sets achieves a higher recall than a 
single config, as after union the result size increases by a 
factor of three at the most. Hence, we ask, given the same 
result size, which can deliver better recall: the union of three 
configs or a single config? To answer this question, we 
plot the change of recall over increasing result size up to 
150. We only consider the best model regarding the metric 
recall of each Model-Group (Fig. 4). We observe that the 
increase of recalls flattens at a result size of approximately 

13 when annotating the original English corpus (Fig. 4a). 
On the other hand, when annotating a translated corpus, 
the recalls keep increasing even until a result size of 140, 
though the increasing rates mostly reaches a saturation at the 
result size between 55 and 75 (Fig. 4b). Moreover, the single 
configs deliver higher recalls than combination when the 
result sizes smaller than approximately 30. However, with 
larger result sizes, the recalls of combination overtake those 
of single configs. This shows combination does raise the 
overall recall limit compared to single configs. These plots 
also reveal the potential maximum recalls can be reached 
when retaining the best 150 candidates. By combining the 
MGSapSubset models, it is possible to reach a recall of 94.48% 
and with single config using the best BPLM model (i.e., 
SapBERT-XLMRlarge ), a recall of 93.48% is attainable.

Result Summary

We compile the best results generated by each approach 
and show them in Fig. 5. Notably, if the task is not cross-
lingual but to annotate the original English forms, the pro-
posed Workflow-MT still outperforms the traditional string 
matching method even the questions and the correspond-
ing concepts are syntactically identical. Using the sentence 

Table 15  The best combination results in recall by combining three different corpora within each Model-Group using union

In column SBERT-WK, “n.a.” indicates that SBERT-WK is not applicable to BPLM models. The result size of Cross-Encoder results are in 
brackets
GO Google Translate, DL DeepL, MS Microsoft Translator, P precision, R recall, F F-measure

Model SBERT-WK Corpus Result size Standard Cross-Encoder

P R F P R F

MGSBERTv1

   RoBERTabase-NS With DL Top5 (Top5) 19.94 84.16 32.24 26.01 84.16 39.74
   RoBERTalarge-NS W/o MS
   DistilBERT-NS With GO

MGBPLM

   SapBERT-XLMRbase n.a. MS Top5 (Top5) 20.43 83.98 32.86 23.75 82.26 36.86
   SapBERT-XLMRlarge n.a. DL
   SapBERTCLS n.a. GO

MGSBERTv2

   MiniLM(L6)-ALL W/o DL Top5 (Top5) 20.21 84.89 32.65 23.86 81.99 36.96
   RoBERTa-STSb With GO
   MPNet-STSb W/o MS

MGSapFull

   MPNet-Paraphrase W/o GO Top5 (Top5) 22.59 85.16 35.71 23.66 82.81 36.80
   RoBERTa-STSb With DL
   MPNet-ALL W/o MS

MGSapSubset

   RoBERTa-STSb With GO Top5 (Top5) 22.43 85.25 35.51 23.20 81.63 36.13
   MPNet-ALL W/o DL
   MPNet-STSb W/o MS
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encoder workflows, we gain a large improvement in recall 
and F-measure. This indicates that the use of sentence 
embeddings as semantic representation does help to find 
many more correct concepts. Incorporating machine trans-
lators into the workflow (Workflow-MT) produces better 
results than using original German forms as input (Work-
flow-Multi). This observation still holds true when the same 
encoder is applied in different workflows, as we have seen 
on SapBERT-XLMRlarge . Hence, we can conclude that using 
machine translator is still inevitable before better aligned 
multilingual sentence encoders are available.

The best annotation quality we achieve using single con-
fig is 71.23% in precision, 74.84% in recall and 61.90% in 
F-measure. All these best results are generated using UMLS 
subset injected SBERTv2 models, i.e., DistilRoBERTa-ALL 
for precision and F-measure and RoBERTa-STSb for recall. 
Further, these two models are both enhanced by SBERT-
WK and used Google Translate corpus as input. In addition, 
RoBERTa-STSb obtains the best recall with reranking of 
Cross-Encoder.

Figure 5 also shows that among the three metrics, pre-
cision benefits most from combination. The best precision, 
93.46%, on translated corpora using combination, is almost 
equivalent to the result of using AnnoMap to annotate the 

original English corpus (93.6%). Similarly, we also achieve 
a best recall of 85.25% that is also amounting to that of the 
AnnoMap on original English corpus (86%). However, there 
is still space for improvement in terms of F-measure (the best 
F-measure 63.74%). Overall, we achieved an improvement of 
136% in recall (from 36.11% of AnnoMap to 85.25% of com-
bination), 52% in precision (61.60% of AnnoMap to 93.46% 
of combination) and 66% in F-measure (AnnoMap: 38.36%, 
combination: 63.74%). We set our maximum result size as 
Top5 so that the system can provide a reasonably short list 
of candidates for further manual verification (semi-automatic 
annotation). In this case, with the best recall of 85.25% and a 
precision of 100%, a F-measure of 92.04% is plausible.

Conclusion

In this study, we apply BERT-based pretrained language mod-
els to generate sentence embeddings to solve cross-lingual 
biomedical concept normalization problem. We show that the 
annotation quality can be improved significantly compared to 
the conventional string matching tool. For the future work, we 
aim to apply such techniques onto other types of annotations 
(e.g., biomedical name entities) or in other domains.

Table 16  The best combination results in F-measure by combining three different corpora within each Model-Group using 2-vote-agreement

In column SBERT-WK, “n.a.” indicates that SBERT-WK is not applicable to BPLM models. The result size of Cross-Encoder results are in 
brackets
GO Google Translate, DL DeepL, MS Microsoft Translator, P precision, R recall, F F-measure

Model SBERT-WK Corpus Result size Standard Cross-Encoder

P R F P R F

MGSBERTv1

   BERTbase-N With MS Top2 (Top2) 77.35 52.85 62.80 70.49 53.39 60.76
   RoBERTalarge-N W/o DL
   DistilBERT-NS With GO

MGBPLM

   SapBERT-XLMRlarge n.a. GO Top2 (Top2) 68.78 53.03 59.89 69.36 53.67 60.51
   SapBERT-XLMRlarge n.a. DL
   SapBERT-XLMRbase n.a. MS

MGSBERTv2

   MPNet-Paraphrase With MS Top2 (Top3) 74.97 54.75 63.28 68.20 56.47 61.78
   MPNet-STSb With DL
   RoBERTa-STSb With GO

MGSapFull

   DistilRoBERTa-ALL With MS Top2 (Top5) 74.97 54.75 63.28 58.67 57.56 58.11
   MiniLM(L12)-ALL With GO
   MPNet-ALL W/o DL

MGSapSubset

   MiniLM(L12)-ALL W/o MS Top2 (Top3) 74.40 55.75 63.74 68.32 57.38 62.37
   RoBERTa-STSb With DL
   DistilRoBERTa-ALL With GO
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We select current SOTA models that are specifically pre-
trained on biomedical corpus (the BPLM models) or only 
pretrained on plain English text (the SBERT models with-
out UMLS injection). The results show that the best per-
formance of these two types of models is similar. This can 
be due to that many of the questions in our medical forms 
are in colloquial language as they are designed to interview 
general public. Therefore, extra biomedical corpus pretrain-
ing does not benefit the annotation results. Furthermore, we 
show that we can further enhance the annotation quality of 
SBERTv2 models using UMLS injection and outperform the 
best BPLM model (which is already UMLS-injected). We 
also discover that UMLS injection using only the relevant 
subset is sufficient to produce comparable (or even slightly 
better) results than using the full version of the UMLS. This 
observation is similar to the idea of the PubMedBERT [24] 
that more pretraining using out-domain corpora is not neces-
sarily beneficial for solving domain-specific tasks.

We tested two post-processing strategies in this study. 
Combination can improve annotation quality significantly 
and also raise the recall upper bound compared to single 
config. The reranking of Cross-Encoder benefits the 
results of configs but does not improve combination result 
further. However, as Fig. 4 shows, with the result size of 
150, we have the potential of finding up to 94.48% of the 
correct annotations. Hence, we plan to develop better post-
processing approaches that can rerank the candidates so that 
the correct annotations are included in the Top5 result sets.
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Fig. 4  Increase of recall against result size. a The result of the best 
single config or combination in recall of each Model-Group starts 
from result size of 1, including the results of annotating original Eng-
lish (OE) corpus. b The same results without OE corpus and starts 
from result size of 15
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