

Logging and Recovery

 Erhard Rahm, University of Leipzig, Germany

SYNONYMS
Failure handling; rollback, undo, redo; checkpoint; backup; dump

DEFINITION
Logging and recovery ensure that failures are masked to the users of transaction-based data
management systems by providing automatic treatment for different kinds of failures, such as
transaction failures, system failures (crashes), media failures and disasters. The main goal is to
guarantee the atomicity (A) and durability (D) properties of ACID transactions by providing undo
recovery for failed transactions and redo recovery for committed transactions. Logging is the
task of collecting redundant data needed for recovery.

MAIN TEXT
The ACID concept requires that no data changes of failed transactions remain in the database.
Failed transactions thus have to be rolled back by undoing all their changes (undo recovery). On
the other hand, data changes of successfully ended (committed) transactions must not be lost
but have to survive possible failures. Failure treatment thus implies a redo recovery for
committed transactions. Recovery support is typically provided for transaction failures during
normal processing (transaction recovery), for system failures (crash recovery), and media
failures (media recovery). In addition, disaster recovery can deal with the complete destruction
of a computer center, e.g. due to an earthquake or terror attack. Recovery is typically based on
logging, i.e. the collection of protocol data recording which transactions have been executed
and which changes have been performed by them.

DBMS

DB buffer
(cache)

Log
buffer

permanent
database

Log file

Archive log

Archive copy
(dump)

DBMS

DB buffer
(cache)

Log
buffer

permanent
database

Log file

Archive log

Archive copy
(dump)

The Figure shows components of a central database management system (DBMS) involved in
logging and recovery. The database objects (e.g. tables, records) are persistently stored in the
permanent database, typically on one or several disks. All database operations including
updates are performed in main memory. For this reason, pages of the database are cached in a
main memory buffer (database buffer). Log records are persistently stored in a sequential log
file on dedicated disks. Log records are written for the start, rollback and commit of transactions
as well for every database change. For performance reasons log records are first collected in a

log buffer in main memory, which is written to the log file when it becomes full or when a
transaction commits. A transaction is committed when its commit record is logged on the log file.

Numerous approaches have been proposed and current database management systems
provide efficient implementations for logging and recovery. The major tasks to be solved for
dealing with the mentioned types of failures are:

• Transaction recovery (rollback) is performed when a transaction fails during normal
processing, e.g. due to a program error or invalid input data. The log records in the log
buffer and in the log file are used to undo the changes of the failed transaction in reverse
order.

• Crash recovery is needed when the whole database (transaction) system fails, e.g. due
to a hardware or software error. All transactions which were active and not yet
committed at crash time have failed so that their changes must be undone. The changes
for transactions that have committed before the crash must survive. A redo recovery is
needed for all changes of committed transactions that have been lost by the crash
because the changed pages resided only in main memory but were not yet written out to
the permanent database. Periodically writing out modified pages, e.g. within so-called
checkpoints, help to reduce the amount of redo work during crash recovery.
Furthermore, the number of relevant log records and thus the size of the log file can be
reduced by checkpoints.

• Media recovery deals with failures of the storage media holding the permanent
database, in particular disk failures. The traditional database approach for media
recovery uses archive copies (dumps) of the database as well as archive logs (see
Figure). Archive copies represent snapshots of the database and are periodically taken.
The archive log contains the log records for all committed changes which are not yet
reflected in the archive copy. In the event of a media failure, the current database can
be reconstructed by using the latest archive copy and redoing all changes in
chronological order from the archive log. A faster recovery from disk failures is supported
by disk organizations like RAID (redundant arrays of independent disks) which store
data redundantly on several disks. However, they do not eliminate the need for archive-
based media recovery since they cannot completely rule out the possibility of data loss,
e.g. when multiple disks fail.

• Disaster recovery can be achieved by maintaining a backup copy of the database at a
geographically remote location. By continuously transferring log data from the primary
database to the backup and applying the changes there, the backup can be kept
(almost) up-to-date.

CROSS REFERENCES
ACID, Crash recovery, Multi-level recovery and ARIES, Application recovery, RAID, Buffer
management

REFERENCES
1. Gray, J., A. Reuter (1993): Transaction Processing: Concepts and Techniques. San Francisco, CA:
Morgan Kaufmann.
2. Haerder, T.; A. Reuter (1983): Principles of Transaction-Oriented Database Recovery. ACM Comput.
Surv. 15(4): 287-317

