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Abstract

Gradoop, the distributed graph processing system developed by the Database Group at Leipzig
University, is able to handle two types of graphs: extended property graphs as defined by the
Extended Property Graph Model (EPGM) [32] and temporal property graphs as defined by the
Temporal Property Graph Model (TPGM) [57]. The main difference between the TPGM and the
EPGM is that TPGM graphs contain temporal information and can be said to model evolving
graphs. A common task in analyzing graphs is Pattern Matching, i.e. searching for occurrences
of a pattern (query) in the graph. In Gradoop, a Pattern Matching operator is implemented for
EPGM in Gradoop([28]), but not for TPGM graphs yet. The core idea of this implementation is
to employ relational query planning in order to compute all matches of a pattern. This thesis aims
at realizing pattern matching for TPGM graphs in Gradoop. First, the query language GDL is
extended to support constraints on transaction and valid intervals. It is now possible to refer to
them (and their boundaries) in a query and specify temporal relations in order to compare them
among each other. Furthermore, the user is now able to compare interval durations as well as create
custom intervals to compare them to transaction and valid intervals. Second, the existing Gradoop
pattern matching implementation is adapted to support these new types of queries. Besides that,
the pattern matching implementation is optimized via query rewriting and constraint selectivity
estimation. The latter improves the query planning approach employed for processing queries while
query rewriting aims at obtaining a more efficient query. Moreover, the TPGM pattern matching
operator’s performance for two different data sets is evaluated on a distributed cluster.
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1. Introduction

Many real-world information can be viewed as a set of entities, possibly of different types, and links
connecting these entities. Such information can be modelled as a graph, which is a set of vertices
linked by edges. There are plenty of examples for graph data, among them the internet (URLs
that contain links to other URLs), transportation networks (stations connected by e.g. trains) or
knowledge graphs, e.g. in social networks. Figure 1.1 shows a small knowledge (or data) graph that
could be taken from a social network like XING.

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Company
Name: "Y"

Employees: 50
Domain: "Banking"

University
Name: "University of Leipzig"

Location: "Leipzig"
Founded: 1409

University
Name: "TU Dresden"
Location: "Dresden"

Founded: 1828

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

Person
Name: "Carl"

Age: 25

study_at
Subject: "CS"

Graduation: 2018

study_at
Subject: "Maths"
Graduation: 2010

study_at
Subject: "CS"

Graduation: 2019

knows knows

work_at
Salary: 4000

work_at
Salary: 6000

work_at
Salary: 5000

Figure 1.1.: Exemplary knowledge graph (property graph)

The vertices in this knowledge graph represent universities, persons and companies. They are linked
via edges of different types, e.g. persons may know each other. Moreover, vertices and edges may
contain further information, e.g. the name of a person. The graph depicted in Figure 1.1 is thus a
property graph, which will be defined formally later (see Section 2.2).

In a lot of applications today, data graphs evolve, meaning that their structure and contained
information changes over time. To give an example for evolving graphs, social network graphs (e.g.
the facebook graph) typically grow rapidly due to user interactions, new posts etc. Furthermore,
such graphs are usually very large. For example, social networks like facebook have hundreds of
millions of active users.

Analyzing large evolving graphs can thus be considered a big data problem. One system that allows
the analysis of large evolving graphs is Gradoop. Gradoop is developed at the University of Leipzig
and provides several methods to investigate (evolving) graphs in parallel, so that also very large
graphs can be processed in reasonable time.

There are many methods to analyse graphs theoretically. Pattern Matching is one of them. In
Pattern Matching, the graph is searched for all occurrences of an interesting pattern. Patterns are
also referred to as queries. For the example graph in Figure 1.1, it might be interesting to find
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1. Introduction

all pairs of persons that studied at the same university and work for the same company now. The
corresponding pattern would be a graph containing two Person vertices both having edges to the
same University and Company vertex. Pattern Matching will be defined formally in Section 2.4.

Gradoop already implements a Pattern Matching functionality, but only for static, i.e. non-evolving,
graphs. However, for many types of queries, temporal aspects are relevant. To take up again the
pattern example above, one might only be interested in persons that studied at the same university
at the same time. Such temporal constraints on patterns cannot be handled by Gradoop’s Pattern
Matching component as of now.

Hence, the aim of this thesis is to implement Pattern Matching on evolving graphs (also referred
to as Temporal Pattern Matching) in Gradoop.

The thesis is structured as follows: Section 2 is a more detailed and formal introduction to temporal
or time-dependent Graph Pattern Matching in Gradoop. Section 3 provides an overview over related
work. The new types of queries made possible by this thesis are presented in Section 4. A detailed
discussion of the implementation in Gradoop is to be found in Section 5, followed by the description
of optimization approaches in Section 6. The implemented program is evaluated in Section 7. Section
8 concludes the thesis with a brief discussion.
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2. Foundations

In the following, the prerequisites for Time-dependent Graph Pattern Matching in Gradoop are
introduced.

Section 2.1 provides the fundamental notations and definitions used throughout the thesis. Then,
several models for data graphs are defined (2.2). After that, the graph processing system Gradoop
is introduced (2.3), followed by the formal definition of (time-dependent) Graph Pattern Matching
(2.4).

2.1. Prerequisites

Graphs are a core concept of Computer Science and of vital importance in this thesis.

Definition 1 (Graph). A Graph is a tuple (V,E) where V is a set of vertices and E ⊆ V × V a
set of edges connecting two vertices.

The terms vertex and node are used interchangeably. Graph Element is a hypernym used to refer
to vertices and edges alike. E.g., the set V ∪E contains all the graph elements of a graph (V,E).

If not stated otherwise, graphs are assumed to be directed, meaning that edges have a direction.

Definition 2 (Directed Graph). A graph (V,E) is said to be directed, if and only if (u, v) ∈ E 6⇒
(v, u) ∈ E ∀ u, v ∈ V, u 6= v.

For an edge e = (u, v), u is called the source or source vertex/node of e, while the terms target or
target vertex/node refer to v. Unless stated otherwise, self-loops, i.e. edges whose source and target
are identical, are allowed in a graph.

A path connects two vertices via a sequence of edges.

Definition 3 (Path). Let e1 = (u1, v1), e2 = (u2, v2), ..., en = (un, vn) be a sequence of edges with
vi = ui+1 ∀i(1 ≤ i ≤ (n− 1)). Then, e1,...,en is a path from u1 to vn with length n.

Especially for the problem of Pattern Matching, a notion of subgraphs is needed.

Definition 4 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of another graph G = (V,E), if and
only if V ′ ⊆ V and E′ ⊆ ((V ′ × V ′) ∩ E). The subgraph relation is noted G′ v G. A subgraph can
be induced by a set of vertices V ′ ⊆ V . The subgraph induced by V ′ ⊆ V is noted G[V ′] and defined
as (V ′, {(u, v) ∈ E|u ∈ V ′, v ∈ V ′}). Analogously, a subgraph can be induced by a set of edges.
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2. Foundations

2.2. Graph Data Models

Knowledge graphs, also called data graphs, are graphs in which vertices and edges carry informa-
tion. The graph in Figure 1.1 is an example for a data graph. Such graphs have a wide range of
applications, as pointed out in Section 1. Graph data models formalize the notion of knowledge
graphs.

2.2.1. Property Graph Model

The arguably most prominent and simple graph data model is the Property Graph Model (PGM).
For example, the graph database Neo4J1 is based on this model [16]. In the PGM, vertices and edges
have labels and may contain properties. Labels are arbitrary character sequences, while properties
can be thought of as key-value pairs.

Definition 5 (Property Graph). A Property Graph is a 7-tuple (V,E, T, τ,K,A, κ).

(V,E) is a graph, T the set of type labels. To each graph element, a type label is assigned via the
function τ : V ∪E → T . K and A denote the set of property keys and property values, respectively.
The function κ : (V ∪ E)×K → A ∪ {ε} assigns properties as key-value pairs to graph elements.

It is clear from the definition that not every graph element has a value for each possible property
key, i.e. that properties are optional.

Figure 1.1 is an example for a Property Graph.

For the graph in Figure 1.1, T = {Company, Person, University, work_at, study_at} and K =
{Name, Employees, Domain, Age, ...}. Attributes can be of different types. In the example, there
are string attributes like Name and integer attributes, e.g. Age.

The subgraph relation introduced in Definition 4 can be extended to Property Graphs in a straight-
forward way.

Definition 6 (Subgraph for Property Graphs). A property graph G′ = (V ′, E′, T, τ ′,K,A, κ′) is
a subgraph of another property graph G = (V,E, T, τ,K,A, κ), iff (V ′, E′) v (V,E), τ ′ = τ∣∣(V ′∪E′)
and κ = κ∣∣(V ′∪E′)

.

Moreover, the notion of induced subgraphs given in Definition 4 is easily generalized for property
graphs.

1neo4j.com, accessed August 2020
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2.2. Graph Data Models

2.2.2. Extended Property Graph Model

Junghanns et al. [32, 28] propose an extension of the classic PGM, called Extended Property Graph
Model (EPGM).

Definition 7 (Extended Property Graph). An Extended Property Graph is a 9-tuple
(L, l, V, E, T, τ,K,A, κ), where (V,E, T, τ,K,A, κ) is a Property Graph as defined in Definition 5.
L is a set of Logical Graphs, which are subgraphs of (V,E, T, τ,K,A, κ). The function l : V ∪E →
P(L)\∅ maps every graph element to the set of logical graphs in which it is contained.

A set of Logical Graphs is also called a Graph Collection. Figure 2.1 shows an Extended Property
Graph based on the Property Graph in Figure 1.1.

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Company
Name: "Y"

Employees: 50
Domain: "Banking"

University
Name: "University of Leipzig"

Location: "Leipzig"
Founded: 1409

University
Name: "TU Dresden"
Location: "Dresden"

Founded: 1828

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

Person
Name: "Carl"

Age: 25

study_at
Subject: "CS"

Graduation: 2018

study_at
Subject: "Maths"
Graduation: 2010

study_at
Subject: "CS"

Graduation: 2019

knows knows

work_at
Salary: 4000

work_at
Salary: 6000

work_at
Salary: 5000

Professional Network

Social Relations

Figure 2.1.: Exemplary EPGM graph

The vertices and edges as well as their labels and properties of Figure 1.1 are left unchanged.
However, now there are two logical graphs: the whole graph called Professional Network and the
Social Relations subgraph containing only persons and interpersonal relationships. Logical graphs
may overlap, as do the two logical graphs in the example. They can be considered views on the
Property Graph.

Another addition to the Property Graph Model defined by EPGM is a set of operators on graphs, as
listed in [32]. These operators include Pattern Matching, Subgraph Extraction, Filtering of Vertices
and Edges and many more.
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2. Foundations

2.2.3. Temporal Property Graph Model

Neither PGM nor EPGM explicitly define temporal information for vertices and edges. This is
different in the Temporal Property Graph Model (TPGM) proposed by Rost et al. [57]. In the
TPGM, every vertex and edge is associated with two intervals: transaction and valid interval. The
transaction interval denotes the period during which a graph element is held in the database. The
valid interval, however, expresses semantic information about the element. It denotes the period
during which an element is considered "true". Thus, the interpretation of the valid interval’s meaning
is context-dependent.

Definition 8 (Temporal Property Graph). A Temporal Property Graph is an Extended Property
Graph in which every graph element has the four additional properties tx-from, tx-to, val-from and
val-to. Their values are either time stamps or ε.

The four extra properties represent the transaction interval ([tx-from, tx-to]) and the valid interval
([val-from, val-to]). Note that the definition allows these properties to be empty. Hence, intervals
without a specified beginning or end are possible, e.g. when beginning or end are not known
or intended. Furthermore, by omitting the from as well as the to time stamp, i.e. setting the
corresponding property to ε, it can be expressed that the element does not have the respective
interval. Because of that, graph elements having one or both of these intervals can coexist with
non-temporal graph elements in the same database. Figure 2.2 shows a TPGM graph similar to
Figure 2.1.

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Company
Name: "Y"

Employees: 50
Domain: "Banking"

University
Name: "University of Leipzig"

Location: "Leipzig"
Founded: 1409

University
Name: "TU Dresden"
Location: "Dresden"

Founded: 1828

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

Person
Name: "Carl"

Age: 25

study_at
Subject: "CS"

Graduation: 2018

study_at
Subject: "Maths"
Graduation: 2010

study_at
Subject: "CS"

Graduation: 2019

knows

work_at
Salary: 4000

work_at
Salary: 6000

work_at
Salary: 5000

Professional Network

work_at
Salary: 5000

tx: [2018,)
val:[2018,)

tx: [2016,)
val:[2010,2014]

tx: [2016,)
val:[2015,)

tx: [2019,)
val:[2019,)

tx: [2016,)
val:[2005,)

tx: [2016,)
val:[1973,)

tx: [2018,)
val:[1993,)

tx: [2016,)
val:[1984,)

tx: [2018,)
val:[1995,)

tx: [2018,)
val:[2012,2018]

tx: [2016,)
val:[2006,2010]

tx: [2016,)
val:[2015,2019]

tx: [2016,)
val:[1409,)

tx: [2016,)
val:[1828,)

tx: [2019,)
val:[2019,)

study_at
Subject: "Maths"
Graduation: 2012

tx: [2016,)
val:[2010,2012]

knows
tx: [2018,)
val:[2018,)

Figure 2.2.: Exemplary TPGM graph
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2.2. Graph Data Models

The logical graph Social Relations was dropped for simplicity. Every vertex and edge in Figure
2.2 has a transaction and a valid interval. In the Figure and throughout this thesis, the intervals
are often abbreviated tx and val. Both intervals are defined via the time stamps representing their
beginning and end (both stamps are part of the interval). Interval boundaries are given in years
here in order to keep the diagram clear. Of course, in TPGM implementations, the boundaries
are more likely to be given in miliseconds since the UNIX epoch. All transaction intervals in the
example begin in 2016 or later, indicating that the database was created in 2016. Furthermore, no
transaction interval has an end time stamp yet so that all vertices and edges are present in the
database as of now. Similarly, no vertex’s valid interval has ended yet. The valid intervals of vertices
in the example start with the founding year for universities and year of birth for Persons. Valid
intervals for companies can also be interpreted as the companies’ "lifetimes", e.g. company X may
exist since 2005. The edges’ valid intervals always start with the beginning of the relation described
by the edge, e.g., Alice knows Bob since 2018. All study_at edges have closed valid intervals, as all
three Persons already finished their studies. To give an example, since Alice graduated in 2018, the
fact Alice studies at University of Leipzig can not be considered true anymore after 2018. Other
than in Figure 2.1, Bob now has two study_at and work_at edges, with their valid intervals showing
that he first studied at University of Leipzig from 2006 to 2010 and then went on to study at TU
Dresden from 2010 to 2012. Analogously, he worked at company X from 2010 to 2014 and after
that at company Y from 2015 on. It is clear that the facts in the graph of Figure 2.2 differ over
time. Stated differently, the graph is evolving.

In the following Figures 2.3, 2.4 and 2.5, the valid facts of the TPGM graph in Figure 2.2 are shown
as of 2008, 2016 and 2020 respectively.

Lukas Christ
3756213

7
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Company
Name: "X"

Employees: 123
Domain: "Insurances"

Company
Name: "Y"

Employees: 50
Domain: "Banking"

University
Name: "University of Leipzig"

Location: "Leipzig"
Founded: 1409

University
Name: "TU Dresden"
Location: "Dresden"

Founded: 1828

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

Person
Name: "Carl"

Age: 25

study_at
Subject: "Maths"
Graduation: 2010

Professional Network

tx: [2016,)
val:[2005,)

tx: [2016,)
val:[1973,)

tx: [2018,)
val:[1993,)

tx: [2016,)
val:[1984,)

tx: [2018,)
val:[1995,)

tx: [2016,)
val:[2006,2010]

tx: [2016,)
val:[1409,)

tx: [2016,)
val:[1828,)

Figure 2.3.: Exemplary TPGM graph as of 2008

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Company
Name: "Y"

Employees: 50
Domain: "Banking"

University
Name: "University of Leipzig"

Location: "Leipzig"
Founded: 1409

University
Name: "TU Dresden"
Location: "Dresden"

Founded: 1828

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

Person
Name: "Carl"

Age: 25

study_at
Subject: "CS"

Graduation: 2018

study_at
Subject: "CS"

Graduation: 2019

work_at
Salary: 6000

Professional Network

tx: [2016,)
val:[2015,)

tx: [2016,)
val:[2005,)

tx: [2016,)
val:[1973,)

tx: [2018,)
val:[1993,)

tx: [2016,)
val:[1984,)

tx: [2018,)
val:[1995,)

tx: [2018,)
val:[2012,2018]

tx: [2016,)
val:[2015,2019]

tx: [2016,)
val:[1409,)

tx: [2016,)
val:[1828,)

Figure 2.4.: Exemplary TPGM graph as of 2016
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2.3. Gradoop

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Company
Name: "Y"

Employees: 50
Domain: "Banking"

University
Name: "University of Leipzig"

Location: "Leipzig"
Founded: 1409

University
Name: "TU Dresden"
Location: "Dresden"

Founded: 1828

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

Person
Name: "Carl"

Age: 25
knows

work_at
Salary: 4000

work_at
Salary: 6000

work_at
Salary: 5000

Professional Network

tx: [2018,)
val:[2018,)

tx: [2016,)
val:[2015,)

tx: [2019,)
val:[2019,)

tx: [2016,)
val:[2005,)

tx: [2016,)
val:[1973,)

tx: [2018,)
val:[1993,)

tx: [2016,)
val:[1984,)

tx: [2018,)
val:[1995,)

tx: [2016,)
val:[1409,)

tx: [2016,)
val:[1828,)

tx: [2019,)
val:[2019,)

knows
tx: [2018,)
val:[2018,)

Figure 2.5.: Exemplary TPGM graph as of 2020

TPGM provides a suitable model for analysis of evolving knowledge graphs. Similar to EPGM, it
defines further operators. These operators are listed in Table 2.1. For more details on the operators
other than Pattern Matching, see Rost et al. [57].

Operator Type Description

Transformation Graph → Graph structure-preserving
function application

Subgraph Graph → Graph filter subgraph via functions

Snapshot Graph → Graph graph as of a certain point
in time or during an interval

Difference Graph → Graph difference of two snapshots
Grouping Graph → GraphCollection group vertices and edges
Pattern Matching Graph → GraphCollection find matches for a pattern

Table 2.1.: TPGM operators

In the following, Gradoop, the reference implementation of EPGM and TPGM, is presented.

2.3. Gradoop

Gradoop [32, 29] is a distributed graph processing system that is developed by the Database Group
at the Leipzig University. It implements the EPGM including its operators and, at least partly, the
TPGM: Temporal Property Graphs can already be loaded, however, not all operators defined by
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2. Foundations

TPGM (see Table 2.1) are already implemented. E.g., the Temporal Pattern Matching Operator is
still missing.

In addition to the EPGM and TPGM operators, various graph analysis algorithms, e.g. PageRank,
are provided.

Gradoop is an end-to-end system. Several methods to construct graphs from data are available. For
example, graphs to load can be given in JSON or CSV. Analogously, different sinks are available
to save transformed graphs.

Gradoop is capable of processing very large graphs due to its distributed architecture. To realize this
architecture, Apache Flink2 is employed. Flink is a distributed processing framework. It provides
high-level functions to handle large amounts of data, so that a programmer need not care about
the details of managing the distributed processing. There are two APIs in Flink, the DataStream
API and the DataSet API. Both of them enable transforming a collection of elements. Available
transformations are, among others, filtering, mapping, reducing and joining. The DataStream API
is used for handling potentially unbounded streams, while the DataSetAPI is applicable to finite
batches of data. Hence, Flink’s DataSet API is well-suited for the distributed processing of (graph)
database content and thus used in Gradoop.

The user can execute analytical workflows in Gradoop using the declarative GrALa (Graph Ana-
lytical Language), that is provided as a Java API. GrALa allows to specify pipelines combining the
available graph operators and algorithms. All the transformations specified by the user are mapped
to Flink pipelines internally.

As of now, Gradoop is work in progress and open-source3.

2.4. Pattern Matching

A common task in the analysis of data graphs is Pattern Matching, i.e. finding matches for a certain
query (pattern) in the given data graph. The following is devoted to formalize this rather vague
intuition of Pattern Matching. The definitions given here are similar to those by Junghanns et al.
[28], but differ in some details.

Definition 9 (Query/Pattern). A query or pattern in the context of Pattern Matching is a tuple
((Vq, Eq), θ), where (Vq, Eq) is a graph and θ is a boolean function on the labels and properties of
property graphs. The range of θ is the set of property graphs. It is w.l.g. a conjunctive normal form
θ = θX1 ∧ θX2 ∧ ...∧ θXn, where Xi ⊆ (Vq ∪Eq) and Xi ∩Xj = ∅ ∀i, j(1 ≤ i, j ≤ n). A single clause
Xi describes all the constraints on some query graph element set Xi ⊆ (Vq ∪ Eq).

This definition obviously extends for G to be of any of the data graph types introduced in Section
2.2. All of them equip graph elements with labels and properties. The function θ describes con-
straints on them, while (Vq, Eq) is a simple graph describing the structure of the query pattern. A

2flink.apache.org, accessed August 2020
3gradoop.com, accessed August 2020
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2.4. Pattern Matching

CNF like θ can be seen as a set of sets of clauses. Hence, throughout the thesis, set operations as
well as logical ones are used to denote manipulations of θ.

Definition 10 extends Definition 9 so that time-dependent queries on Temporal Property Graphs
are possible.

Definition 10 (Time-dependent Query/Pattern). A Time-dependent query is a query (Definition
9), in which θ may also refer to the properties tx-from, tx-to, val-from, val-to.

A match for a query within a data graph G must match the structure of the query as well as its
constraints θ. However, there are several different notions of matches, i.e. several types of matching
problems. The most important paradigms within this thesis are matches by homomorphism and
matches by isomorphism. They are based on graph homomorphisms and isomorphisms, respec-
tively.

Definition 11 (Graph Homomorphism). Let G1 = (V1, E1), G2 = (V2, E2) be graphs. A function
f : V1 → V2 is a graph homomorphism from G1 to G2 if f is injective and

(u, v) ∈ E1 ⇒ (f(u), f(v)) ∈ E2 ∀u, v ∈ V1

Definition 12 (Graph Isomorphism). Let G1 = (V1, E1), G2 = (V2, E2) be graphs. A function
f : V1 → V2 is a graph isomorphism from G1 to G2 if f is a bijective graph homomorphism from
G1 to G2

Homomorphisms and isomorphisms can now be used to define matches for queries in a property
graph.

Definition 13 (Match by Homomorphism (Isomorphism)). A property graph G = (V,E, T, τ,K,A, κ)
matches the query Q = ((Vq, Eq), θ) by homomorphism (isomorphism) iff the following conditions
hold:

• There is a graph homomorphism (isomorphism) f : Vq → V , so that

(V,E) := ({f(vq)|vq ∈ Vq}, {(f(u), f(v)|(u, v) ∈ Eq})

• θ((V,E, T, τ,K,A, κ)) holds

These definitions can be easily extended to EPGM and TPGM graphs, as such graphs are property
graphs, too.

Figure 2.6 shows an example for a simple query on the data graph in Figure 2.2 and its matches
using homomorphism and isomorphism matching paradigms. There are a few things to note about
the query in Figure 2.6 and its matches. First, the two matches for the isomorphism paradigm
are semantically identical. For Result1, Alice’s data vertex is mapped the query vertex v1 while
Bob’s data vertex is mapped v2. In Result2, it is the other way round. Second, it is clear from
Definitions 11 and 12 that every isomorphic match is also a homomorphic match. Thus, there are
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Company
Name: "X"

Employees: 123
Domain: "Insurances"

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

work_at
Salary: 5000

work_at
Salary: 5000

Result1

tx: [2018,)
val:[2018,)

tx: [2016,)
val:[2010,2014]

tx: [2016,)
val:[2005,)

tx: [2018,)
val:[1993,)

tx: [2016,)
val:[1984,)

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Person
Name: "Alice"

Age: 27

Person
Name: "Bob"

Age: 36

work_at
Salary: 5000

work_at
Salary: 5000

Result2

tx: [2018,)
val:[2018,)

tx: [2016,)
val:[2010,2014]

tx: [2016,)
val:[2005,)

tx: [2018,)
val:[1993,)

tx: [2016,)
val:[1984,)

v1 v2

v3

e2e1

θ =
   τ(v1)="Person"
∧ τ(v2)=="Person"
∧ τ(e1)="work_at"
∧ τ(e2)="work_at"
∧ τ(v3)="Company"
∧ κ(v3, Employees)  > 100
∧ κ(e1, Salary)  = κ(e2, Salary)

Query

Results for Isomorphism

Additional Results for Homomorphism

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Person
Name: "Alice"

Age: 27

Person
Name: "Alice"

Age: 27

work_at
Salary: 5000

work_at
Salary: 5000

Result3

tx: [2018,)
val:[2018,)

tx: [2018,)
val:[2018,)

tx: [2016,)
val:[2005,)

tx: [2018,)
val:[1993,)

tx: [2018,)
val:[1993,)

Company
Name: "X"

Employees: 123
Domain: "Insurances"

Person
Name: "Bob"

Age: 36

Person
Name: "Bob"

Age: 36

work_at
Salary: 5000

work_at
Salary: 5000

Result4

tx: [2018,)
val:[2010,2014]

tx: [2016,)
val:[2010,2014]

tx: [2016,)
val:[2005,)

tx: [2016,)
val:[1984,)

tx: [2016,)
val:[1984,)

Figure 2.6.: Exemplary query and its results

overall 4 matches using the homomorphism paradigm. The 2 additional results obtained by using
the homomorphism paradigm, however, are not particularly useful in this case: in both of them, v1
and v2 are mapped to the exact same vertex (Alice and Bob respectively), which is permitted for
homomorphic matches. A third notable aspect is that the query does not take into account temporal
information. Hence, it is never checked, if the two persons actually worked for the company at the
same time.

Now, the problem of (Time-dependent) Pattern Matching can be defined.

Definition 14 (Pattern Matching). Let G be a data graph and Q be a query. The problem of
Pattern Matching is the task to find every G′ v G where G′ matches Q according to some matching
paradigm, e.g. isomorphism.

This definition naturally extends to temporal queries as defined in Definition 10.
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2.4. Pattern Matching

Definition 15 (Time-dependent/Temporal Pattern Matching). Let G be a temporal property graph
and Q be a temporal query. The problem of Time-dependent/Temporal Pattern Matching is the task
to find every G′ v G where G′ matches Q according to some matching paradigm, e.g. isomorphism.

Because matches in the homomorphism and isomorphism paradigm are always subgraphs of the
data graph, these paradigms are called exact matching paradigms. There are inexact matching
paradigms like Dual Simulation [42], too, but they are not relevant for this thesis.

Note that the problem of checking for two graphs (V1, E1) and (V2, E2) whether there is a graph
homomorphism f : V1 → V2, is NP-complete [11]. It is widely assumed that the same is true
for isomorphisms, although this could not be verified yet. However, in practice, modern Pattern
Matching algorithms run quite efficient in many cases [37].
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3. Related Work

This thesis is related to several different areas of research. Hence, there is plenty of related work
that will be shortly discussed in the following.

First, several problems related to Pattern Matching on temporal graphs are introduced in Section
3.1. Then, Section 3.2 lists approaches to general Pattern Matching, followed by temporal Pat-
tern Matching algorithms (Section 3.3). Temporal Pattern Matching implementations in existing
graph processing systems and databases are briefly reviewed in Section 3.4. Section 3.5 provides
an overview over papers on Gradoop. The related work Section is concluded by a first look at the
pattern matching operator already implemented in Gradoop in Section 3.6.

3.1. Problems on Temporal Graphs

Holme and Sarmäki [25] discuss temporal graphs at length and give various real-world examples for
’Temporal Networks’ that can be modelled with graphs. They introduce a wide range of different
topological characteristics and measurements on temporal graphs and compare several temporal
graph models. Other studies on temporal graphs in general are provided by Kostakos [33] and
Michail [47]. It should be noted that there is no standard model for temporal graphs.

Many problems and algorithms on static graphs have also been investigated for temporal graphs.
Examples include PageRank [59], depth- and breadth-first search [27] and community detection [3].
In the remainder, a few problems closely related to Pattern Matching are introduced. Wu et al.
[69] discuss four variations of the ’minimum temporal path’ problem. Their model assigns ’starting
times’ and durations to edges, vertices do not have temporal information. Then, given two vertices
u and v, the paths from u to v with the earliest arrival, latest departure, fastest overall time and
shortest timespan spent on the edges can be computed. These types of paths as well as reachability
in temporal graphs have further been investigated in [70].

Semertzidis and Pitoura [61] study the efficient finding of the most durable matches for a graph
query in a temporal graph.

Liu et al. [41] propose an expressive syntax to query temporal knowledge graphs. This syntax allows
to search for keywords in the graph data and to impose constraints on temporal relations between
graph elements. To process such queries, generalizations of Dijkstra’s algorithm are used.

Kovanen et al. [34] introduce the notion of ’motifs’ in temporal graphs. For static graphs, a motif is
defined as a connected subgraph induced by a set of edges. Kovanen et al. [34] adapt this definition
to temporal graphs, including temporal aspects of connectivity. Moreover, they present an algorithm
to identify such temporal motifs. Algorithms to count temporal motifs are given by Paranjape et
al. [49].

14
Lukas Christ

3756213



3.2. Pattern Matching Algorithms

3.2. Pattern Matching Algorithms

Conte et al. [11] provide an overview over various graph pattern matching approaches from 1974
to 2004. They distinguish between exact and inexact matching algorithms. Exact matching pre-
serves adjacency. Inexact matching is motivated by exact matching being a NP-complete problem.
Relaxing this problem allows to obtain approximate solutions efficiently. Recent examples for such
an approach are Fan et al. [14] and Ma et al. [43]. Matches by homomorphism and isomorphism
as defined in Definition 13 are exact. Hence, inexact matching paradigms will not be treated in
the following. Furthermore, there are algorithms that only check whether there is a match for the
query in the data graph. As the pattern matching operator in this thesis aims at finding all matches,
these algorithms are not relevant here, either. The most well-known pattern matching algorithm
was introduced by Ullmann in 1976. Ullmann’s algorithm is a tree-search algorithm using back-
tracking and pruning heuristics. Several more recent subgraph isomorphism algorithms can be seen
as improving Ullmann. Examples are VF2 [12], the GraphQL pattern matching algorithm by He
and Singh [24], QuickSI [63], GADDI [73] and SPath [74]. Lee et al. [37] compare them, integrating
them into a common framework. However, the data sets used to compare the performance of the
algorithms are all quite small. While in Ullmann’s algorithm, the vertex set is traversed in ran-
dom order when searching for matches, all these algorithms aim at finding a more efficient order.
Furthermore, they employ more refined pruning procedures and/or indices. TurboISO [22] rewrites
queries to so-called NEC (neighborhood equivalence class) trees in order to explore the search
space more efficiently. Ren and Wang [55] propose a method to speed up all these backtracking
algorithms, which are similar to Ullmann’s. To achieve this, they leverage certain relations between
data graph vertices, prohibiting the processing of too much duplicates. Bi et al. [4] further refine
the aforementioned algorithms by taking Cartesian products of partial matches into account and
employing a data structure for paths. Another Ullmann-based approach to subgraph isomorphism
is proposed by Saltz et al. [60], who use the inexact matching paradigm DualSim [42] to prune
the search tree. VF3 [6] is a recent improvement of VF2, especially suitable for large and dense
graphs.

Different from these algorithms, there are approaches relying mostly on graph indices. Yan et al.
[71] propose the indexing method gIndex and show how it can be used for pattern matching. FG-
Index by Cheng et al. [8] indexes frequent subgraphs. If a query matches such a sub graph, the
results can be immediately returned. Otherwise, additional checks need to be conducted.

Only few subgraph isomorphism algorithms, however, are explicitly designed for distributed exe-
cution. Fard et al. [15] introduce several distributed pattern matching algorithms using the vertex-
centric programming paradigm made prominent by Pregel [44]. However, all of them only handle
inexact matching paradigms. D-ISI by Wickramaarachchi et al. [68] is one of the very few dis-
tributed subgraph isomorphism approaches. It allows Pattern Matching on dynamic graphs which
should have a small diameter for efficient processing.

None of the algorithms above is limited to a certain Graph Data Model, they could, in theory, be
adapted to all graph data models described in Section 2.2. However, also none of them focuses on
temporal graphs and specific temporal queries.
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3.3. Temporal Pattern Matching Algorithms

There are not as many algorithms concerned with temporal pattern matching. A problem in com-
paring them is that there is no widely accepted definition of temporal graphs. Thus, the algorithms
introduced in the following sometimes differ w.r.t. their graph models.

Redmond and Cunningham [54] propose an approach based on VF2 that finds patterns which must
be time-respecting. A path being ’time-respecting’ means that the temporal values on the edges of
the path do not decrease, vertices do not have time stamps in this model.

Similar to Redmond and Cunningham [54], Semertzidis and Pitoura [62] assume only edges to have
time stamps in their model. They aim to match ’interaction patterns’ in which the temporal order
of edges in a match must be preserved. Furthermore, interaction patterns are restricted to occur
within a period of certain length. Their algorithm incrementally matches edges using an index.

In the model by Franzke et al. [17], only edges are associated with an interval, too. Two approaches
are used for temporal query processing. Specific temporal pruning methods are applied to improve
Ullmann’s basic algorithm [65]. Moreover, an index structure is employed. Queries are limited to
arbitrary graphs where patterns on the edge intervals are specified.

Chen et al. [7] investigate temporal social networks, in which every vertex and edge is associated
with an interval. However, they only provide algorithms for matching three special classes of queries,
e.g. ’Group of Users with Relationship Duration (GURD)’ queries.

Different from all these approaches, Li et al. [39] present an isomorphism matching algorithm for
streaming graphs. In such graphs, edges arrive continuously and their arrival time is considered
their time stamp. Vertices do not have time stamps in this model. Queries are graphs where the
temporal order of edges, i.e. the order in which they arrived, is specified. Their algorithm employs a
data structure similar to Tries. Furthermore, it is capable of processing incoming edges in parallel.
Song et al. [64] also provide a method for pattern matching on streaming graphs. Their algorithm
preserves the temporal order of edges, too. However, the matching paradigm is not isomorphism,
but inexact graph simulation.

3.4. Temporal Pattern Matching in Graph Processing Systems and
Graph Databases

In this Section, the differentiation between (distributed) Graph Processing Systems and Graph
Databases (cf. Junghanns et al. [30]) is adopted. In Graph Databases, a pattern matching operator
is typically implemented, as the user should be able to query the database. Further graph mining and
analysis methods are usually not supported. However, graph databases provide typical database
functions, e.g. updating or deleting data. Graph Processing Systems, on the other hand, often
provide a wide range of graph analysis methods, e.g. PageRank, Frequent Subgraph Mining etc.
Other than graph databases, which do not scale well, Graph Processing Systems are usually able
to handle large amounts of data. A disadvantage is that they do not support persistent storage and
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3.4. Temporal Pattern Matching in Graph Processing Systems and Graph Databases

semantically expressive graph data models like those introduced in Section 2.2. See Junghanns et
al. [30] for a thorough discussion of these two types of systems. In what follows, temporal pattern
matching in various graph processing systems (Section 3.4.1) and graph databases (Section 3.4.2)
is briefly reviewed.

3.4.1. Temporal Pattern Matching in Graph Processing Systems

There are many Graph Processing Systems available today, but only a minority of them are shipping
with explicit support for temporal graphs. These systems will now be briefly discussed, without
heir architectures being introduced in detail.

ImmortalGraph [46], formerly known as Chronos [21] is an early distributed temporal graph pro-
cessing system often referenced in related work. ImmortalGraph’s source code is not available.

Similar to ImmortalGraph, Kineograph [9] is based on snapshots, so that vertices and edges are
not explicitly assigned intervals.

Chronograph [5] is based on the PGM (Def. 5). Its temporal semantics include both intervals and
points in time. Its main focus is the traversal of temporal graphs. For the traversals, constraints on
the temporal sequence as introduced by Allen [2] can be stated. These relations will also play an
important role in this thesis, see Section 4.3.2.

Interval semantics are also to be found in Tink’s [40] data model. However, only edges have intervals
here. Tink is based on Gelly4, which is, in turn an abstraction of Apache Flink for graphs.

TGraph [26] defines a different kind of temporal graph model, in which properties of vertices and
edges are time-dependent. TGraph extends Neo4J.

In Graphite [18], intervals also play a key role.

However, none of these systems supports pattern matching as defined in Section 2.4.

3.4.2. Temporal Pattern Matching in Graph Databases

Processing queries is a core feature of (Graph) Databases. In the following, a few graph databases
supporting temporal queries are characterized. The focus is, again, not on architecture or imple-
mentation details, but on temporal query processing features. Graph databases can be roughly
classified by the data model they support [30]: the most widespread data models are the PGM and
RDF [10].

RDF’s data model does not include any mandatory temporal information. Nevertheless, RDF data
may contain temporal information in XML-Schema datatypes such as date. The query language for
RDF is SPARQL [23], which is standardized, too (currently in the version 1.1). SPARQL provides
functions on xsd:datetimes to extract the specified year, month, hour etc. Timezones can also be
handled. Furthermore, values of type xsd:datetime can be compared using the comparators =, !=,

4https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/gelly/, accessed September 2020
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>, >=, < and <=. Examples for graph databases based on RDF are AllegroGraph [1] and TripleBit
[72].

As pointed out in Section 2.2, the PGM does not prescribe temporal information either.

Neo4J [48] is a very well-known graph database using the PGM. Its query language is Cypher [16],
which is also the basis of GDL, the query language of Gradoop’s existing Pattern Matching operator
(see Section 3.6). Cypher supports several date/time data types, e.g. Date and DateTime. There
is a rich variety of options to specify such times and dates. The number of hours, minutes etc. in
a time value can be acessed. Moreover, Cypher includes a Duration datatype. Durations can be
created similar to date and time types. Arithmetic operations on them are possible. Dates can be
compared with the usual comparators like <. Furthermore, new dates can be created by subtracting
or adding a duration to an existing date. The duration between two dates can be computed and
used in query predicates, too.

PGQL [66], the query language of Oracle Big Data Spatial and Graph5, extends SQL in order to
query property graphs. Thus, it supports SQL’s DATE type and comparisons involving it.

OrientDB6 includes a property graph model. It is also able to handle the DATE type of SQL.

In Sparksee [45], a Timestamp type is provided, too.

To conclude, many graph databases support temporal data. However, none of them explicitly
includes temporal information in its data model.

3.5. Gradoop

An overview over the architecture of Gradoop, EPGM and GrALa is provided by Junghanns et al.
[32]. TPGM is introduced by Rost et al. [57].

Several operators and their implementations are discussed in separate papers. Grouping is treated
by Junghanns et al. [31], Frequent Subgraph Mining by Petermann et al. [53]. Junghanns et al.
[28] present the EPGM Pattern Matching implementation that the work of this thesis is built on.
Kricke et al. [35] introduce structural transformations of graphs, e.g. inverting edges or converting
properties into vertices. Graph Sampling is described by Gomez et al. [20].

Furthermore, some applications and examples of Gradoop workflows are given. Petermann and
Junghanns [51] as well as Petermann et al. [52] demonstrate how Gradoop can be used for Business
Intelligence applications. Further GrALa workflows are demonstrated by Junghanns et al. [29]. A
temporal analysis use case is shown by Rost et al.[56].

Rostami et al.[58] built a visual interface for Gradoop workflows.
5https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html, accessed September 2020
6http://orientdb.org/docs/3.0.x/, accessed August 2020
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3.6. The Pattern Matching Operator in Gradoop

3.6. The Pattern Matching Operator in Gradoop

Gradoop implements a pattern matching approach that is inspired by query processing in relational
DBMS. Its implementation is described in detail in [28] and Section 5 of this thesis.

Pattern Matching is among the operators defined by EPGM as well as by TPGM. However, the
implementation is not yet capable of processing time-dependent queries. The main part of this thesis
is devoted to the implementation of time-dependent pattern matching in Gradoop. To achieve this,
the already implemented EPGM pattern matching program is extended.

Before this extension is described at length in the following chapters, the existing operator is
introduced from a user’s perspective.

Like all operators in Gradoop, Pattern Matching is accessible via the Java API for GrALa. Listing
3.1 displays a GrALa program that executes the query from Figure 2.6 on the data graph graph

and prints the resulting graph collection. Alternatively, the matches could have been written to a
data sink.

1 LogicalGraph graph = // ...
2

3 String query = "MATCH " +
4 "(v1:Person)-[e1:work_at]->(v3:Company) " +
5 "(v2:Person)-[e2:work_at]->(v3) " +
6 "WHERE " +
7 "v3.Employees > 100 " + "AND " +
8 "e1.Salary = e2.Salary ";
9

10 GraphCollection results = graph.query(query);
11

12 results.print();

Listing 3.1: Exemplary GrALa Pattern Matching

The query (lines 2-8 of Listing 3.1) is described in the Graph Description Language (GDL). GDL
is an open source7 query language that was created for Pattern Matching in Gradoop [28]. It was
designed to resemble Cypher [16], the query language of Neo4J.

GDL queries always start with the keyword MATCH, followed by a graph pattern. Vertices are denoted
by round brackets. The round brackets may contain the variable name for the vertex. The label of
the vertex can be specified, too. Both variable name and label are optional, e.g. (), (v1), (:Person)

and (v1:Person) are all valid query vertices. Edges are declared as arrows -->. They might contain
a squared bracket in which an optional variable name and a label can be declared in the same way
as in vertices. Additionally, paths of variable length can be specified via path expressions. E.g.,
(p1)-[e:knows*1..3]->(p2) matches any path between two vertices consisting of one to three
knows edges.

7github.com/s1ck/gdl, accessed August 2020

Lukas Christ
3756213

19

github.com/s1ck/gdl


3. Related Work

The query constraints on properties are optionally specified in a SQL-like WHERE-clause. Here,
properties of graph elements (selected in the form variable.property) can be compared with each
other or to suitable literals. Such comparisons can be combined to a complex boolean expression
via the keywords AND, OR, XOR and NOT.

In addition, a construction pattern can be provided to transform the matching results. An example
is shown in Listing 3.2. It modifies line 10 of Listing 3.1 by adding a construction pattern which
leads to only the two Person vertices being returned for each match. Moreover, they are now
connected via a new type of edge, sameCompany, meaning that these two persons work(ed) at the
same company some time.

1 LogicalGraph graph = // ...
2

3 String query = //...
4

5 String constructionPattern = "(p1)-[e:sameCompany]->(p2)";
6

7 GraphCollection results = graph.query(query, constructionPattern);

Listing 3.2: GrALa Pattern Matching with construction pattern

The task of extending the Pattern Matching operator to support temporal queries is two-fold: First,
GDL must be extended so that queries can refer to transaction and valid intervals. Second, the
Gradoop operator must be able to process these new types of queries. The temporal extensions of
GDL are presented in Section 4. Section 5 describes the existing Pattern Matching implementation
in Gradoop and its adaptation to temporal queries.
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The structure of Temporal Property Graphs does not differ from that of Extended Property Graphs.
Hence, the MATCH clause in GDL queries does not need to be extended. An extension of GDL in
order to enable time-related queries can be confined to the WHERE clause.

Temporal Queries must be able to compare the four timestamps tx-from, tx-to, val-from, val-to
among each other and with timestamp literals. Thus, there must be selectors for the timestamps
as well as a literal type for timestamps. Section 4.1 lists these extensions.

Another desideratum in temporal queries is to check the intervals (transaction, valid) of different
graph elements for certain relations between them. This extension is presented in the Sections 4.2
and 4.3.

A further important aspect of intervals is their duration. Comparisons between interval durations
are supported by the GDL extension, too, as presented in Section 4.4.

Section 4.5 lists some exemplary queries that illustrate the expressiveness of the proposed syntax
extensions.

The introduction of the extensions is succeeded by a few remarks on GDL’s implementation (Section
4.6).

Note that support for temporal constraints on path expressions is not within the scope of this
thesis. Section 4.7 discusses the reasons for this.

4.1. Time Stamps

In what follows, all options to create time stamps, i.e. references to exactly one point in time, are
explained. For a compact overview, refer to Table 4.1 in Section 4.1.5.

4.1.1. From and To Selectors

Intervals like the transaction and valid intervals in TPGM are described by two timestamps, their
start/from timestamp and their end/to timestamp. It is thus essential for temporal queries to be
able to refer to the four timestamps tx-from, tx-to, val-from, val-to that are associated with every
vertex and ege in TPGM. In the GDL extension, the four time stamps can be accessed in the same
syntax as any other element property, e.g. a.tx_from.

Different from the notation in this text, tx-from (and analogously the other time stamps) is denoted
tx_from in the GDL extension in order not to use the hyphen. Even though GDL does not support
arithmetic expressions at the moment, the hyphen might be used as a minus operator in the future
without causing confusion with the time selectors.

These selectors can now be used to compare transaction and valid intervals of different graph
elements. E.g., a constraint a.tx_from < b.tx_from states that the transaction interval of some
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element a must start before the transaction interval of some b. Put differently, a must have been
added to the database before b.

4.1.2. Time Stamp Literals

In many cases, it is necessary to compare a from or to selector to a certain date or time. For ex-
ample, one might only be interested in elements that were added to the database in 2020 or later.
This constraint can be expressed as a.tx_from > Timestamp(2020-01-01). The GDL extension
permits the creation of time stamp literals like Timestamp(2020-01-01) or
Timestamp(2020-01-01T12:01:55). Moreover, the keyphrase Timestamp(now) creates a time stamp
referencing the current system time. Table 4.1 lists the three options in a more systematic way.

Time Stamps with respect to different time zones have not been addressed in this thesis. All time
stamps created in GDL have GMT as their time zone.

4.1.3. Global From and To Selectors

TPGM specifies transaction and valid intervals for every single graph element. Based on these
’local’ intervals, ’global’ transaction and valid intervals, associated with the whole graph can be
defined.

Definition 16 (Global transaction interval). Let G be a temporal property graph with vertices V
and edges E. Then,

G.tx-from := maxx∈(U∪V )x.tx-from
G.tx-to := minx∈(U∪V ) x.tx-to

The global transaction interval of G, denoted G.tx is defined as

[G.tx-from, G.tx-to]

, if and only if G.tx-from ≤ G.tx-to.

Because of the latter condition, every comparison c involving the global transaction interval is
transformed to c∧ (maxx∈U∪V x.tx-from ≤ minx∈U∪V x.tx-to) using MIN and MAX expressions as
introduced in Section 4.1.4.

Analogous definitions and remarks hold for G’s global valid interval (denoted G.val).
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4.1.4. MIN and MAX expressions

In some cases it is useful to determine the earliest or latest time point among a set of selectors
and/or time stamps. For example, global transaction and valid times for subgraphs of the query
graph can be declared this way. If a query graph contains elements a, e and b, but only the global
valid interval for the subgraph containing only a and b is of importance, this valid interval is
defined by [max{a.val-from, b.val-from}, min{a.val-to, b.val-to}]. MIN and MAX timestamps can
be created using the syntax MIN(t1,...,tn) and MAX(t1,...,tn), where ti (1 ≤ i ≤ n) is some
time stamp other than a MIN/MAX expression. Hence, MIN/MAX expressions can not be nested
but take only time stamps and from/to selectors as arguments.

4.1.5. Overview over Timestamp Creation

Table 4.1 lists all possibilities to create a time stamp in the GDL extension.

Type Syntax Remarks
valid-from (variable) variable.val_from
valid-to (variable) variable.val_to
tx-from (variable) variable.tx_from
tx-to (variable) variable.tx_to

valid-from (global) val_from
implicitly adds
val-from ≤ val-to

valid-to (global) val_to
implicitly adds
val-from ≤ val-to

tx-from (global) tx_from
implicitly adds
tx-from ≤ tx-to

tx-to (global) tx_to
implicitly adds
tx-from ≤ tx-to

Datetime Literal Timestamp(YYYY-MM-DDThh:mm:ss)
Date Literal Timestamp(YYYY-MM-DD) sets time to 00:00:00

Minimum MIN(t1,...,tn)
n ≥ 2, no nesting of
MIN/MAX

Maximum MAX(t1,...,tn)
n ≥ 2, no nesting of
MIN /MAX

Table 4.1.: Options to create time stamps in GDL queries

4.2. Intervals

Apart from time stamps, intervals can be referenced in queries. This Section introduces all options
to create intervals in a WHERE clause. An overview over them is given in Table 4.2 in Section 4.2.4.
Section 4.3 then explains how intervals can be compared to each other and to time stamps.
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4.2.1. Transaction and Valid Intervals

For every query graph element, its transaction and valid interval can be accessed in a property
selector syntax, e.g. a.val denotes the valid interval of some graph element.

In addition, queries can refer to global intervals. For example, tx denotes the global valid interval.

4.2.2. Custom Intervals

To enable flexible creation of custom intervals, a keyword Interval is introduced to GDL. The ex-
pression Interval(x,y) creates an interval [x, y]. Here, x and y are timestamps as defined in Section
4.1. Heterogeneous combinations of time stamps like Interval(a.tx_from, Timestamp(2020-01-01))

are possible. For an expression Interval(x,y), a constraint x ≤ y is implicitly added to the re-
spective query clause to ensure that the created interval is actually defined.

4.2.3. Merging and Joining Intervals

A third option to create intervals in a query is to merge or join two intervals. These two operations
are only defined, when the involved intervals overlap.

Definition 17 (Overlapping Intervals). Let i1 =[a,b] and i2 =[c,d] be intervals. They are said to
overlap, if and only if max{a,c} < min{c,d}.

The merge of overlapping intervals can be thought of as the interval defined by their intersection,
while their join corresponds to the interval defined by their union.

Definition 18 (Merge and Join of Intervals). Let i1 =[ i1_from, i1_to], i2 = [i2_from, i2_to],...,in =[
in_from, in_to] be overlapping intervals.
Their merge is defined by the interval

[max{i1_from, i2_from,...,in_from}, min{i1_to, i2_to,...,in_to}]

Their join is defined by the interval

[min{i1_from, i2_from,...,in_from}, max{i1_to, i2_to,...,in_to}]

Figure 4.1 illustrates this definition.

In GDL, merge and join intervals are created by expressions i1.merge(i2) and i1.join(i2). Here,
i1 and i2 are primitive intervals, i.e. transaction/valid intervals (Section 4.2.1) or custom intervals
(Section 4.2.2). In other words, merge and join intervals can not be nested. Both operators are
obviously commutative.
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i1

i2

i1.merge(i2)

i1.join(i2)

Figure 4.1.: Illustration of interval merge/join

Type Syntax Remarks
tx interval (variable) var.tx

valid interval (variable) var.val

tx interval (global) tx
implicitly adds
tx-from ≤ tx-to

valid interval (global) val
implicitly adds
val-from ≤ val-to

custom interval Interval(t1, t2)
t1, t2 time stamps, creates [t1, t2 ],
implicitly adds t1 ≤ t2

merge interval i1.merge(i2)
implicitly adds constraints
enforcing overlap of i1 and i2

join interval i1.join(i2)
implicitly adds constraints
enforcing overlap of i1 and i2

Table 4.2.: Options to create intervals in GDL queries

Although merge and join are n-ary operations, GDL only supports merges and joins of two intervals
in order to keep the grammar simple. N-ary merges and joins can be easily expressed by creating
a custom interval (see 4.2.2) with MIN and MAX timestamps (see 4.1.4). Actually, the merge and
join syntax presented here is only syntactic sugar for such a construction.

4.2.4. Overview over Interval Creation

In Table 4.2, all options for creating intervals are listed.

4.3. Constraints on Intervals and Time Stamps

Once time stamps and intervals are created, constraints on them can be formulated. Section 4.3.1
presents all possibilities to compare time stamps to other time stamps or intervals. After that,
relations between intervals and their syntax in GDL are discussed in Section 4.3.2.

4.3.1. Comparisons involving Time Stamps

As already mentioned in Section 4.1, time stamps can be compared among each other just like any
other property selectors and literals. For example, comparisons like
a.tx_from > Timestamp(2020-01-01) or
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e.tx_from <= MIN(a.val_from, b.val_from) are possible. Available comparators are <, <=, =,
!=, >= and >.

Moreover, there are aliases for the comparators < and >: t1.before(t2) is equivalent to t1<t2,
while t1.after(t2) equals t1>t2 for time stamps t1, t2.

Time stamps can not only be compared among each other but also to intervals. In the GDL
extension, three possible relations (and their negations via NOT) between a time stamp t and an
interval i = [ifrom, ito] can be formulated:

• t can denote a point in time before i starts, i.e. t < ifrom. This relation is expressed
t.precedes(i) in GDL

• t might refer to a point in time that is contained in i, i.e. ifrom ≤ t ≤ ito. This relation is
stated i.contains(t) in GDL

• t can represent a point in time after i ends, i.e. t > ito. The GDL syntax to express this
relation is t.after(i)

Obviously, these keywords are only syntactic sugar. The relations can be formulated using only
comparisons of simple time stamps.

Additionally, predicates fromTo and between are provided, as defined in [57]. These predicates
are inspired by the keywords FROM...TO and BETWEEN available in SQL:2011 [36]. They relate an
interval i = [ifrom, ito] to two time stamps t1 and t2 that can be viewed to describe intervals:

• i.fromTo(t1,t2) := ifrom < t2 ∧ ito > t1. This means that i must overlap with the interval
[t1, t2)

• i.between(t1,t2) := ifrom ≤ t2 ∧ ito > t1. Here, an overlap of i and the interval [t1, t2] is
postulated

As before, the predicates fromTo and between are just aliases for the equivalent expressions over
time stamps.

Another relation between an interval and a timestamp is the asOf relation. It expresses the con-
straint that an element must have been present/valid in the database at a certain point in time.
E.g., a.tx.asOf(Timestamp(2020-01-01)) states that some element a was in the database as
of 2020-01-01 at midnight. The asOf relation is syntactic sugar, too: a.asOf(t) is equivalent to
a.tx-from ≤ t ∧ a.tx-to ≥ t. An AS OF keyword is also defined in SQL:2011.

Table 4.3 lists all the comparisons involving time stamps that were presented here.
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Syntax Semantics
t1 < / <= / = / != / >= / > t2 t1 < / ≤ / = / 6= / ≥ / > t2
t1.before(t2) t1 < t2
t1.after(t2) t1 > t2
t1.precedes(i) t1 < ifrom
t1.after(i) t1 > ito
i.contains(t1) ifrom ≤ t ≤ ito
i.fromTo(t1, t2) ifrom < t2 ∧ ito > t1
i.between(t1, t2) ifrom ≤ t2 ∧ ito > t1
Table 4.3.: Comparisons involving time stamps in GDL queries

4.3.2. Interval Relations

All intervals described in Section 4.2 can not only be compared to a timestamp but also among
each other. However, the comparators (<, ≤,...) are not suited to compare two intervals. Instead,
two intervals can have certain relations.

Allen [2] describes 13 binary interval relations. They are listed in Table 4.4 for intervals [a, b] and
[c, d]. None of Allen’s relations, except the equality relation, are symmetric. For every relation, its

Relation Semantics Inverse
[a, b] beforeA [c, d] b < c afterA
[a, b] afterA [c, d] a > d beforeA
[a, b] duringA [c, d] a > c ∧ b < d containsA
[a, b] containsA [c, d] a < c ∧ b > d duringA
[a, b] overlapsA [c, d] a < c < b < d overlapped-byA
[a, b] overlapped-byA [c, d] c < a < d < b overlapsA
[a, b] meetsA [c, d] b = c met-byA
[a, b] met-byA [c, d] a = d meetsA
[a, b] startsA [c, d] a = c ∧ b < d started-byA
[a, b] started-byA [c, d] a = c ∧ b > d startsA
[a, b] finishesA [c, d] a > c ∧ b = d finished-byA
[a, b] finished-byA [c, d] a < c ∧ b = d finishesA
[a, b] equalsA [c, d] a = c ∧ b = d equalsA

Table 4.4.: Allen’s [2] interval relations

inverse is also defined as a relation.

SQL:2011 defines interval relations (’period predicates’), too [36]. These relations are inspired by
those proposed by Allen. However, there are only 7 interval relations in SQL:2011. Table 4.5 lists
them for intervals [a, b] and [c, d] and also shows their equivalent expressions using Allen’s relations
(cf. [36]). The difference between Allen’s overlapsA relation and the OVERLAPS relation in SQL is
especially notable. The latter is equal to the definition of overlapping intervals given in Definition
17.

For the GDL extension, interval relations equivalent to those in SQL are provided. They are listed
in Table 4.6.
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SQL Relation Semantics Allen Equivalent

[a, b] OVERLAPS [c, d]
max{a, c}

<
min{b, d}

[a, b] overlapsA [c, d] ∨
[a, b] overlapped_byA [c, d] ∨
[a, b] duringA [c, d] ∨
[a, b] containsA [c, d] ∨
[a, b] startsA [c, d] ∨
[a, b] started_byA [c, d] ∨
[a, b] finishesA [c, d] ∨
[a, b] finished_byA [c, d] ∨
[a, b] equalsA [c, d] ∨

[a, b] CONTAINS [c, d] a ≤ c ∧ b ≥ d

[a, b] containsA [c, d] ∨
[a, b] starts_byA [c, d] ∨
[a, b] finishesA [c, d] ∨
[a, b] equalA [c, d] ∨

[a, b] PRECEDES [c, d] b ≤ c [a, b] beforeA [c, d] ∨
[a, b] meetsA [c, d] ∨

[a, b] SUCCEEDS [c, d] b ≤ c [a, b] afterA [c, d] ∨
[a, b] met_byA [c, d] ∨

[a, b] EQUALS [c, d] a = b ∧ c = d [a, b] equalsA [c, d]
[a, b] IMMEDIATELY_PRECEDES [c, d] b = c [a, b] meetsA [c, d]
[a, b] IMMEDIATELY_SUCCEEDS [c, d] a = d [a, b] met_byA [c, d]

Table 4.5.: Interval relations in SQL:2011 and equivalent Allen [2] formulas

SQL Relation GDL Predicate
i1 OVERLAPS i2 i1.overlaps(i2)
i1 CONTAINS i2 i1.contains(i2)
i1 PRECEDES i2 i1.precedes(i2)
i1 SUCCEEDS i2 i1.succeeds(i2)
i1 EQUALS i2 i1.equals(i2)
i1 IMMEDIATELY_PRECEDES i2 i1.immediatelyPrecedes(i2)
i1 IMMEDIATELY_SUCCEEDS i2 i1.immediatelySucceeds(i2)

Table 4.6.: Interval relations in GDL

4.4. Durations and Duration Constraints

In many cases it may be necessary to impose constraints on the length of intervals, i.e. their
durations. For example, in analysing a social network like in Figure 2.2, one might only be inter-
ested in long-term employees that have been with the company for at least five years. A condition
e.val.lengthAtLeast(Days(1825)) may describe this constraint for a work_at edge e. Such con-
ditions are possible in GDL.

Two types of durations can be used to formulate them:

• within the context of a duration constraint, an interval term (cf. Section 4.2) represents the
duration of the respective interval.
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• constant durations can be created with the self-explanatory keywords Millis, Seconds,
Minutes, Hours and Days. Similar to Java constructors, they take a number as an argument,
e.g., Minutes(5) creates a constant duration representing 5 minutes.

Table 4.7 summarizes these options.

Duration Syntax
duration of interval i (syntax of i as described in Section 4.2)
n milliseconds Millis(n)
n minutes Minutes(n)
n hours Hours(n)
n days Days(n)

Table 4.7.: Options to create durations in GDL queries

Two durations can be compared using the keywords longerThan, lengthAtLeast, shorterThan and
lengthAtMost. For example, a.tx.longerThan(b.tx) states that some element a must have been
longer in the database than another element b. Table 4.8 lists these expressions more formally.

Syntax Semantics
i1.longerThan(i2) length(i1) > length(i2)
i1.lengthAtLeast(i2) length(i1) ≥ length(i2)
i1.shorterThan(i2) length(i1) < length(i2)
i1.lengthAtMost(i2) length(i1) ≤ length(i2)

Table 4.8.: Options to compare durations in GDL queries

Note that it is not possible to compare durations using the comparators <, <=, !=, =, > and >=. The
reason why there are no keywords Years and Months is that years and months may differ in their
length, whereas milliseconds, seconds, minutes and days do not vary w.r.t their duration.

4.5. Exemplary Queries

To conclude the introduction of temporal predicates in GDL queries, this Section contains a few
examples. All of them are intended for the isomorphism paradigm.

Using the overlaps predicate, it is now possible to find the pattern of two persons that worked at
the same company at the same time in the graph of Figure 2.2 (Listing 4.1).

1 MATCH (p1:Person)-[w1:work_at]->(c:Company)
2 (c)<-[w2:work_at]-(p2:Person)
3 WHERE w1.val.overlaps(w2.val)

Listing 4.1: Example Query 1

In order to find all works_at relations that are actually valid now, the asOf predicate can be
employed (Listing 4.2).
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1 MATCH (p:Person) -[w:works_at]-> (c:Company)
2 WHERE w.val.asOf(Timestamp(Now))

Listing 4.2: Example Query 2

The next query, Listing 4.3, detects all persons that studied at least two years at the University of
Leipzig in the 1990s and earn at least 100k Euros per year today.

1 MATCH (p:Person) -[s:study_at]-> (u:University)
2 (p) -[w:work_at]-> (c:Company)
3

4 WHERE u.Name="University of Leipzig" AND
5 s.val.between(Timestamp(1990-01-01),Timestamp(1999-12-31)) AND
6 s.val.lengthAtLeast(Years(2)) AND
7 w.Salary > 100000 AND
8 w.val.asOf(Timestamp(Now))

Listing 4.3: Example Query 3

For the last example, suppose the company ’X’ wants to find mentors for its new employees. A new
employee is one that started working for ’X’ in 2020. Potential Mentors are at most 15 years ( 5475
days) older than their mentees and have been with the company for at least 5 years ( 1825 days).
Listing 4.4 shows a possible query to find pairs of possible mentors and mentees.

1 MATCH (mentor:Person) -[w1:work_at]-> (c:Company)
2 (mentee:Person) -[w2:work_at]-> (c)
3

4 WHERE c.Name="X" AND
5 w2.val_from >= Timestamp(2020-01-01) AND
6 Interval(mentor.val_from, mentee.val_from).lengthAtMost(Days(5475)) AND
7 w1.val.lengthAtLeast(Days(1825)) AND
8 val.asOf(Timestamp(Now))

Listing 4.4: Example Query 4

These examples demonstrate the expressivity of the implemented GDL syntax extensions. The next
Section briefly sketches the most important aspects of their implementation in GDL.

4.6. Implementation of GDL

GDL is based on an ANTLRv4 ([50]) grammar. To give an example, the rules describing merges
and joins for intervals are shown in Listing 4.5.

1 complexInterval
2 : complexIntervalArgument ’.merge(’ complexIntervalArgument ’)’
3 | complexIntervalArgument ’.join(’ complexIntervalArgument ’)’
4 ;
5
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6 complexIntervalArgument
7 : intervalSelector
8 | intervalFromStamps
9 ;

Listing 4.5: Sample from GDL ANTLR grammar

Here, complexInterval, complexIntervalArgument, intervalSelector and intervalFromStamps

are non-terminal variables. Strings in quotes (here: .merge(, .join( and twice )) are constants.
The non-terminal intervalSelector describes interval expressions referring to transaction and
valid intervals, while intervalFromStamps is used to define custom intervals (Section 4.2.2).

The query parsing is implemented in Java. Therefore, the query is wrapped into Java objects.
Classes like Graph.java, Edge.java and Vertex.java wrap the pure structure of the speci-
fied graph, i.e. just the vertices and edges without any information about properties and la-
bels. All constraints are given in a boolean formula. Here, comparisons between two instances
of Comparable.java are the atomic constraint types. An interface ComparableExpression.java

is extended by all wrappers for comparable data types. These types are, without the temporal ex-
tensions, PropertySelector.java, Literal.java and ElementSelector.java. The latter selects
a vertex or edge.

The extensions of GDL described above extend the grammar and introduce new types of
ComparableExpression.java. A new abstract implementation of it, TimePoint.java is created as
a common base class for all temporal data types. Changing the wrappers for the graph structure
or the boolean formula is not necessary.

The TimePoint type TimeSelector is used to wrap all from and to selectors (Section 4.1.1). Time
literals (Section 4.1.2) are wrapped by objects of type TimeLiteral.java. Global from and to selec-
tors (Section 4.1.3) are not wrapped in GDL, but immediately transformed to a set of ’local’ ones af-
ter parsing the query. As an example, consider the constraint val_from > Timestamp(2020-01-01).
Suppose the query graph pattern only contains just two elements a and b. Then, the constraint
would be transformed to

a.val_from > Timestamp(2020-01-01)

AND b.val_from > Timestamp(2020-01-01)

AND MAX(a.val_from, b.val_from) <= MIN(a.val_to, b.val_to).

Evidently, comparisons involving MIN and MAX expressions (Section 4.1.4) can be reduced to
comparisons between primitive time types, i.e. from/to selectors and time stamps. For example

min{a.val-from, b.val-from} < c.val-from
⇔

(a.val-from < c.val-from) ∨ (b.val-from < c.val-from).
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However, such reductions are not applied in GDL. This is because programs using GDL (here
Gradoop) should be able to decide how to handle these expressions, i.e. whether to translate
them to simple comparisons or not. Thus, MIN and MAX expressions are wrapped by classes
MinTimePoint.java and MaxTimePoint.java.

Interval relations (Section 4.3.2) are only syntactic sugar, as they can be reformulated using only
time stamps. Equivalent expressions using only comparisons between time stamps can be obtained
from the Tables 4.3, 4.5 and 4.6. Hence, there is no interval type in GDL. Intervals need never
be materialized, as they only occur in the context of their relations with other intervals or time
stamps. During parsing, these relations are directly translated to the equivalent expressions over
time stamps.

Durations of intervals (Section 4.4) are wrapped by Duration.java. The constant durations (Days,...),
however, are wrapped using another TimePoint.java, TimeConstant.java. The usage of different
wrappers for the two types of durations is motivated by the possibility to use constants for other
purposes in future work.

All aspects implemented in this thesis have now been discussed. The next Section deals with
temporal path expressions and why they have not been implemented.

4.7. Temporal Path Expressions

Temporal constraints on path expressions like (p1)-[:knows*1..3]->(p2) are more difficult than
on simple edges.

The main reason for this is that the edges on such a path can not be referenced via variable names
in a GDL query. Thus, the constraints introduced above are not applicable on path expressions.
Because of that, special keywords and/or relations must be defined for these expressions. There is,
however, a great variety of possible temporal constraints on path expressions. To illustrate this,
consider two examples:

• Suppose, a transportation network is given as a temporal property graph. Vertices represent
train stations and every edge corresponds to a connecting train from one station to another.
The departure and arrival times of a train are given in the valid interval of the connection
edge. To plan a journey from city c1 to city c2, a path expression (c1)-[:train*1..*]->(c2)

might be used in a GDL query. However, to actually receive reasonable journeys, two temporal
constraints must be imposed: first, on stations between c1 and c2, a train must always leave
after the train before arrived. Second, the interval between arrival and departure of subsequent
trains must not be too long, as a passenger typically does not want to wait for hours for the
next train. More formally, if the maximum changing time is one hour and e0, ..., en are the
edges on the path between c1 and c2 in a matching path expression it must hold that:

ei.val-to < ei+1.val-from ∧ length([ei.val-to, ei+1.val-from]) ≤ 1h
∀i ∈ [0, n− 1]

This constraint can not be expressed directly in GDL, as the eis are not available in the query.
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• To give another example, let the graph be a computer network. Here, the vertices are com-
puters and the edges connecting them their connections in the network. Valid times of edges
indicate the intervals during which a connection is available. If c1 and c2 are computers in
this network, a connection between them can be expressed as (c1)-[*1..*]->(c2). Suppose,
that this connection must be stable during some interval I = [If , It]. Then, the valid intervals
of all edges e0, ..., en on the path from c1 to c2 must contain I, i.e. the constraint here is

ei.val-from ≤ If ∧ ei.val-to ≥ It ∀i ∈ [0, .., n]

Different from the transportation network example before, the constraint refers to all edges
on the path. Furthermore, the sequence of valid from/to time stamps on the path is irrelevant
here, but the edges’ valid times must overlap. Similar to the first example, the constraint can
not be expressed in GDL as the ei’s are not available either.

The examples make clear that there are many types of temporal constraints for paths: constraints
might refer to vertices or edges or both; overlap might be necessary or not; they may impose a
sequence on one or more of the four time stamps or not; a sequence of time stamps can be (strictly)
ascending or (strictly) descending; there can be duration constraints on vertices/edges, between
vertices/edges and so on.

There are two options to integrate temporal path expressions into GDL: one could support just
a few types of temporal path expressions, e.g. time-respecting paths [54], stable connections or
journeys as shown in the examples. In this case, it would suffice to introduce a few additional
keywords corresponding to those constraints. The other option is to enable the user to define
arbitrary custom temporal path constraints. To achieve this, however, it would be necessary to
conceive a very rich and flexible syntax extension.

Because of the complexity of the temporal path expression problem, it is not addressed in the thesis
any further. Instead, the next Section focuses on the processing of GDL queries by Gradoop.
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5. Temporal Pattern Matching in Gradoop

Now that temporal queries are possible in GDL, Gradoop must be able to handle them. The
matching operator for EPGM graphs was already implemented in Gradoop by Junghanns et al.
[28]. In this Section, the approach by Junghanns et al. is described in more detail than in [28].
Furthermore, the extensions necessary to process temporal queries are discussed. Path expressions
are not dealt with here, as they are not extended for temporal pattern matching in this thesis.

First, Junghanns et al.’s method is presented in Section 5.1 from a theoretic point of view. Section
5.2 then explains its implementation in Gradoop.

Note that the following only introduces the basic principles of (Temporal) Pattern Matching in
Gradoop. Approaches to further optimize the program’s runtime are presented in chapter 6.

5.1. Pattern Matching by Relational Query Processing

The processing of a GDL query in Gradoop is conceptually similar to query executions in relational
databases. First, a query is translated into relational algebra (Section 5.1.1). Then, a query plan
for its execution is constructed. The concept of a query plan is introduced in Section 5.1.2, the
construction of such plans in Sections 5.1.3 and 5.1.4. Section 5.1.5 explains how the approach by
Junghanns et al. discussed in the Sections 5.1.1-5.1.4 is extended to support the temporal GDL
queries introduced in Section 4.

5.1.1. Translation to Relational Algebra

An EPGM graph element can be thought of as a tuple in a relation. To store a whole property
graph, two relations V and E for vertices and edges respectively, were needed. V would contain an
ID attribute for each vertex as well as an attribute for every property from K. Furthermore, every
vertex’s label must be stored in V. This attribute is called __label in the following, in order not
to confuse the label with a property from K. In Table 5.1, a sample of V for the property graph in
Figure 1.1 is given.

ID __label Age Domain ... Salary

01 Company NULL "Insurances" ... NULL
02 Company NULL "Banking" ... NULL
03 Person 27 NULL ... NULL
... ... ... ... ... ...
07 University NULL NULL ... NULL

Table 5.1.: Sample from V of graph in Figure 1.1

The IDs are made up, Gradoop assigns IDs to data graph elements automatically. Information
about logical graphs is omitted in this discussion, as it is not vital for the approach.
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The relation E containing edges is more complex, since it additionally needs to contain the source
and target vertex ID (sID and tID) for every edge. Table 5.2 shows a fraction of the edge relation
E for the property graph in Figure 2.1.

ID sID tID __label Age Domain ... Salary
01 03 01 work_at NULL NULL ... 5000
02 03 04 knows NULL NULL ... NULL
03 03 06 study_at NULL NULL ... NULL
... ... ... ... ... ... ... ...
10 05 04 knows NULL NULL ... NULL

Table 5.2.: Sample from E of graph in Figure 1.1

Even though the implementation of the approach will be discussed in detail in Section 5.2, it should
be noted already here that this is not the way Gradoop actually stores vertices and edges. Instead,
POJOs representing vertices and edges in Gradoop are converted to resemble these relations in the
implementation.

Moreover, matches for a query can be represented by a relation in a natural way. All matches for
a query have the same structure, especially the same number of vertices and edges. Thus, the at-
tributes of a relation representing query matches are simply the union of attributes of the relations
representing the match’s single vertices and edges. For example, every result for the query in Figure
2.6 consists of 3 vertices and 2 edges. The underlying data graph (Figure 2.1) has the property
set K={Name, Age, ..., Employees}. A relational representation of the vertex v would have the
attributes v.ID, v.__label, v.Name, v.Age,..., v.Employees. Analogously, a relational representa-
tion of edge e has the attributes e.ID, e.sID, e.tID, e.__label, e.Name, e.Age,..., e.Employees.
The relation for a query result then unites all these attributes. In the given example it has the
attributes v1.ID, v1.__label, v1.Name...,v1.Employees, v2.ID, v2.__label,...,v2.Employees,
v3.ID, v3.__label,..., v3.Employees, e1.ID, e1.sID, e1.tID, e1.__label, e1.Name,...,
e1.Employees, e2.ID, e2.sID,...,e2.Employees. Every tuple of such a relation then represents a
match. However, the set of attributes can be more compact. It is sufficient for the relation to only
contain the IDs of all vertices and edges. All the property values can be reconstructed with these
IDs via joins with V and E . In the following, the desired result table will be denoted R.

The goal of pattern matching can now be reformulated: finding all matches for a query means to
construct R (representing all correct matches) from the relations V and E (representing all vertices
and edges of the graph) by means of relational algebra. Put differently, a relational algebra term t

referring to V and E is sought that results in R. Every intermediate result of t as well as its end
result R represents a set of sub graphs, each of them a tuple in the corresponding relation.

To determine t, suitable candidate relations for every vertex and edge in the query graph must
first be selected from V and E . In this first step, only the clauses referring to single elements
are used to determine the candidates. More formally, suppose the query vertices are v1, ..., vn and
K = {k1, ..., km}. Then, candidate relations cand(v1)...cand(vn) are computed as stated in Equation
5.1.
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cand(vi) = ρvi.k1/k1 ρvi.k2/k2 ... ρvi.km/km
ρvi.ID/ID(ΠK∪{ID}(σθ{vi}(V))) (5.1)

All rename operations (ρ) here only ensure that all attribute names in cand(vi) are prefixed with vi..
This will enable joins between candidate relations later. The projection (Π) excludes the __label
attribute, as it is not needed further (labels can not be compared in GDL yet). The selection (σ)
checks whether all constraints referring to the query vertex in question (θ{vi}) are satisfied.

For edges, the candidate selection is a bit more complicated. Every edge ei has a source vertex vj
and a target vertex vk. Their IDs are stored in columns e.sID and e.tID respectively. In cand(ei),
these columns are renamed vj .ID and vk.ID immediately, in order to enable natural joins with
cand(vj) and cand(vk) later on. The label attribute can be discarded immediately, same as for
vertices. Equation 5.2 defines edge selection formally for an edge ei = (vj , vk).

cand(ei) = ρei.k1/k1 ... ρei.km/km
ρvj .ID/ei.sID ρvk.ID/ei.tID ρei.ID/ID(ΠK∪{ID,ei.sID,ei.tID}σθ{ei}(E))

(5.2)

Every relation cand(vi) now comprises a set of vertices potentially matching the query vertex vi.
Analogously, cand(ei) is the set of potential matches for the query edge ei. At this point, it is
already ensured that all constraints referring to only one element are checked, i.e. fulfilled in every
result. In the next steps, all candidate relations are joined, yielding R. During these joins, the
remaining constraints on more than one element are checked. Properties that are not needed for
any further joins are discarded via projections. Such projections are noted project(t′, θ), meaning
that an attribute in t′ is kept if and only if it is referenced in θ. Discarding properties as early as
possible keeps intermediate results during the execution of the term small, which affects the run
time positively.

Algorithm 1 formalizes this discussion. It assumes the homomorphism paradigm and results in the
desired relational algebra term t, which yields R.
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Algorithm 1 Simple Translation of a query to Relational Algebra (Homomorphism)
1: procedure SimpleQueryToRel(((Vq, Eq), θ))
2: terms = ∅
3: for v ∈ Vq do
4: terms = terms ∪ cand(v) (Eq. 5.1)
5: θ = θ\θ{v}
6: for e ∈ Eq do
7: terms = terms ∪ cand(e) (Eq. 5.2)
8: θ = θ\θ{e}
9: while |terms| > 1 do

10: t1, t2 = choose two random terms from terms
11: naturalJoinV ars = GetAllVars(t1) ∩ GetAllVars(t2)
12: processedV ars = GetVars(t1) ∪ GetVars(t2)
13: naturalJoinPredicates = NJPredicates(naturalJoinV ars)
14: joinPredicate = θprocessedV ars ∧ naturalJoinPredicates
15: new_term = empty relational algebra term
16: if joinPredicate empty then
17: new_term = t1 × t2
18: else
19: new_term = project(t1 onjoinPredicate t2, θ\θallV ars)
20: terms = (terms\{t1, t2}) ∪ {new_term}
21: θ = θ\ θallV ars
22: t = only remaining term in terms
23: return t
24:
25: procedure GetVars(t)
26: if t of the form cand(x), x vertex or edge then
27: return {x}
28: else if t of the form t1 onθ′ t2 or t1 × t2 then
29: return GetVars(t1) ∪ GetVars(t2)
30:
31: procedure GetAllVars(t)
32: if t of the form cand(v), v vertex then
33: return {v}
34: else if t of the form cand(e), e = (s, t) edge then
35: return {e, s, t}
36: else if t of the form t1 onθ′ t2 or t1 × t2 then
37: return GetAllVars(t1) ∪ GetAllVars(t2)

In line 12, a function NJPredicates is used. This function computes natural join predicates of
the form x.ID = x.ID for every variable x that is referenced in the results of both terms t1 and
t2. The distinction between GetVars and GetAllVars is motivated by the structure of edge
relations, which include source and target vertex IDs. Results of GetAllVars include source and
target vertices of edges in order to enable joins on them (line 11, 13), while results of GetVars
do not.

Figure 5.1 illustrates a possible run of Algorithm 1 for the example query in Figure 2.6. Assume
that the company vertices have the IDs 01 and 02 and the vertices of Alice, Bob and Carl the IDs
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03, 04 and 05. The work_at edges have the IDs 01-04 (from left to right in Figure 2.2). Projections
are ommitted for the sake of brevity.

v1 v2

v3
e2e1

θ	=
			τ(v1)="Person"
∧	τ(v2)=="Person"
∧	τ(e1)="work_at"
∧	τ(e2)="work_at"
∧	τ(v3)="Company"
∧	κ(v3,	Employees)		>	100
∧	κ(e1,	Salary)		=	κ(e2,	Salary)

Query

cand(v2) cand(v3)cand(e1) cand(e2)

03
v1.ID

04
05

01
v1.IDe1.ID

02
03

03
v2.ID

04
05

v3.ID
04

v3.IDe1.Salary
03
04
04
05

01
01
02
02

5000
5000
6000
4000

01
v2.IDe2.ID

02
03
04

v3.ID e2.Salary
03
04
04
05

01
01
02
02

5000
5000
6000
4000 01

cand(v1)

01
v2.IDe2.ID

02

v3.ID e2.Salary
03
04

01
01

5000
5000

⨝v3.ID=v3.ID

01
v1.IDe1.ID

02
03
04

v3.IDe1.Salary
03
04
04
05

01
01
02
02

5000
5000
6000
4000

⨝v1.ID=v1.ID

⨝v2.ID=v2.ID

01
v2.IDe2.ID

02

v3.ID e2.Salary
03
04

01
01

5000
5000

⨝(v3.ID=v3.ID ∧	κ(e1,	Salary)		=	κ(e2,
Salary))

01
v1.IDe1.ID

02

v3.ID
03

04

01
01

02

01 03

04
01
01

e2.ID
01
02
01
02

v2.ID
03
04
03
04

Figure 5.1.: Exemplary run of Algorithm 1

Lemma 1. For any query, ((Vq, Eq), θ), Algorithm 1 computes a relational algebra expression t

that results in the correct result relation R for the homomorphism matching paradigm.

Proof. Algorithm 1 terminates for every query, as every time the loop (lines 9-21) is executed,
|terms| is reduced by 1 (line 20).

Furthermore, it is clear, that the structure of R’s results is as desired: For every query graph
element, the respective candidates are selected. These candidates are then subsequently joined
until no more join is possible. Lines 11, 13 and 14, combined with edge selections (Equation 5.2,
line 7) ensure that the correct structure is created, i.e. every edge is joined with its correct source
and target vertex.

Moreover, all predicates specified in θ must be fulfilled for every resulting embedding. For a query
graph element x, the constraints θ{x} are used as selection predicates to filter the candidates for x
(lines 4, 7). Every other sub-CNF of θ is a θX for X ⊆ (Vq ∪ Eq). Lines 14, 16 and 19 make sure
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that θX is checked as soon as a term comprising all variables in X exists in terms. This will always
be the case during Algorithm 1, as it terminates and t is a term containing all variables.

Note that for the isomorphism paradigm, an additional operation would be needed. This operation
would remove tuples that do not fulfill the isomorphism condition, i.e. tuples containing the same
graph element more than once. Obviously, this operation could easily be integrated in the Algorithm
given here (it is in fact implemented in Gradoop). To keep the discussion simple, however, this
aspect is omitted in the following. Instead, the query paradigm is assumed to be homomorphism
throughout the following discussion.

Algorithm 1 describes a very simple procedure of ’translating’ a query into relational algebra. This
is not the algorithm used in Gradoop. It rather serves as an introduction to Junghanns et al.’s
approach [28], which is a more refined version of it.

A major problem of Algorithm 1 is that the choice of the next join is random in line 10. However, this
choice is not arbitrary, as the join sequence influences the size of intermediate results and thus the
run time of the algorithm. Consider the following example. Let q = (({v1, v2}, {e = (v1, v2)}), θ =
θ{v1} ∧ θ{e} ∧ θ{v2}) be a simple query. Suppose that there are 10 matches for v1, 20 for e and
50 for v2, i.e. |cand(v1)| = 10, |cand(e)| = 20, |cand(v2)| = 50. Furthermore, suppose that every
candidate for v1 matches exactly one edge candidate, while 15 candidates for v2 match exactly one
edge candidate and the other 35 candidates for v2 do not match any edge. Let the overall result size
be 5. There are three possible join sequences that may be produced for q by Algorithm 1. Table
5.3 compares them w.r.t. the size of the intermediate results when they are executed.

Join Sequence Result sizes
before 1st join

Result sizes
before 2nd join Final result size

(c(v1)× c(v2)) on c(e) 10, 20, 50 500, 20 5
(c(v1) on (c(e)) on c(v2) 10, 20, 50 10, 50 5
c(v1) on (c(e) on c(v2)) 10, 20, 50 10, 15 5
Table 5.3.: Exemplary join sequences and their (intermediate) cardinalities

Of course, the candidate sets and the final results are always of equal size. However, the intermediate
results’ cardinalities differ. The third join sequence is arguably the most efficient one to process, as
it minimizes the intermediate results’ sizes. Hence, it is not reasonable to create the join sequence
randomly, as done in line 10 of Algorithm 1.

Determining the best join sequence is not trivial, as the size of intermediate results is not known
in advance. In addition, there are Πn

i=2
(i

2
)
possible sequences for n query graph elements.

Junghanns et al. [28] employ a query planning approach in order to find a good join sequence. Its
basic idea is to the create the relational algebra expression in a greedy manner. In every step the
next join is chosen that keeps the expected intermediate results as small as possible. The size of the
intermediate result can only be estimated at this point, as it can only be determined by actually
executing the (sub-)query.
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In what follows, the concept of a query plan is introduced (Section 5.1.2), which is a prerequisite
for the refined version of Algorithm 1. This algorithm is then presented in Section 5.1.3, followed
by the explication of the necessary estimation of intermediate results sizes in Section 5.1.4.

5.1.2. Query Plans

Query plans are the basis of Gradoop’s matching operator. A query plan represents a relational
algebra term with an unambiguous join sequence. Consider such a relational algebra term, e.g.
the resulting term in Figure 5.1. As Figure 5.1 shows, it can be depicted hierarchically, yielding a
binary tree whose nodes are associated with relational algebra expressions. Query plans are basically
such trees, only that the nodes in a query plan are augmented with further information about the
term represented by them. This information is used to construct the whole query plan, aiming
at an efficient join sequence. Having done that, the query plan’s nodes can be mapped to actual
’physical’ operators in order to execute the query in the implementation. The nodes of a query plan
are called plan nodes henceforth.

Definition 19 (Plan Node). A plan node n is a node in a query plan (Def. 27). It is associated
with five aspects:

• tn is the relational algebra expression represented by n

• var(n) denotes the set of variables occurring in tn for which all properties relevant for further
processing are included in tn’s result.

• all_vars(n) represents the set of all variables that are present in attributes of the result of
tn. It always holds that var(n) ⊆ all_vars(n)

• θ(n) is the predicate containing all predicates of tn, i.e. all predicates checked by n

• children(n) denotes the set of n’s children, which are plan nodes themselves

• cardinality(n) ∈ N is the estimated cardinality of tn’s result

Plan nodes generally correspond to operations of relational algebra used in Algorithm 1.

The distinction between var(n) and all_vars(n) is due to edge selections. They result in relations
containing 3 variables overall (edge, source vertex, target vertex) but are only guaranteed to include
the relevant properties for the edge variable.

There are seven types of plan nodes, as defined below. The estimation of the plan nodes’ respective
cardinality value is discussed in Section 5.1.4 and thus not treated in these definitions.

Selections are represented differently for vertices and edges, because edge selections are special as
pointed out above. Thus, there are two different node types for selections.
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Definition 20 (Vertex Selection Node). A vertex selection node n is a plan node that represents
a single, initial vertex candidate selection expression (Equation 5.1). This means that tn = cand(v)
and var(n) = {v}. It follows that θ(n) = θ{v}. The vertex selection yields a relation referring only
to v, hence all_vars(n) = var(n) = {v}. A vertex selection node is always a leaf node, i.e. an atom
of the relational algebra expressions used here. Hence, children(n) = ∅.

Definition 21 (Edge Selection Node). An edge selection node n is a plan node that represents a
single, initial edge candidate selection expression (Equation 5.2). Thus, tn = cand(e) and var(n) =
{e} and θ(n) = θ{e}. The edge selection yields a relation with attributes referring to 3 different
elements (edge, source and target vertex), so |all_vars(n)| = 3. Like a vertex selection node, an
edge selection node is always a leaf node, hence children(n) = ∅.

Due to implementation aspects discussed later, there are three types of join nodes: a cartesian
product type (Def. 22), one for equijoins on edge source/target IDs (Def. 23) and one for equijoins
on property values from K (Def. 24). Joins with join predicates other than equality are represented
as a combination of an appropriate join node and a filter node (Def. 25).

Definition 22 (Cartesian product Node). A cartesian product node n is a plan node that represents
a cartesian product of two relations. Therefore, children(n) = {c1, c2} for tn = c1×c2. Furthermore,
var(n) = var(c1) ∪ var(c2) (var(c1) ∩ var(c2) = ∅) , all_vars(n) = all_vars(c1) ∪ all_vars(c2)
and θ(n) = θ(c1) ∧ θ(c2).

Definition 23 (Edge Join Node). An edge join node n is a plan node that represents a join on an
edge’s source or target vertex ID. It is obviously always a binary node, so that children(n) = {c1, c2}.
The represented relational algebra term is tn = c1 onφ c2. Here, φ is a natural join predicate
of the form x.ID=x.ID, where x is a source and/or target vertex of some edge e (e ∈ var(c1) ∨
e ∈ var(c2)). Furthermore, var(n) = var(c1)∪var(c2) , all_vars(n) = all_vars(c1)∪all_vars(c2)
and θ(n) = θ(c1) ∧ θ(c2) ∧ φ

Definition 24 (Value Join Node). A value join node n is a plan node representing an equijoin on
property values. It is always a binary node with children(n) = {c1, c2}. The represented relational
algebra term is tn = c1 onφ c2, where φ is an equijoin on property values of variables from var(n).
Moreover, var(n) = var(c1) ∪ var(c2) , all_vars(n) = all_vars(c1) ∪ all_vars(c2) and θ(n) =
θ(c1) ∧ θ(c2) ∧ φ.

Definition 25 (Filter Node). A filter node n is a plan node that represents a selection operator
(σ). It has one binary child node c, thus children(n) = {c}. The represented relational algebra term
is tn = σφ(tc), where φ is a predicate on properties including only variables from var(c). Hence,
var(n) = var(c) , all_vars(n) = all_vars(c) and θ(n) = θ(c) ∧ φ.

Moreover, property projections are represented by a projection node.
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Definition 26 (Projection Node). A projection node n is a plan node that represents a projection.
It has one binary child node c, thus children(n) = {c}. The represented relational algebra term
is tn = Πk1,...,kl

(tc) where k1...kl are properties present in the result of tc. As no variables and
predicates are added compared to the only child c, var(n) = var(c), all_vars(n) = all_vars(c) and
θ(n) = θ(c).

Now, the translation from GDL to relation algebra can be thought of as the construction of a query
plan.

Definition 27 (Query Plan). A query plan p is a binary tree constructed from plan nodes. Like for
plan nodes, tp, var(p), all_vars(p) and θ(p) are defined. Let r be the root node of p. Then, tp = tr,
var(p) = var(r), all_vars(p) = all_vars(r) and θ(p) = θ(r).

A query plan p with root r evidently represents the unambiguous relational algebra term tr. All
leaf nodes are vertex or edge selection nodes that select candidates for every variable from the
database. Figure 5.2 shows the query plan for an example query with made-up cardinalities.

Conversely, for a query, there is (in general) more than one possible translation to a query plan, as
there are (in general) several possible join sequences. If p is a query plan for a query q = ((Vq, Eq), θ),
θ(p) = θ, var(p) = Vq ∪Eq. As already demonstrated, the join sequence (and hence, the query plan)
for a query is not arbitrary, but influences the run time. It is thus necessary to construct a query
plan that leads to small intermediate results. The next Section deals with this task.

42
Lukas Christ

3756213



5.1. Pattern Matching by Relational Query Processing

(cand(v1) ⨝v1.ID=v1.ID cand(e)) ⨝v2.ID=v2.ID∧ κ(v1, Age) > κ(v2,Age) cand(v2)

A

tA = cand(v1)
childrenA= {}
varsA = {v1}
all_varsA = {v1}
cardinalityA = 50

B

tB = cand(e)
childrenB= {}
varsB = {e}
all_varsB = {e, v1, v2}
cardinalityB = 20

Vertex Selection Edge Selection C

tC = cand(v2)
childrenC= {}
varsC = {v2}
all_varsB = {v2}
cardinalityC = 25

Vertex Selection

D

tD = tA ⨝v1.ID=v1.ID tB
childrenD= {A,B}
varsD = {v1, e}
all_varsD = {e, v1, v2}
cardinalityD = 15

Edge Join

E

tE = tD ⨝v2.ID=v2.ID tB
childrenE= {D,C}
varsE = {v1, e, v2}
all_varsE = {e, v1, v2}
cardinalityE = 10

Edge Join

F

tF = σκ(v1, Age) > κ(v2,Age) tE
childrenF= {E}
varsF = {v1, e, v2}
all_varsF = {e, v1, v2}
cardinalityF = 4

Filter

G

tG = project(tF, ∅)
childrenG= {F}
varsG = {v1, e, v2}
all_varsG = {e, v1, v2}
cardinalityG = 4

Project

Figure 5.2.: Exemplary query plan

5.1.3. Greedy Query Planning

The construction of a query plan is also referred to as query planning. Junghanns et al. [28] employ
a greedy method for query planning in Gradoop: the query plan is constructed incrementally, in a
bottom-up manner. The algorithm introduced here can be seen as a refined version of Algorithm
1, as already mentioned. Instead of choosing the next join randomly, it is chosen according to a
cost/cardinality estimation. Algorithm 2 presents the general approach by Junghanns et al. Assume
that a query plan is created by a constructor QueryP lan(node) where node is the root node.
Vertex/edge selection nodes are initialized with their corresponding variable.
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Algorithm 2 Translation of a query to a query plan (Homomorphism)
1: procedure QueryToQueryPlan(((Vq, Eq), θ))
2: plans = ∅
3: for v ∈ Vq do
4: plans = plans ∪ {QueryP lan(V ertexSelectionNode(v))}
5: for e ∈ Eq do
6: plans = plans ∪ {QueryP lan(EdgeSelectionNode(e))}
7: while |plans| > 1 do
8: new_plans = EvalEdgeJoins(plans)
9: if new_plans = ∅ then

10: new_plans = EvalOtherJoins(plans, θ)
11: new_plans = EvalFilters(new_plans)
12: new_plans = EvalProjections(new_plans)
13: p = argminp′∈new_plansEstimateCardinality(p′)
14: plans = plans ∪ {p}
15: for q ∈ plans do
16: if var(q) ⊆ var(p) then
17: plans = plans \ {q}
18: p = only remaining plan in plans
19: return p

Algorithm 2’s structure closely resembles the approach presented in Algorithm 1. Instead of terms,
a set of query plans (plans) is managed. Initially, for each query vertex and edge a corresponding
plan, consisting only of one vertex/edge selection node (lines 3-6) is created. Then, joins are built
from these plans (lines 8-10) until only one plan is left. Joining two plans with two roots r1 and
r2 here means creating a plan with root r and children(r) = {r1, r2}. Edge joins, i.e. joins on
edges and their source/target vertices, are always preferred (line 8). Only if no such join is possible,
other types of joins are taken into consideration (lines 9, 10). The next join is not chosen randomly
anymore, but determined by some function EstimateCardinality in line 13.

In the following, the 4 functions called in lines 8-13 of Algorithm 2 are discussed. Algorithm 3 shows
the function used to determine possible natural joins on the set of plans (line 8 in Algorithm 2).
Non-leaf plan nodes are always created using constructors that take their child(ren) as argument(s)
in what follows.

Algorithm 3 Evaluate possible natural joins on a set of plans
1: procedure EvaluateEdgeJoins(plans)
2: new_plans = ∅
3: for p1 ∈ plans do
4: for p2 ∈ plans, p1 6= p2 do
5: if all_vars(p1) ∩ all_vars(p)2 6= ∅ then
6: new_plans = new_plans ∪

{QueryP lan(EdgeJoinNode(p1, p2))}
7: return new_plans

Edge joins are in most cases more selective than other joins because for every edge candidate, there
is only one vertex candidate that satisfies the condition of such a join. If no edge join is applicable,
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value joins and eventually cartesian products are considered in line 10 using Algorithm 4. Here,
equi(θ) refers to the CNF of all equality comparisons in the CNF θ.

Algorithm 4 Evaluate possible value joins and cartesian products on a set of plans
1: procedure EvaluateOtherJoins(plans, θ)
2: new_plans = ∅
3: for p1 ∈ plans do
4: for p2 ∈ plans, p1 6= p2 do
5: new_plan = NULL
6: if equi(θvar(p1)∪var(p2)\(θ(p1) ∧ θ(p2))) 6= ∅ then
7: new_plan = QueryP lan(V alueJoinNode(p1, p2)))
8: else
9: new_plan = QueryP lan(CartesianProductNode(p1, p2))

10: new_plans = new_plans ∪ {new_plan}
11: return new_plans

If a value join is applicable for two plans, it is preferred over a cartesian product. This is reasonable,
as a value join will reduce the size of intermediate results directly.

In every iteration of the loop in Algorithm 2, after the execution of line 10, new_plans contains
at least one plan. Because Algorithms 3 and 4 only allow natural or equi-joins as join predicates,
it must be determined whether other predicates can be checked on the variables of each plan in
new_plans. This is done by Algorithm 5 in line 11 of Algorithm 2.

Algorithm 5 Evaluate possible natural joins on a set of plans
1: procedure EvalFilters(plans, θ)
2: new_plans = ∅
3: for p ∈ plans do
4: new_plan = NULL
5: if (θvar(p)\θ(p)) 6= ∅ then
6: new_plan = QueryPlan(FilterNode(p))
7: else
8: new_plan = p

9: new_plans = (new_plans\{p}) ∪ {new_plan}
10: return new_plans

Evaluating the plan set for application of further selections, i.e. filters, is simple. For every plan
p in plans, it is checked whether there are predicates in θ that could be evaluated on var(p), but
aren’t yet associated with a node in p (line 5). This is evidently the case if and only if θ(p) ( θvar(p)

Only if such predicates are found, a new filter node is created for them and made the new root of
p (line 6-9). Then, for the new version of p, θ(p) = θvar(p).

After a selection is applied to a relation, properties can be deleted if they are not referenced in
the remaining predicates. Thus, in line 12 of Algorithm 2, every plan in plans is checked for the
applicability of a projection operation. All properties that are not referred to in θ\θ(p) can be
deleted from tp by making a corresponding projection node the new root of p.
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If there is more than one new plan in new_plans, estimations of the cardinalities are employed
to greedily decide which plan is chosen as the next partly solution (line 13 in Algorithm 2). The
estimation function will be discussed in Section 5.1.4.

Lemma 2. Algorithm 2 is correct, i.e. it yields for any query q = ((Vq, Eq), θ) a query plan p where
tp returns the correct result table R.

Proof. First, it must be shown that at the beginning of the loop (line 8), for p, q ∈ plans (p 6= q),
var(p)∩ var(q) = ∅. This is clear for the first iteration of the loop, as initially, there are only plans
containing exactly one vertex/edge selection node (lines 3-6). Joining them, however, never changes
this fact: For every type of binary node n with children c1, c2, var(n) = var(c1) ∪ var(c2). Filters
and Projections of any n do not impact var(n). As soon as a new plan p is created from p1 and p2,
it is added to plans (line 14). Then, p1 and p2 (and only those two) are deleted from plans (lines
15-17).

It is thus clear that the algorithm terminates and yields a query plan p with var(p) = Vq ∪ Eq.

Let R be the relation resulting from tp The correctness of R′s structure can be deduced from the
use of edge join nodes. It is guaranteed, that every edge is joined with its source and target vertices
by lines 6 and 8 and the obvious correctness of Algorithm 3.

Furthermore, every constraint in θ is contained in at least one node n’s θ(n). The application of
Algorithm 5 in line 11 and the fact that var(p) = Vq ∪ Eq imply θ(p) = θ.

Overall, the resulting query plan corresponds to a relational algebra term that yields a relation of
structurally correct matches for (Vq, Eq) with all constraints in θ being checked in the term.

Next, Junghanns et al.’s approach to join cardinality estimation (used in line 13 of Algorithm 2) is
explained.

5.1.4. Join Cardinality Estimations

Junghanns et al. [28] use methods from the field of query planning in relational databases to
compute cardinality estimations. These methods were taken from [19] and are presented in the
following.

For the following discussion, let p be an arbitrary query plan. Estimating the result set cardinality
of tp is based on two aspects:

• joinCardinality(p), the estimated result size if all the relations referenced by tp were simply
joined without considering θ(p).

• sel(θ(p)), the selectivity of the predicates θ(p), i.e. an estimation on the percentage of tuples
from joinCardinality(p) that are filtered out by the constraints θ.
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With these two terms, the cardinality of tp’s result can simply be estimated as

cardinality(p) = joinCardinality(p) ∗ sel(θ(p)) (5.3)

The root node of p is called r in the following. Hence, by definition,
cardinality(p) = cardinality(r) so that cardinalities of plans can be determined using cardinalities
of plan nodes, as joinCardinality(p) = joinCardinality(r) and θ(p) = θ(r).

For reasons that will become apparent soon, it makes sense to include information about the query
element’s labels when computing joinCardinality(r). Thus, θ(r) must be split into constraints
referring to labels and such that do not. This means that θ(r) = θ(r)′ ∧ θ(r)

τ , where θ(r)
τ includes a

constraint from θ(r) if and only if it is of the form x.__label = s for some query graph element
x and a string s. Conversely, θ(r)′ contains all constraints from θ(r) that are not included in θ(r)

τ .
Then, Equation 5.3 can be reformulated:

cardinality(p) = cardinality(r) = joinCardinality(r, θ(r)
τ ) ∗ sel(θ(r)′) (5.4)

It must now be examined how to compute joinCardinality(r, θ(r)
τ ) and sel(θ(r)′). The second

aspect, predicate selectivity, has not been implemented by Junghanns et al. However, in this thesis,
an implementation for estimating selectivities is provided. Since it belongs to the efforts to speed
up the existing Pattern Matching implementation, it will be discussed within the ’Optimization’
part, in Section 6.2. For now, the reader may assume that it is possible to compute a selectivity
function sel(θ(r)′) for any predicate θ(r)′ (0 ≤ sel(θ(r)′) ≤ 1). If sel(θ(r)′) = 1, θ(r)′ is expected not
to filter out any tuple, i.e. the predicate is assumed to be always true. A selectivity estimation close
to 0 indicates a highly selective predicate that only evaluates to true on very few, if any, tuples.

Other than selectivity estimation, estimations for joinCardinality(r, θ(r)
τ ) have been implemented

by Junghanns et al. [28]. Before the cardinality can be estimated for any join node, the cardinalities
for the leaf nodes must be known. As pointed out before, leaf nodes of query plans represent vertex
and edge selections.

Gradoop provides methods to compute graph statistics about the number of all vertices and edges
as well as the number of vertices/edges with a certain label. In the following, |Vlabel| denotes the
number of vertices with label label. The notation τ(a) is used to denote the label of some query
graph element a. |V | is the number of all vertices in the graph. Analogously, |Elabel| and |E| are
defined for edges.

Let m be a vertex selection node with var(m) = {a}. Using basic graph statistics,
joinCardinality(m, θ(m)

τ ) can be computed as

joinCardinality(m, θ(m)
τ ) =

|Vτ(a)|, if τ(a) is specified by θ(m)
τ

|V | otherwise
(5.5)
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Similarly, for an edge selection node n with var(n) = {e},

joinCardinality(n,θ(n)
τ ) =

|Eτ(e)| if τ(e) is specified by θ(n)
τ

|E|, otherwise

(5.6)

The estimations for leaf cardinalities serve as the base case for the recursive estimation of non-leaf
node cardinalities.

Projection and filter nodes obviously do not influence the joinCardinality value of the plan they
are part of. Hence, if n is a projection or filter node with children(n) = {c},

joinCardinality(n, θ(n)
τ ) = joinCardinality(c, θ(c)

τ ) (5.7)

A cartesian join node n with children(n) = {c1, c2} represents a cartesian product and does not
join on any attribute. Its cardinality can hence be simply estimated as

joinCardinality(n, θ(n)
τ ) = joinCardinality(c1, θ

(c1)
τ ) ∗ joinCardinality(c2, θ

(c2)
τ ) (5.8)

Value join nodes can be treated like cartesian join nodes here, as their join predicate is not relevant
for joinCardinality but taken care of in the estimation of sel(θ(m)′), when m is the root node of
the query plan containing the value join. Hence, Equation 5.8 also applies to value join nodes.

The estimation of an edge join node is more complicated. Let n be an edge join node with
children(n) = {c1, c2} in the following. Edge join nodes are natural joins, as already pointed
out. Garcia-Molina et al. [19] describe a method to estimate the size of natural joins. This method
is adapted by Junghanns et al. [28] in order to handle edge join nodes.

In what follows, let R1, R2 be the relations to join, i.e. the results of tc1 and tc2 . Let a be the join
variable, so that the edge join discussed here is R1 ona.ID=a.ID R2.

Furthermore, Values(R, a.ID) denotes the set of distinct values (i.e. candidates) for vertex a’s ID
in a relation R. The notation |R| is used to refer to the number of (partial) matches, i.e. tuples in
a relation R. P denotes the probability function.

Garcia-Molina et al. [19] make two simplifying assumptions:

• Containment of Values: For relations R1, R2 with |V alues(R1, a.ID)| ≤ |V alues(R2, a.ID)|,
it holds that

a′ ∈ V alues(R1, a.ID)⇒ a′ ∈ V alues(R2, a.ID)
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• Preservation of Values: For an edge join R1 ona.ID=a.ID R2 and any property, e.g. b.ID, which
occurs in R1, but not in R2,

V alues(R1 ona.ID=a.ID R2, b.ID) = V alues(R1, b.ID)

In order to estimate the cardinality ofR1 ona.ID=a.ID R2, the probability P (R1[i].a.ID = R2[j].a.ID)
must be determined first, where i and j point to arbitrary tuples (1 ≤ i ≤ |R1|, 1 ≤ j ≤ |R2|) in
the relations. If |Values(R1, a.ID)| < |Values(R2, a.ID)|, the Containment of Values assumption
leads to the estimation

P (R1[i].a.ID = R2[j].a.ID) = 1
|Values(R2, a.ID)| (5.9)

because every ID value in Values(R1, a.ID) is also contained in Values(R2, a.ID). Analogously, if
|Values(R1, a.ID)| < |Values(R2, a.ID)|

P (R1[i].a.ID = R2[j].a.ID) = 1
|Values(R1, a.ID)| (5.10)

Putting both cases together yields

P (R1[i].a.ID = R2[j].a.ID) = 1
max{|Values(R1, a.ID)|, |Values(R2, a.ID)|} (5.11)

Hence, joinCardinality(n, θ(n)
τ ) for an edge join node n with tn =

R1 ona.ID=a.ID R2 and children(n) = {c1, c2} is estimated according to Equation 5.12

joinCardinality(n, θ(n)
τ ) = (|R1| ∗ |R2|) ∗ P (R1[i].a.ID = R2[j].a.ID)

= joinCardinality(c1, θ
(c1)
τ ) ∗ joinCardinality(c2, θ

(c2)
τ )

max{|Values(R1, a.ID)|, |Values(R2, a.ID)|}
(5.12)

This formula poses the problem of determining |Values(R, a.ID)| for a relation R and a vertex
variable a. The graph statistics provided by Gradoop include all the values needed here: the numbers
of distinct source/target vertices overall as well as the numbers of distinct source/target vertices
given a certain edge label. These values can be computed exactly, which might take some time for
a large graph. Hence, in the temporal extension, they are only estimated. Section 6.2 explains this
estimation in detail.

The Preservation of Values assumption introduced above justifies the uncomplicated subsequent
use of this estimation formula. For example, suppose e is an edge variable with source vertex
variable s and target vertex variable t. Suppose further, there is a query plan p with root r
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and tp = cand(s) ons.ID=s.ID cand(e) ont.ID=t.ID cand(t). Then, because of Preservation of Val-
ues, both join sequences (cand(s) ons.ID=s.ID cand(e)) ont.ID=t.ID cand(t) and cand(s) ons.ID=s.ID

(cand(e) ont.ID=t.ID cand(t)) will receive the same cardinality estimation.

These estimations can be used to calculate a non-recursive formula for estimating a query plan p’s
joinCardinality. For every edge in the query pattern, there are two edge joins, as the edge has a
source and target vertex. All other joins are cartesian products and value joins that can be handled
like cartesian products here. As stated in Equation 5.7, filter and project nodes are irrelevant here.
Hence,

joinCardinality(n, θ(n)
τ ) =

Πm selection node ∈njoinCardinality(m, θ(m)
τ )

Πj edge join node ∈ n,joining edge e and vertex amax{V alues(cand(e), a.ID), V alues(cand(a), a.ID)}
(5.13)

Plugging Equation 5.13 into Equation 5.4 concludes the discussion of query planning. The necessary
extensions of this approach in order to process temporal GDL queries are simple.

5.1.5. From EPGM to TPGM Pattern Matching

The approach of Junghanns et al. discussed until now is not able to process temporal GDL queries
(cf. Section 4) on TPGM graphs yet. However, it does not need to be modified crucially in order
to handle such queries. In fact, the four special properties defined by TPGM, i.e. tx-from, tx-to,
val-from and val-to, can be treated like any other property k ∈ K, at least in theory.

The next Section explains the implementation of the pattern matching component.

5.2. Implementation of (Temporal) Pattern Matching

Figure 5.3 summarizes the approach to pattern matching proposed by Junghanns et al. [28].

The following is devoted to explicate the implementation of the different aspects shown in Figure
5.3. First, the representation and post-processing of the query in Gradoop is explained in Section
5.2.1. After that, the implementation of graph relational tables will be outlined in Section 5.2.2.
Section 5.2.3 then discusses the implementation of the query planning and execution components.
Lastly, the final step in Figure 5.3, i.e. reconstructing the actual results, is briefly sketched in
Section 5.2.4.

As the TPGM Pattern Matching operator is based on the EPGM implementation by Junghanns et
al. [28], most aspects discussed in the following apply to both TPGM and EPGM matching imple-
mentations. Especially, the EPGM and thus large parts of the TPGM implementation presented
here were realized by Junghanns et al [28]. Aspects exclusively relevant for temporal graphs and
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Return 
results
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Figure 5.3.: Temporal Pattern Matching flow chart

queries are the only genuine contribution of this thesis w.r.t. to the Gradoop operator implemen-
tation. These aspects are marked explicitly throughout the discussion.

5.2.1. Query Handling

A GDL query is wrapped in Gradoop. For every data type in GDL, there is a corresponding wrapper
type in Gradoop. As in this thesis some new data types were added to GDL, there were also new
wrappers for them created in Gradoop.

The query constraints given in the GDL query are then converted to a conjunctive normal form
(CNF.java) in Gradoop. Now, the representation of query constraints θ corresponds to Definition
9. A function is provided to obtain θX for any set of variables X.

In the temporal extension, the query must be implicitly augmented. For every query edge e con-
necting source vertex s to target vertex t, a predicate ensuring the overlap of e’s, s’s and t’s valid
intervals is added to the query CNF. The reason for this is that for the same graph element, dif-
ferent versions might exist in a database. These different versions have the same ID but may differ
in other aspects, especially with regards to their transaction and valid intervals. Thus, it must be
made sure that an edge matching e is actually valid at some point in time. Another special aspect
of query handling in the temporal extension is a pipeline that transforms the CNF. It aims at
improving the CNF so that it can be processed faster, of course without changing its semantics.
This pipeline will be introduced in detail in Section 6.1, as it is a method to optimize the operator’s
performance.

5.2.2. Embeddings

Algorithm 2 is based on relational representations of vertices and edges. However, graph elements
are stored as POJOs in Gradoop. It is thus necessary to convert these POJOs into a relational
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representation in order to execute a query plan. Such a relational representation is called embedding
in Junghanns et al. [28]’s implementation.

Embeddings are implemented as POJOs (Embedding.java) in Gradoop, their implementation is
also described in Junghanns et al. [28]. Embeddings are optimized to store all necessary information
in minimal space. In fact, an embedding contains only byte arrays. For every embedding, a metadata
object is managed, that encapsulates the information on how to read the embedding’s bytes. The
reason for this focus on efficiency is that sets of embeddings represent the intermediate results, which
are exchanged between workers during parallel processing. This exchange, and the application of
Flink operators on the intermediate results (see Section 5.2.3) require a fast and compact data
structure.

In detail, an embedding comprises three byte arrays:

• idData contains the IDs of the elements in the embedding. Every entry is actually a tuple
(flag, id), where the byte flag distinguishes vertices and edges from paths.

• idListData is used to store paths. As path expressions are not relevant for this thesis,
idListData is not discussed in detail here.

• propData stores all relevant property values

For the temporal extension of the matching operator, this implementation need not be changed.
Temporal data is treated just like properties and hence stored in propData.

Note that the embedding implementation contains no information on which properties or time
stamps belong to which graph element. Instead, this information is managed by a separate meta-
data object of type EmbeddingMetaData.java. Each embedding object is associated with such
a metadata object. This object - also a POJO - stores mappings from query graph variables to
the property and time values of their matching elements stored in the embedding. To give an
example, Figure 5.4 shows an embedding and its metadata in a simplified way. The embedding
contains data about three variables (s, e, t). It contains the ID value for every variable (42, 20,
08). Moreover the property Name is stored for s ("Bob") and the temporal property tx-from for e
(1577836800000 ms since UNIX epoch, i.e. 2020-01-01T00:00:00 GMT). The meta data object con-
tains three maps: entryMapping maps variables to the position of their IDs in idData. Similarly,
propertyMapping maps properties of variables to the position of their values in propData. The
map directionMapping is only relevant for path expressions and thus ignored here.

Embeddings and their metadata are now used to represent the (intermediate) results of a query
execution. In what follows, it is shown how a query plan is implemented and executed on embed-
dings.

5.2.3. Query Plans and their Execution with Flink

An implementation of Greedy query plan construction as described in Section 5.1.2 is provided
by Junghanns et al. [28]. The architecture is open to implementations of other query planning
approaches.
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idData
idListData
propData

[42,	20,	08]

["Bob",	1577836800000]

entryMapping
s	->	0

e	->	1

t	->	2

directionMapping

propertyMapping
(s,	Name)	->	0

(e,	tx-from)	->	1

Embedding

MetaData

Figure 5.4.: Exemplary embedding and its metadata object (simplified)

A query plan is represented using different sub-classes of PlanNode.java in Gradoop. These classes,
e.g. FilterEmbeddingsNode.java, correspond to the types of plan nodes defined in Section 5.1.2.
Additionally, there is a class ExpandEmbeddingsNode.java that is responsible for path expressions
and thus not treated here in detail.

All the PlanNode.java classes wrap an actual Flink operator, implemented as a subclass of the
interface PhysicalOperator.java. This interface declares a method evaluate() that yields a Flink
DataSet of Embeddings. DataSets in Flink simply contain a set of objects of the same type. Flink
provides transformations (e.g. Filter, Map) on DataSets which are executed in parallel and yield
another DataSet.

The evaluate() method in the subclasses of PhysicalOperator.java, and thus the actual query
processing, is implemented using such transformations. For example, FilterEmbeddingsNode.java

implements a filter node (Definition 25) and wraps the application of a PhysicalOperator named
FilterEmbeddings.java. The Flink implementation of FilterEmbeddings applies a Flink
RichFilterFunction transformation on the DataSet, yielding another DataSet of embeddings:

1 public class FilterEmbeddings implements PhysicalOperator {
2 //...
3 @Override
4 public DataSet<Embedding> evaluate() {
5 return input
6 .filter(new FilterEmbedding(predicates, metaData))
7 // ...
8 }
9 //...

10 }
11

12 public class FilterEmbedding extends RichFilterFunction<Embedding> {
13 // ...
14 private final CNF predicates;
15 // ...
16 private final EmbeddingMetaData metaData;
17 //...
18 @Override
19 public boolean filter(Embedding embedding) {
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20 /**
21 * true iff predicates true on embedding
22 * described by metaData
23 */
24 return predicates.evaluate(embedding, metaData);
25 }
26 }

Listing 5.1: Snippet from Gradoop implementation of query plan execution

In the temporal extension, only the candidate selection for vertices and edges, done by
FilterAndProjectVertices.java and FilterAndProjectEdges.java, must be implemented dif-
ferently, as TPGM graph element POJOs store the interval data separately from normal properties.
Hence, classes FilterAndProjectTemporalVertices.java and
FilterAndProjectTemporalEdges.java replace FilterAndProjectVertices.java and
FilterAndProjectEdges.java respectively. Besides that, the EPGM implementation is left un-
changed.

If necessary, intermediate result embeddings are filtered for duplicate graph elements by the join
operators. This is required when the matching strategy is set to isomorphism. In this case, as
defined in Definition 12, two different query graph elements must not be mapped to the same data
graph element.

Plan nodes are also responsible for creating the appropriate metadata object for the embeddings
their wrapped operators yield.

The result of a query execution is a DataSet of embeddings, too. From this resulting DataSet, the
returned GraphCollection is constructed.

5.2.4. Result Construction

It is clear, that each embedding encodes a match for the query, i.e. a graph. Hence, every match
is described by and can be created from an embedding and its metadata object. The set of match
graphs is a GraphCollection.java. An embedding of the final result stores the ID of every encoded
element. The actual result is obtained by first creating in the usual Gradoop format for the encoded
elements. These POJOs form DataSets that are joined with the DataSets of the database graph
using their ID, which reconstructs all properties (including temporal properties in the TPGM
extension). The reconstruction of properties is actually optional (see Appendix B)

The next Section introduces some aspects of the implementation that have been omitted so far.
They are implemented as part of this thesis to optimize the run time.
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In order to speed up the implementation, two approaches are employed. Before executing the query,
the temporal constraints in the query are rewritten. The rewriting methods are presented in detail
in Section 6.1. Furthermore, the predicate selectivity estimations needed in Equation 5.4 were
not implemented by Junghanns et al. [28]. In this thesis, an implementation is provided that is
introduced in Section 6.2.

6.1. Query Rewriting

A query q consists of a graph pattern (Vq, Eq) and some constraints θ, as defined in Definition 9. Of
course, changing the graph structure would change the semantics of the query. The constraints θ,
however, are a boolean formula that could be reformulated in order to speed up query processing.
Doing that, the semantics of θ must not be changed, evidently.

As already pointed out in Section 5.2.1, the query constraints are represented as conjunctive normal
form (CNF) in Gradoop. Because of that, reformulating θ is not overly complicated. Rewriting θ
here means to apply several transformations on the CNF, where each transformation yields a
CNF again. Thus, query rewriting can be thought of as a pipeline that returns a new CNF. This
returned CNF is semantically equivalent to the original one but Gradoop should be able to process
it more quickly. Note that almost all transformation methods introduced here only refer to temporal
constraints, as the thesis is focused on temporal queries and graphs.

There are two aspects of query processing that can be optimized by reformulating θ. First, θ might
contain redundancies. Gradoop does not recognize redundant terms in a query, thus redundant
terms are checked nevertheless. It is evident that checking terms costs time which could be saved
by removing redundancies in θ. Second, θ might contain implicit information that could be used
to filter out tuples earlier, reducing the size of intermediate embedding sets and thus the run time.
Hence, these implicit information must be made explicit.

Additionally, a query involving temporal constraints can be checked for contradictions. If a con-
tradiction is found, there is no need for query processing, as the result of a contradictory query is
always empty.

In what follows, the transformations in the query rewriting pipeline are introduced. Each of the
Sections 6.1.1-6.1.8 presents one transformation. An overview is provided in Section 6.1.9, followed
by a few remarks on the implementation in Section 6.1.10.

Figure 6.1 shows the pipeline and also indicates which transformation is concerned with which of
the aspects redundancy, implicit information and contradictions. Some transformations only serve
as preparation for the following ones.

A CNF can be seen here as a set of sets of comparisons, every set of comparisons correspondig
to a disjunctive clause. In the following, notations of CNFs as logical formulas and sets are used
interchangeably, because sometimes the set notation is more convenient to express certain trans-
formations, especially removal of clauses/comparisons.
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Figure 6.1.: Query transformation pipeline

The following GDL query serves as a running example throughout the discussion:

MATCH (a)-[e]->(b)

WHERE a.val.merge(Interval(b.val_from, Timestamp(2021-01-01))

.longerThan(Minutes(1)) AND

e.asOf(Timestamp(2020-06-01)) AND

a.val_to >= e.val_to AND

b.val_to >= e.val_to

It might look trivial at first, but its CNF is more complex. GDL adds a constraint b.val-from≤
2021-01-01 to the query, because of the custom interval in the merge expression. Moreover, the
merge expression leads to predicates ensuring overlap of a.val and [b.val-from, 2021-01-01 ] being
added to the query (max{a.val-from, b.val-from}≤ min{a.val-to, 2021-01-01}). Gradoop then adds
a constraint max{a.val-from, e.val-from, b.val-from} ≤ min{a.val-to, e.val-to, b.val-to} in order to
force overlap of the edge and its two vertices. Thus, the CNF in question is given by

(Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}]) > 60000ms)
∧ (b.val-from ≤ 2021-01-01])

∧ (max{a.val-from, b.val-from} ≤ min{a.val-to, 2021-01-01})
∧ (e.val-from ≤ 2020-06-01) ∧ (e.val-to ≥ 2020-06-01)

∧ (a.val-to ≥ e.val-to)
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∧ (b.val-to ≥ e.val-to)
∧ (max{a.val-from, e.val-from, b.val-from} ≤ min{a.val-to, e.val-to, b.val-to})

Before it is further processed, the CNF is normalized.

6.1.1. Comparison Normalization

A CNF consists of atoms that are comparisons of the form lhs comp rhs, where lhs and rhs are
comparable elements like property selectors, time stamps etc. and comp ∈ {<,≤, 6=,=, >,≥}. So,
there are overall six ’comparators’. Most transformations need to distinguish between comparators.
To ease their implementation, the set of comparators in the CNF is reduced to {<,<=, 6=,=}. This
is achieved by simply reformulating comparisons a > b to b < a and comparisons a ≥ b to b ≤ a.

Algorithm 6 sums up this transformation.

Algorithm 6 Normalize
1: procedure Normalize(cnf)
2: cnf ′ = empty CNF
3: for clause ∈ cnf do
4: clause′ = empty disjunctive clause
5: for comparison =: (lhs c rhs) ∈ clause do
6: comparison′ = comparison
7: if c is > then
8: comparison′ = rhs < lhs
9: else if c is ≥ then

10: comparison′ = rhs ≤ lhs

11: clause′ = clause′ ∨ comparison′

12: cnf ′ = cnf ′ ∧ clause′

13: return cnf ′

It is obvious that Algorithm 6 does not modify θ’s semantics and yields a CNF.

Lemma 3. For a CNF φ and a formula φ′ :=Normalize(φ), φ′ is a CNF and φ′ ≡ φ.

The application of normalization to the example CNF results in

(60000ms < (Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}])
∧ (b.val-from ≤ 2021-01-01])

∧ (max{a.val-from, b.val-from} ≤ min{a.val-to, 2021-01-01})
∧ (e.val-from ≤ 2020-06-01) ∧ (2020-06-01 ≤ e.val-to)

∧ (e.val-to ≤ a.val-to)
∧ (e.val-to≤ b.val-to)

∧ (max{a.val-from, e.val-from, b.val-from} ≤ min{a.val-to, e.val-to, b.val-to})

Here, the comparisons switched by normalization are colored blue. Having normalized the CNF,
transformations that actually improve query processing can be applied to it.
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6.1.2. Min/Max Unfolding

In the extended GDL presented in Section 4, it is possible to compare several types of time stamps.
Section 4.1.4 introduces two types of complex time stamps, MIN and MAX expressions. Both expres-
sions take a set of simple time stamps as arguments, e.g. MIN(a.tx-to, 2020-01-01, b.tx-from)

is a valid MIN expression. However, MIN and MAX expressions can not be nested, e.g.
MAX(a.tx-to, MIN(2020-01-01, b.tx-from)) is not allowed in the GDL extension.

In query processing, a potential problem concerning MIN and MAX expressions arises. A MIN/-
MAX expression may contain more than one variable. Let M be a MIN/MAX expression and
a1, ..., ak be the variables contained in M . Then, every comparison c involving M can only be
checked in a filter node n with {a1, ..., ak} ⊆ var(n) by Algorithm 2. Stated differently, the check
of c occurs rather late during query processing. As constraint checking typically filters out tuples
and thus reduces the intermediate result cardinality, a late check may not be optimal. The earlier
a constraint check is applied the smaller are the intermediate relations.

Comparisons involving MIN/MAX expressions can be seen as syntactic sugar for formulas over
simple comparisons. These (sub-)formulas may be checked earlier than the whole MIN/MAX com-
parison, as they may include less variables. Lemma 4 states such formulas over simple comparisons
that are equivalent to MIN/MAX comparisons.

Lemma 4. Let t1, ..., tk and x be time stamps. Then, the following equivalencies hold:

(min{t1, ..., tk} = x) ⇔
∨

1≤i≤k
(ti = x ∧ (

∧
1≤j≤k,j 6=i

ti ≤ tj)) (6.1)

(min{t1, ..., tk} 6= x) ⇔
∧

1≤i≤k
(ti 6= x ∨ (

∨
1≤j≤k,j 6=i

tj < ti)) (6.2)

(min{t1, ..., tk} < x) ⇔
∨

1≤i≤k
ti < x (6.3)

(min{t1, ..., tk} ≤ x) ⇔
∨

1≤i≤k
ti ≤ x (6.4)

(min{t1, ..., tk} > x) ⇔
∧

1≤i≤k
ti > x (6.5)

(min{t1, ..., tk} ≥ x) ⇔
∧

1≤i≤k
ti ≥ x (6.6)

(max{t1, ..., tk} = x) ⇔
∨

1≤i≤k
(ti = x ∧ (

∧
1≤j≤k,j 6=i

ti ≥ tj)) (6.7)
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(max{t1, ..., tk} 6= x) ⇔
∧

1≤i≤k
(ti 6= x ∨ (

∨
1≤j≤k,j 6=i

tj > ti)) (6.8)

(max{t1, ..., tk} < x) ⇔
∧

1≤i≤k
ti < x (6.9)

(max{t1, ..., tk} ≤ x) ⇔
∧

1≤i≤k
ti ≤ x (6.10)

(max{t1, ..., tk} > x) ⇔
∨

1≤i≤k
ti > x (6.11)

(max{t1, ..., tk} ≥ x) ⇔
∨

1≤i≤k
ti ≥ x (6.12)

Proof. Omitted, as the equations are trivial.

These equations can now be used to translate comparisons involving MIN/MAX expressions into
boolean formulas over simple comparisons between timestamps. This is also true for comparisons
between two MIN/MAX expressions. E.g.,

min{t1, t2} < max{t3, t4} ⇔ t1 < max{t3, t4} ∨ t2 < max{t3, t4}

⇔ (t1 < t3) ∨ (t1 < t4) ∨ (t2 < t3) ∨ (t2 < t4)

by equations 6.3 and 6.12.

Not all of the provided equations are actually applied to θ in the transformation. The (in)equality
equations (Equations 6.1, 6.2, 6.7, 6.8) yield quite complex formulas containing k2 simple compar-
isons. Because of this complexity, the Equations 6.1, 6.2, 6.7 and 6.8 are not applied.

Some equations (Equations 6.5, 6.6, 6.9, 6.10), however, yield a conjunction of k comparisons,
i.e. a CNF consisting of k singleton clauses. They are applied in the transformation, but only to
comparisons that constitute a singleton clause in the input CNF. The result of this application is
then immediately a CNF again. Here, a comparison c involving variables a1, ..., al was reduced to
singleton CNF clauses, each involving at most two variables. These clauses can now be, in general,
checked earlier than c and might thus contribute to reducing the size of intermediate embedding
sets during query processing. Another advantage is that simple comparisons can be handled more
easily by subsequent transformations.

Equations yielding a disjunction (i.e. Equations 6.3, 6.4, 6.11, 6.12) are only applied to comparisons
within a non-singleton CNF clause. Evidently, this clause is then a non-singleton CNF clause
again, so the CNF structure is preserved. These reformulations do not immediately help in query
processing, because the resulting clause still contains all the variables t1, ..., tk. The reason to apply
them is that simple comparisons simplify the application of further transformations later and may
also be simplified by these transformations.
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The approach is summarized in Algorithm 7.

Algorithm 7 Unfold MIN/MAX
1: procedure UnfoldMinMax(cnf)
2: cnf ′ = empty CNF
3: changed = TRUE
4: while changed do
5: changed = FALSE
6: cnf ′ = empty CNF
7: for clause ∈ cnf do
8: clause′ = empty disjunctive clause
9: for comparison ∈ clause do

10: comparison′ = comparison
11: if Equation 6.3, 6.4, 6.5, 6.6, 6.9, 6.10, 6.11 or 6.12 applicable without changing

CNF structure then
12: comparison′ = apply an equation to comparison
13: changed = TRUE

14: clause′ = clause′ ∨ comparison′

15: cnf ′ = cnf ′ ∧ clause′

16: return cnf ′

As pointed out above, Algorithm 7. yields a CNF with the same semantics as the input CNF.

Lemma 5. For a CNF φ and a formula φ′ := unfoldMinMax(φ), φ′ is a CNF and φ′ ≡ φ.

Proof. The equivalence φ′ ≡ φ is evident from the equations given in Lemma 4.

In all three cases, the result is again a CNF. The algorithm terminates, because after a finite number
of steps, none of the equations is applicable anymore, causing changed to be FALSE in line 4.

The application of Algorithm 7 to the example query results in

(60000ms < (Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}])
∧ (a.val-from ≤ a.val-to) ∧ (a.val-from ≤ 2021-01-01) ∧ (b.val-from ≤ a.val-to) ∧ (b.val-from ≤

2021-01-01)
∧ (e.val-from ≤ 2020-06-01) ∧ (2020-06-01 ≤ e.val-to)

∧ (e.val-to ≤ a.val-to)
∧ (e.val-to≤ b.val-to)

∧ (a.val-from ≤ a.val-to) ∧ (a.val-from ≤ e.val-to) ∧ (a.val-from ≤ b.val-to) ∧ (e.val-from ≤
a.val-to) ∧ (e.val-from ≤ e.val-to) ∧ (e.val-from ≤ b.val-to) ∧ (b.val-from ≤ a.val-to) ∧

(b.val-from ≤ e.val-to) ∧ (b.val-from ≤ b.val-to)

Clauses replacing MIN/MAX clauses are colored blue.

The application of unfoldMinMax might increase the CNF’s redundancy since clauses added by
the algorithm might already be present in the CNF. The next two transformations in the pipeline
aim at reducing redundancy.
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6.1.3. Syntactic Subsumption

Subsumption is a well-known operation on CNFs. A CNF clause c1 is said to subsume another
clause c2 if c1⇒ c2. If a clause is subsumed by another clause in the CNF, it is redundant and can
thus be removed from the CNF without changing the semantics.

In propositional logic, atoms are simply variables, which may be negated. To give an example,
ψ = (A∨B)∧ (B ∨¬C)∧ (A) is a CNF. Every clause ci in such a CNF can thus be represented as
a set of (potentially negated) variables, e.g. for ψ these sets would be c1 = {A,B}, c2 = {B,¬C}
and c3 = {A}. Given this representation, a clause ci evidently subsumes another clause cj (i 6= j)
if and only if ci ⊆ cj . In ψ, c3 ⊆ c1. Consequently, ψ can be simplified to (B ∨ ¬C) ∧ (A).

The syntactic subsumption transformation executes such subsumptions for the input CNF. Its
normalized comparisons can be interpreted as propositional atoms by reducing them to their string
representation. For example, a comparison a.tx-to<2020-01-01 is now simply considered an atom
called ’a.tx-to<2020-01-01 ’.

This allows to treat the CNF as a propositional logic formula, so that subsumption can be applied to
it. The subsumption here is purely syntactical, hence the term ’syntactic subsumption’. Technically
spoken, the string representations of comparisons are checked for equality, i.e. a comparison atom
a1 implies another comparison atom a2, iff string(a1) = string(a2). More sublime implications like
(b.tx-to < 2018-01-01)⇒ (b.tx-to < 2020-01-01) are not detected here. However, such implications
will be dealt with later, see Section 6.1.7.

In Algorithm 8, syntactic subsumption is formalized.

Algorithm 8 Syntactic Subsumption
1: procedure SyntacticSubsumption(cnf)
2: cnf ′ = array of clauses in cnf sorted by their size
3: cnf ′′ = empty CNF
4: subsumed[] = new boolean array, initialized with FALSE
5: for all i (1 ≤ i ≤ |cnf |) do
6: if not subsumed[i] then
7: for all j (i < j ≤ |cnf |) do
8: if not subsumed[j] then
9: if all comparisons in cnf ′[i] also occur in cnf ′[j] then

10: subsumed[j] = TRUE

11: cnf ′′ = cnf ′′ ∧ cnf ′[i]
12: return cnf ′′

Lemma 6. For a CNF φ and a formula φ′ := syntacticSubsumption(φ), φ′ is a CNF and
φ′ ≡ φ.

Proof. As subsumption only removes disjunctive clauses from the input CNF, its result is a CNF,
too. Subsumption obviously preserves the semantics of the CNF φ, thus φ′ ≡ φ.

As an example for syntactic subsumption, consider its effect on the running example CNF:
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(60000ms < (Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}])
∧ (a.val-from ≤ a.val-to) ∧ (a.val-from ≤ 2021-01-01) ∧ (b.val-from ≤ a.val-to) ∧ (b.val-from ≤

2021-01-01)
∧ (e.val-from ≤ 2020-06-01) ∧ (2020-06-01 ≤ e.val-to)

∧ (e.val-to ≤ a.val-to)
∧ (e.val-to≤ b.val-to)

∧ (a.val-from ≤ a.val-to) ∧ (a.val-from ≤ e.val-to) ∧ (a.val-from ≤ b.val-to) ∧ (e.val-from ≤
a.val-to) ∧ (e.val-from ≤ e.val-to) ∧ (e.val-from ≤ b.val-to) ∧ (b.val-from ≤ a.val-to) ∧

(b.val-from ≤ e.val-to) ∧ (b.val-from ≤ b.val-to)

Clauses subsumed by another clause are striked through.

In the next transformation, the CNF is further simplified.

6.1.4. Trivial Tautologies

A query CNF may contain comparisons that are always true by definition. If such a trivial tautology
occurs within a clause, this clause always evaluates to true and can thus be removed from the
CNF.

The trivial tautologies transformation detects three types of tautologies:

• Comparisons x = x and x ≤ x are obviously tautological for every numerical or temporal
comparable x

• For a query variable a, comparisons of the form a.tx-from ≤ a.tx-to and a.val-from ≤ a.val-to
always hold by the definition of transaction and valid interval

• If two literals l1 and l2 are compared, it can be immediately checked whether the compar-
ison holds or not. In case it holds, a tautology was detected. Otherwise, the comparison is
contradictory (see Section 6.1.5)

Typically, the user will not state such trivial tautologies deliberately. They may, however, be im-
plicitly created by GDL and transformations within Gradoop. E.g., creating an interval
Interval(MIN(a.tx_from, Timestamp(2018-01-01)), MAX(a.tx_to Timestamp(2019-01-01)))

in a GDL query would add the constraint max{a.tx-from, 2018-01-01} ≤ min{a.tx-to, 2019-01-01}
to the query. The MIN/MAX unfolding transformation (Section 6.1.2) would then reformulate
this to (a.tx-from ≤ a.tx-to) ∧ (a.tx-from ≤ 2019-01-01) ∧ (2018-01-01 ≤ a.tx-to) ∧ (2018-01-01 ≤
2019-01-01). Applying trivial tautologies to this expression simplifies it to (a.tx-from ≤ 2019-01-01)∧
(2018-01-01 ≤ a.tx-to).

Algorithm 9 summarises the approach to removing trivial tautologies.
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Algorithm 9 Trivial Tautologies
1: procedure TrivialTautologies(cnf)
2: for all clause ∈ cnf do
3: for all comparison ∈ clause do
4: if comparison is a trivial tautology then
5: cnf = cnf \ {clause}
6: continue with next clause
7: return cnf

Lemma 7. For a CNF φ and a formula φ′ :=trivialTautologies(φ), φ′ is a CNF and φ′ ≡ φ.

Proof. Algorithm 9 modifies φ only by removing clauses. Hence, φ′ is a CNF. Furthermore, it is
clear that φ′ ≡ φ, as only tautological clauses are removed.

When applied to the running example, the trivial tautologies transformation yields

(60000ms < (Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}])
∧ (a.val-from ≤ a.val-to) ∧ (a.val-from ≤ 2021-01-01) ∧ (b.val-from ≤ a.val-to) ∧ (b.val-from ≤

2021-01-01)
∧ (e.val-from ≤ 2020-06-01) ∧ (2020-06-01 ≤ e.val-to)

∧ (e.val-to ≤ a.val-to)
∧ (e.val-to≤ b.val-to)

∧ (a.val-from ≤ e.val-to) ∧ (a.val-from ≤ b.val-to) ∧ (e.val-from ≤ a.val-to) ∧ (e.val-from ≤
e.val-to) ∧ (e.val-from ≤ b.val-to)

∧ (b.val-from ≤ e.val-to) ∧ (b.val-from ≤ b.val-to)

Again, clauses removed by the transformation are striked through.

To every tautological comparison c corresponds the trivial contradiction given by ¬c. These con-
tradictions can sometimes also be used to simplify the query.

6.1.5. Trivial Contradictions

If a disjunctive clause in the CNF contains a contradictory comparison, this comparison can be
removed from the clause. In case the contradictory comparison makes up a singleton clause, the
whole query is contradictory. Then, an empty set can be immediately returned as the query’s
result.

The trivial contradictions transformation checks the input CNF for contradictions that are equal
to the trivial tautologies’ (Section 6.1.4) negations:

• Comparisons x 6= x and x < x are contradictory for every numerical or temporal compa-
rable x. The same holds for comparisons x > x. However, the query does not contain such
comparisons anymore, as they are removed by normalization (Section 6.1.1).
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• For a query variable a, comparisons of the form a.tx-to < a.tx-from and a.val-to < a.val-from
violate the definition of transaction and valid intervals and are thus contradictory. Compar-
isons like a.tx-to ≤ a.tx-from are not contradictory, as a.tx-to = a.tx-from could be possible.

• If two literals l1 and l2 are compared, it can be immediately checked whether the comparison
holds or not

As for trivial tautologies, it can be assumed that the user does not state trivial contradictions on
purpose. Just like trivial tautologies, they may be created by implicit manipulation of the issued
query during rewriting pipeline.

The algorithm for the trivial contradiction transformation is given by Algorithm 10. Other than the
transformations before, it may terminate the whole pipeline by returning an error for a contradictory
query (line 6).

Algorithm 10 Trivial Contradictions
1: procedure TrivialContradictions(cnf)
2: for all clause ∈ cnf do
3: for all comparison ∈ clause do
4: if comparison is a trivial contradiction then
5: if |clause| = 1 then
6: query contradictory, throw error
7: else
8: clause = clause \ {comparison}
9: continue with next comparison

10: return cnf

Lemma 8. For a CNF φ, trivialContradictions(φ) returns either a CNF φ′ or an error. If
an error is returned, φ is contradictory. Otherwise, φ′ ≡ φ.

Proof. In case trivialContradictions does not return an error, the returned formula φ′ is clearly
a CNF. Algorithm 10 only removes comparisons within clauses from the input CNF φ, thus the
CNF structure is never violated. Furthermore, φ′ ≡ φ, because only contradictions are removed,
which are not satisfiable in any case.

An error is returned only if a single, thus necessary, clause in φ states one of the obvious contra-
dictions listed above or all comparisons within a clause are contradictory. Because of that, an error
always implies a contradictory query.

As the running example does not contain trivial contradictions, the execution of Algorithm 10 does
not change it and thus results in

(60000ms < (Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}])
∧ (a.val-from ≤ 2021-01-01) ∧ (b.val-from ≤ a.val-to) ∧ (b.val-from ≤ 2021-01-01)

∧ (e.val-from ≤ 2020-06-01) ∧ (2020-06-01 ≤ e.val-to)
∧ (e.val-to ≤ a.val-to)
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∧ (e.val-to≤ b.val-to)
∧ (a.val-from ≤ e.val-to) ∧ (a.val-from ≤ b.val-to) ∧ (e.val-from ≤ a.val-to)

∧ (e.val-from ≤ b.val-to)

∧ (b.val-from ≤ e.val-to)

Of course, the absence of an error in Algorithm 10 does not necessarily imply satisfiability. There can
be more subtle contradictions that can not be described on the level of just one contradiction. For
example, consider the CNF a.tx-to < b.tx-from∧ b.tx-from < 2020-01-01∧ 2020-03-01 < a.tx-from.
Here, the first two constraints imply a.tx-to < 2020-01-01, which, together with the third con-
straint, implies a.tx-to < a.tx-from. Clearly, Algorithm 10 would not notice this contradiction. The
two transformations introduced next, however, are capable of detecting such non-trivial contradic-
tions.

6.1.6. Adding Trivial Constraints

This transformation only prepares the input CNF for the following transformation, Bounds Infer-
ence (Section 6.1.7). It adds redundant temporal information to the query. The intuition is that the
query should now explicitly express everything that is known about the relations between involved
time stamps. However, the transformation only considers time stamps in singleton clauses and no
MIN/MAX expressions. These clauses encode necessary constraints that must always hold in order
to satisfy the CNF.

Two types of constraints are added to the CNF as singleton clauses. For every query variable a, the
comparison a.tx-from ≤ a.tx-to is added, provided that both properties are referenced in singleton
clauses somewhere. The same is done for the valid times. Furthermore, for every pair of time stamps
(t1, t2) with (t1 6= t2), a < comparison describing their relation is added. Again, only time stamps
occurring in singleton clauses are considered. The resulting CNF is obviously normalized again, i.e.
only the comparators ≤, <,= and 6= are used.

Algorithm 11 sums up the transformation.
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Algorithm 11 Add Trivial Constraints
1: procedure AddTrivialConstraints(cnf)
2: cnfsingletons = {Ci ∈ cnf | |Ci| = 1, no MIN/MAX contained in Ci}
3: cnfadd = empty CNF
4: for all var, var variable referenced in cnfsingletons do
5: if var.tx-from and var.tx-to referenced in cnfsingletons then
6: cnfadd = cnfadd ∧ (var.tx-from ≤ var.tx-to)
7: if var.val-from and var.val-to referenced in cnfsingletons then
8: cnfadd = cnfadd ∧ (var.val-from ≤ var.val-to)
9: T = all time literals referenced in cnfsingletons

10: for ti, tj ∈ T , ti 6= tj do
11: if ti < tj then
12: cnfadd = cnfadd ∧ (ti < tj)
13: else
14: cnfadd = cnfadd ∧ (tj < ti)
15: return cnf ∧ cnfadd

Lemma 9. For a CNF φ and a formula φ′ :=addTrivialConstraints(φ), φ′ is a CNF and
φ′ ≡ φ.

Proof. As Algorithm 11 only modifies φ by adding singleton clauses, φ′ is clearly a CNF. The
semantics of φ are not changed as all added clauses express trivial tautologies, hence φ′ ≡ φ.

The application of Algorithm 11 to the running example results in

(60000ms < (Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}])
∧ (a.val-from ≤ 2021-01-01) ∧ (b.val-from ≤ a.val-to) ∧ (b.val-from ≤ 2021-01-01)

∧ (e.val-from ≤ 2020-06-01) ∧ (2020-06-01 ≤ e.val-to)
∧ (e.val-to ≤ a.val-to)
∧ (e.val-to≤ b.val-to)

∧ (a.val-from ≤ e.val-to) ∧ (a.val-from ≤ b.val-to) ∧ (e.val-from ≤ a.val-to) ∧ (e.val-from ≤
b.val-to)

∧ (b.val-from ≤ e.val-to)
∧ (a.val-from ≤ a.val-to) ∧ (e.val-from ≤ e.val-to) ∧ (b.val-from ≤ b.val-to) ∧ (2020-06-01 ≤

2021-01-01)

Green clauses are those added by Algorithm 11.

The transformation raises the question why the Trivial Tautologies transformation (Section 6.1.4)
has been applied before. After all, this transformation removed tautologies that are now added
again. The reason for the earlier application of Trivial Tautologies is that it may also remove
disjunctive, i.e. non-singleton clauses, thus reducing the query’s complexity.

Unlike transformations like MIN/MAX unfolding, it would not be reasonable to apply only Al-
gorithm 11. Its sole purpose is to provide the input for the Infer Bounds transformation (Section
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6.1.7). In fact, addTrivialConstraints harms the query by adding constraints without adding
actual information. Note that the trivial tautologies added here will be removed again later. Before
this can be done, they are, however, crucial for the next transformation in the pipeline.

6.1.7. Inferring helpful Constraints

A CNF may include implicit information about time stamps. The transformation introduced here
seeks to make such implicit constraints explicit, as this might improve the run time. As an example,
consider the CNF (a.tx-from < b.tx-from ∧ b.tx-to < 2019-01-01). Clearly, as b.tx-from ≤ b.tx-to
it can be concluded that (a.tx-from < 2019-01-01). Obviously, this implicit constraint adds some
information about a. Thus, adding it to the CNF will probably lead to less tuples for a passing the
candidate selection step of query processing (cf. Algorithm 2). In other words θ{a} is more specific
now. As the size of intermediate results impacts the run time, it makes sense to add the clause to
the CNF.

The transformation introduced here only considers clauses that are bot temporal and necessary, i.e.
singleton clauses, without possibly remaining MIN/MAX expressions. These clauses are denoted
clauses in the following.

Implicit constraints are made explicit via transitive closures. Because of normalization, all compar-
isons to consider here are of the form a comp b where comp ∈ {<,≤,=, 6=}.

First, all comparisons of type =, ≤ or < implied by clauses are determined. More formally, rela-
tions Rcomp = {(a, b) | clauses ⇒ (a comp b)} are sought for comp ∈ {<,≤,=}. Furthermore, it
should hold that (a, b) ∈ R= ⇒ (a, b) /∈ R≤ and (a, b) ∈ R< ⇒ (a, b) /∈ R≤ in order to prohibit
redundancy. To compute these relations, relations Ccomp := {(a, b)|(a comp b) ∈ clauses} are cre-
ated for comp ∈ {≤, <,=}. With these relations the desired relations Rcomp can be computed using
transitive closures (◦ denotes the composition of two relations):

R= = C+
= ∪ {(a, b) ∈ (C= ∪ C≤)+ | (b, a) ∈ (C= ∪ C≤)+} (6.13)

R≤ = (R= ∪ C≤)+ \R= (6.14)

R< = (((R= ∪R≤) ◦ C<) ∪ (C< ◦ (R= ∪R≤)) ∪ C<)+ (6.15)

The relations Rcomp are now used to compute lower and upper bounds and to detect errors. Algo-
rithm 12 is a high-level description of the method.
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Algorithm 12 Infer Bounds
1: procedure InferBounds(cnf)
2: clauses = singleton temporal clauses from cnf , not containing MIN or MAX
3: lower = map, lower[s] = −∞ for every selector s referenced in clauses
4: upper = map, upper[s] =∞ for every selector s referenced in clauses
5: Compute R≤, R< and R= from clauses . Eq. 6.13, 6.14, 6.15
6: for all (x, y) ∈ R< do
7: if x == y then
8: query contradictory, throw error
9: for all (a, b) ∈ R= do

10: lower, upper = updateEQ(lower, upper, (a, b))
11: if updateEQ threw error then
12: query contradictory, throw error
13: for all (a, b) ∈ R≤ do
14: lower, upper = updateLEQ(lower, upper, (a, b))
15: if updateLEQ threw error then
16: query contradictory, throw error
17: for all (a, b) ∈ R< do
18: lower, upper = updateLT(lower, upper, (a, b))
19: if updateLT threw error then
20: query contradictory, throw error
21: if NEQContradiction(lower, upper, clauses) then
22: query contradictory, throw error
23: clauses′ = newClausesFromBounds(clauses, lower, upper)
24: return (cnf\clauses) ∪ clauses′

Before any bounds are computed, the relation R< is checked for contradictions x < x in lines 6-8. If
such a contradiction is implied by the query, the whole query is contradictory and need not be pro-
cessed further. Due to the construction of the relations Rcomp and the adding of trivial constraints
like a.tx-from ≤ a.tx-to before (Section 6.1.6), an implicit contradiction a.tx-to < a.tx-from would
lead to a clause (a.tx-to, a.tx-to) ∈ R<. Hence, such contradictions are also detected in lines 6-8.

The following algorithms fill in the remaining details. Updating the lower and upper bound values
is straightforward and the correctness of Algorithms 13 - 15 evident.
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Algorithm 13 Update bounds with equality constraints
1: procedure UpdateEQ(lower, upper, (a, b))
2: if a is a literal and b a selector then
3: selector = b
4: literal = a
5: else if a is a selector and b a literal then
6: selector = a
7: literal = b
8: else
9: return lower, upper

10:
11: if lower[selector] > literal then
12: query contradictory, throw error
13: else if upper[selector] < literal then
14: query contradictory, throw error
15: else
16: lower[selector] = literal
17: upper[selector] = literal

18: return lower, upper

Algorithm 14 Update bounds with ≤ constraints
1: procedure UpdateLEQ(lower, upper, (a, b))
2: if a is a literal and b a selector then
3: lower[b] = max{lower[b], a}
4: if lower[b] > upper[b] then
5: query contradictory, throw error
6: else if a is a selector and b a literal then
7: upper[a] = min{upper[a], b}
8: if lower[a] > upper[a] then
9: query contradictory, throw error

10: return lower, upper

Algorithm 15 Update bounds with < constraints
1: procedure UpdateLT(lower, upper, (a, b))
2: if a is a literal and b a selector then
3: lower[b] = max{lower[b], a+ 1}
4: if lower[b] > upper[b] then
5: query contradictory, throw error
6: else if a is a selector and b a literal then
7: upper[a] = min{upper[a], b− 1}
8: if lower[a] > upper[a] then
9: query contradictory, throw error

10: return lower, upper

By construction of these algorithms, the inferred bounds do not contradict the comparisons of type
<, ≤ and = in clauses. However, it could be possible that a comparison of type 6= contradicts
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a newly infered bound. The function NEQContradiction investigates such contradictions and
throws an error if it detects one. It is given in Algorithm 16.

Algorithm 16 Check for NEQ contradictions
1: procedure NEQContradiction(lower, upper, clauses)
2: for all (a 6= b) ∈ clauses do
3: if a selector and b selector then
4: if lower[a] == upper[a] ∧ lower[b] == upper[b] ∧ lower[a] == lower[b] then
5: query contradictory, throw error
6: else if a selector and b literal then
7: if lower[a] == upper[a] ∧ lower[a] == b then
8: query contradictory, throw error
9: else if a literal and b selector then

10: if lower[b] == upper[b] ∧ lower[b] == a then
11: query contradictory, throw error

After this contradiction check, new clauses are constructed from the inferred bounds. Algorithm 17
shows the function newClausesFromBounds called in line 23 in Algorithm 12.

Algorithm 17 construct new clauses from bounds
1: procedure newClausesFromBounds(lower, upper, clauses)
2: clauses′ = ∅
3: for all clause ∈ clauses do
4: if clause == (s1 comp s2), s1 and s2 selectors then
5: if NOT (clause of the form a.int_from ≤ a.int_to (int ∈ {tx, val}) or l1 < l2 (l1,
l2 literals) then

6: clauses′ = clauses′ ∧ clause
7: for all s selector with bounds in lower and upper do
8: if upper[s] == lower[s] then
9: clauses′ = clauses′ ∧ (s = lower[s])

10: if lower[s] > −∞ then
11: if NOT (s of the form a.int−to (int ∈ {tx, val}) ∧ lower[a.int−from] == lower[s])

then
12: clauses′ = clauses′ ∧ (lower[s] ≤ s)
13: if upper[s] <∞ then
14: if NOT (s of the form a.int−from (int ∈ {tx, val}) ∧ upper[a.int−to] == upper[s])

then
15: clauses′ = clauses′ ∧ (s ≤ upper[s])
16: return clauses′

Line 5 deletes the trivial tautologies added before. The conditions in lines 10-14 ensure that no
uninformative comparisons are added to the query. E.g., the lower bound of a.tx-from is evidently
a trivial, but not informative lower bound for a.tx-to (line 11). Analogously, the upper bound of
a.tx-to is a trivial upper bound of a.tx-from (line 14).

Lemma 10. For a CNF φ, inferBounds(φ) returns either a CNF φ′ or an error. If an error is
returned, φ is contradictory. Otherwise, φ′ ≡ φ.
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Proof. If no error is thrown, φ′ is a CNF. Only the necessary, i.e. singleton, clauses of φ are
manipulated by Algorithm 12 (line 24 of Algorithm 12). This manipulation is given by Algorithm
17. Here, a conjunction of single clauses and hence, a CNF is built in lines 6, 12 and 15. Because
of that, the return value φ′ of Algorithm 12 is again a CNF, if no error is thrown.

Algorithm 12 is correct, i.e. φ′ ≡ φ if no error is thrown. Moreover, errors are only thrown if φ is
contradictory. The correctness of the bounds computations is obvious from Equations 6.13, 6.14 and
6.15 and the trivial Algorithms 13, 14 and 15. Errors are thrown if newly inferred bounds contradict
the necessary clauses they are inferred from. For clauses with comparison type <, ≤ and =, this is
done implicitly: as soon as any lower bound would be greater than the corresponding upper bound,
an error is thrown in Algorithms 13, 14 and 15. For inequality comparisons, Algorithm 16 explicitly
detects contradictions and throws errors if necessary. Thus, errors are only thrown, if the query is
actually contradictory.

As an example, consider the application of the transformation on the example CNF. It yields

(60000ms < (Duration( [max{a.val-from, b.val-from}, min{a.val-to, 2021-01-01}])
∧ (b.val-from ≤ a.val-to)

∧ (e.val-to ≤ a.val-to) ∧ (e.val-to≤ b.val-to)
∧ (a.val-from ≤ e.val-to) ∧ (a.val-from ≤ b.val-to) ∧ (e.val-from ≤ a.val-to) ∧ (e.val-from ≤

b.val-to)

∧ (b.val-from ≤ e.val-to)
∧ (a.val-from ≤ a.val-to) ∧ (e.val-from ≤ e.val-to) ∧ (b.val-from ≤ b.val-to) ∧ (2020-06-01 ≤

2021-01-01)
∧ (a.val-from ≤ 2021-01-01) ∧ (2020-06-01 ≤ a.val-to)
∧ (b.val-from ≤ 2021-01-01) ∧ (2020-06-01 ≤ b.val-to)
∧ (e.val-from ≤ 2020-06-01) ∧ (2020-06-01 ≤ e.val-to)

Newly added constraints are colored green, deleted ones are striked through. (2020-06-01 ≤ a.val-
to) follows from (2020-06-01 ≤ e.val-to) and (e.val-to ≤ a.val-to). Analogously, (2020-06-01 ≤
b.val-to) is implied by (2020-06-01 ≤ e.val-to) and (e.val-to ≤ b.val-to).

It is important to note that not every contradictory query is recognized as such by Algorithm 12.
This is because disjunctive CNF clauses and singleton clauses with MIN/MAX expressions are not
considered, although they may imply contradictions as well.

Because of the newly added constraints, some disjunctive clauses may have become redundant. The
transformation Temporal Subsumption deals with this issue.
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6.1.8. Temporal Subsumption

The concept of subsumption has already been introduced in Section 6.1.3. In Syntactic Subsump-
tion, a comparison c1 only subsumes another comparison c2 if the two clauses are identical. Temporal
Subsumption is more sophisticated.

In this transformation, a comparison c1 = (s comp1 l1) subsumes another comparison c2 =
(s comp2 l2), if c1 ⇒ c2. Here, s is a time selector, while l1 and l2 are literals. Besides that,
the transformation works analogously to Syntactic Subsumption, as shown in Algorithm 8.

Lemma 11. For a CNF φ and a formula φ′ :=temporalSubsumption(φ), φ′ is a CNF and
φ′ ≡ φ.

Proof. Cf. proof of Lemma 6.

Syntactic Subsumption is a special case of Temporal Subsumption. Temporal Subsumption is ap-
plied after the inference transformation (Section 6.1.7), as this transformation may add further
clauses suitable for Temporal Subsumption to the CNF.

Applying Temporal Subsumption to the running example does not change it, as it does not con-
tain disjunctive clauses. Singleton clauses can not subsume each other after the application of
InferBounds, as this transformation only leaves one comparison with a literal for each selector.

Now, all transformations employed in Query Rewriting have been introduced.

6.1.9. Summary of Query Transformations

Algorithm 18 puts all transformations together to describe the whole pipeline.

Algorithm 18 QueryTransformation
1: procedure Query transformation pipeline(cnf)
2: cnf ′ = Normalize(cnf)
3: cnf ′ = UnfoldMinMax(cnf ′)
4: cnf ′ = SyntacticSubsumption(cnf ′)
5: cnf ′ = TrivialTautologies(cnf ′)
6: cnf ′ = TrivialContradictions(cnf ′)
7: if TrivialContradictions threw error then
8: query contradictory, throw error
9: cnf ′ = AddTrivialConstraints(cnf ′)

10: cnf ′ = InferBounds(cnf ′)
11: if InferBounds threw error then
12: query contradictory, throw error
13: cnf ′ = TemporalSubsumption(cnf ′)
14: return cnf ′

Lemma 12. For a CNF φ, Algorithm 18 returns either a CNF φ′ or an error. If an error is
returned, φ is contradictory. Otherwise, φ′ ≡ φ.
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Proof. Follows directly from Lemmas 3, 5, 6, 7, 8, 9, 10 and 11.

The next Section concludes the discussion of query rewriting with few remarks on the implemen-
tation.

6.1.10. Implementation of Query Rewriting

The CNF to transform is represented as a POJO in Gradoop (CNF.java). Thus, the implementa-
tions of all transformations here are simple java classes, e.g. SyntacticSubsumption.java. All of
them implement an interface QueryTransformation.java that defines a method
CNF transformCNF(CNF cnf). Hence, the pipeline is easily extendable by further transforma-
tions.

6.2. Selectivitiy Estimations

Another approach to optimize query processing was already discussed in Section 5.1.4. Junghanns et
al. [28] implemented a query planning method to find a good join sequence for the query execution.
Algorithm 2 sums up this approach. However, for the estimation of cardinalities in line 13 of
Algorithm 2, an important aspect is still missing. As pointed out in Section 5.1.4, result cardinality
estimation relies on estimations of predicate selectivities. This means that for every predicate θ′,
an estimation sel(θ′) with 0 ≤ sel(θ′) ≤ 1 must be computed. Small values of sel(θ′) indicate a
restrictive predicate.

The implementation of the EPGM pattern matching operator by Junghanns et al. [28] simply sets
sel(θ′) to 1 for every predicate θ. Thus, predicate selectivities are in effect ignored and cardinality
estimations only rely on statistics about label distributions and structural properties. Obviously, a
reasonable implementation of predicate selectivity estimation improves the estimations and hence
the speed of query processing.

In the following, an implementation of selectivity estimation is described. First, the general ap-
proach is introduced in Section 6.2.1. As graphs are typically very large, estimations are computed
using samples. The sampling method is discussed in Section 6.2.2. In the remaining, selectivity
estimations for different types of comparisons (Sections 6.2.3 - 6.2.6) and structural properties of
the graph (Section 6.2.8) are presented. Moreover, predicate selectivities motivate another query
transformation which is introduced in Section 6.2.7.

6.2.1. Estimating the Selectivity of a CNF

Query predicates θ are always transformed into a CNF by Gradoop. The predicates to be estimated
are CNFs, too, as they are conjunctions of clauses of θ. In order to be able to handle CNFs, a
naive assumption is made: every comparison in a CNF is assumed to be independent of all other
comparisons. It is obvious that this does not actually hold in general.
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For the following discussion, let θ be a CNF consisting of disjunctive clauses D1, ..., Dn, i.e. θ =
D1∧D2∧...∧Dn. Moreover, every clauseDi is a disjunction of |Di| comparisons c1, ..., c|Di|, meaning
that Di = ci,1 ∨ ci,2 ∨ ... ∨ c|Di|.

Ideally, one could compute a probability function Pcomp that assigns every comparison its actual
probability of being true for a random suitable graph embedding. The selectivity of a comparison
ci,j would then simply be Pcomp(ci,j). Similarly, probability functions Pclause and PCNF for clause
and CNF selectivity are desirable. Of course, these exact probabilities are not available. Hence,
reasonable estimations P̂comp, P̂clause and P̂CNF need to be found.

Suppose for now, the estimated probability P̂comp is already available. Note that the computation
of P̂comp is described in the Sections 6.2.3 - 6.2.6. As a clause consists of comparisons, P̂comp is
used to determine P̂clause.

It is clear that ci,1 ∨ ci,2 ∨ ... ∨ ci,|Di| ⇔ (ci,1) ∨ (ci,2 ∨ ... ∨ ci,|Di|) and Pclause((ci,1)) = Pcomp(ci,1).
The addition rule for probabilities in combination with the independence assumption yields the
recursive estimation

P̂clause(Di) = P̂clause(ci,1 ∨ ci,2 ∨ ... ∨ ci,|Di|) =

P̂comp(ci,1) + P̂clause(ci,2 ∨ ... ∨ ci,|Di|)− (P̂comp(ci,1) ∗ P̂clause(ci,2 ∨ ... ∨ ci,|Di|))
(6.16)

From the independency assumption for comparisons it follows that clauses are independent from
each other, too. Hence, determining P̂CNF is straightforward.

P̂CNF(θ) = P̂CNF(C1 ∧ C2 ∧ ... ∧ Cn) =
n∏
i=1
P̂clause(Ci) (6.17)

Thus, estimating a CNF selectivity is reduced to estimating the selectivity of single comparisons,
i.e. determining P̂comp. The following chapters adress this problem.

6.2.2. Graph Sampling

Computing estimations for comparison selectivities requires knowledge about the distributions of
property values and intervals in the data graph. Such data graphs can be arbitrarily large, so that
the computation of statistics on it requires much time. Hence, the estimations introduced in the
Sections 6.2.3 - 6.2.6 are computed using only a sample of the data graph.

Several graph sampling methods are implemented in Gradoop. They are described in detail by
Gomez et al. [20]. However, none of these methods is directly applicable here. The aim of sampling
here is to acquire a sample set of vertices and edges for every possible label. These sets are then
used to compute statistics about property and interval distributions with respect to a given label.
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For every vertex and edge label, a reservoir sample (Vitter [67]) of vertices/edges is constructed.
In the following, sV (l) denotes the set of sampled vertices labeled l. Analogously, sE(l) is defined
for edges. The maximum sizes of reservoir samples must be stated in advance. Here, all reservoir
samples are assigned the same maximum size, which is simply denoted by max_size. Apart from
sampling, the numbers of vertices/edges with a given label are counted for every label. These
numbers are denoted |Vl| and |El|.

This method has two main advantages. Every vertex labeled l has the same chance 1
|sV (l)| of being

sampled due to the use of Reservoir Sampling. The same holds for edges, obviously. Moreover, the
algorithm only needs one pass through the data.

The major downside is that the computed samples are in no way preserving the structure of the
underlying data graph. In fact,
(
⋃
l vertex label sV (l),

⋃
m edge label sE(m)) may not even be a well-defined graph. For a sampled edge

e it is not guaranteed that its source and target vertices were sampled, too. These disadvantages,
however, are acceptable here. In order to estimate the probability that a comparison including
one or two graph elements holds, the distributions of property and temporal values among the
vertices/edges in question provide a reasonable approximation. Estimating structural properties,
e.g. the number of distinct source vertices for edges with a given label, is hard, however. This
problem is discussed in Section 6.2.8.

Before, the next Sections demonstrate how comparisons between properties or time stamps can be
estimated on the basis of reservoir samples.

6.2.3. Time Stamp Comparisons

In TPGM, every graph element is associated with a transaction and a valid interval described by
the four timestamps tx-from, tx-to, val-from and val-to. GDL allows to compare them among each
other or to time literals. To estimate the selectivity of such comparisons, the distributions of these
four time stamps must be estimated. The distributions are estimated separately for every vertex
and edge label.

A problem in estimating these time stamps is that the type of their distribution can not be known
apriori. E.g., in a social network like Figure 2.2 , the distribution of tx-from values of Person vertices
might look similar to a normal distribution: there may be only few users at the launch of the social
network. During the next months, the number of users might increase drastically. Afterwards, the
user number might only grow slowly. Hence, the distribution of person’s tx-from values might
resemble a normal distribution. In contrast, the tx-from values of Company vertices might be very
similar among each other. Before the social network is launched, all existing companies might have
been automatically added to the knowledge graph. New companies are later only added occasionally,
causing the tx-from value distribution for cities to resemble an exponential distribution. Thus, for
every label, the distributions of the four time stamps can not be assumed to resemble a certain
statistical distributions apriori.
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For this reason, binning is used to approximate the distributions. For every reservoir sample and
each of the four time stamps, 100 equally sized bins are created. E.g., there are 100 bins for each
property tx-from, tx-to, val-from and val-to for vertices labeled Person. Every bin, except the first
one, corresponds to an interval [a, b). The first bin represents an interval (−∞, b) with b the biggest
value from the sample that falls into the first bin. The last bin stands for an interval [a,∞), where
a is the smallest value from the sample that falls into the last bin. An interval [ai, bi) for the i-th
bin (2 ≤ i ≤ 99) is then simply created by setting ai = ai−1 and bi = ai+1 It is clear that any type
of distribution can be approximated by bins. Hence, they are well suited for computing statistics
on interval time stamps here.

If a value occurs more than once in the sample, several bins can be equal. To give a simple example
for this phenomenon, suppose that the sampled values are {1, 2, 3, 3, 3}. If one were to create 5
equally sized bins of them, three of the bins would be identical. In the Gradoop implementation
of TPGM, graph elements without transaction/valid interval have a corresponding from value
of Long.MIN\_VALUE and a corresponding to value of Long.MIN\_VALUE. Thus, bins can created
from such elements, too. Because of this implementation detail, identical bins are not unlikely.
Additionally, these values further motivate the use of bins: for the same label, there can be elements
that are not valid anymore (i.e. have a reasonable val-to value) and such that are still valid, i.e.
having Long.MIN\_VALUE as their val-to value. Since the difference between Long.MIN\_VALUE and
reasonable val-to values is huge, this distribution can hardly be approximated by any other method
than binning. The same argumentation holds for tx-to values, obviously.

In the following discussion, Btx-from
Vl

denotes the set of bins for the tx-from value of vertices labeled
l. Sets of bins for edges and/or the other three time stamps are denoted analogously. For a given
labeled query variable a, its label is given by τ(a). Unlabeled query variables (τ(a) = ε) are treated
differently, as pointed out later. The notation B[i] is used to refer to the i-th bin of some set of
bins B.

|B| is the number of bins in a set of bins B.

For the following estimations, values need to be found in sets of bins. Two functions are defined
that simplify the necessary notation.

Definition 28 (Leftmost Bin, Rightmost Bin). Given a set of bins B and a value x, the leftmost
bin in B for x, denoted leftmost(B,x) is defined as

leftmost(B, x) = B[i], i = min1≤j≤|B| x ∈ B[j]

Analogously, the rightmost bin in B for x is given by

rightmost(B, x) = B[i], i = max1≤j≤|B| x ∈ B[j]

The easiest case of time stamp comparisons is the comparison between a selector like a.tx-from and
a literal l, e.g. l =2020-01-01, where a’s label is given (τ(a) 6= ε).
Let selector ∈ {tx-from, tx-to,val-from, val-to}. Then, the following estimations are carried out.
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P̂(a.selector < l | τ(a) 6= ε) =
leftmost(Bselector

τ(a) , l)
|Bselector

τ(a) |
(6.18)

P̂(a.selector ≤ l | τ(a) 6= ε) =
rightmost(Bselector

τ(a) , l)
|Bselector

τ(a) |
(6.19)

Both estimations only yield reasonable probabilities if not all sampled values of a.selector are of the
same value. If all sampled values are of the same value, leftmost(Bselector(a), l) = 1/|Bselector(a)|
while rightmost(Bselector(a), l) = 1.

Estimations where a is not labelled are more complicated, since they must consider all possible sets
of bins suitable for a. Additionally, not all sets of bins are equally important as not all labels are
equally frequent. Thus, a simple weight function w is defined for a set of vertex bins:

w(Bselector
l ) = |Vl|

|V |

The weight function for edge bins is defined analogously. Now, the estimations given above can be
modified to compute estimates for non-labelled vertices a.

P̂(a.selector < t | τ(a) = ε) =
∑

l vertex label
w(Bselector

l ) ∗ leftmost(Bselector
l , t)

|Bselector
l |

(6.20)

P̂(a.selector ≤ t | τ(a) = ε) =
∑

l vertex label
w(Bselector

l ) ∗ rightmost(Bselector
l , t)

|Bselector
l |

(6.21)

Because every value can be sorted in at least one bin, 1 ≥ P̂(a.selector ≤ l) > P̂(a.selector < l) > 0
for all possible inputs a.selector, l. All estimations for > and ≥ can now be simply defined using
Equations 6.18, 6.19, 6.20 and 6.21.

P̂(a.selector > l) = 1− P̂(a.selector ≤ l) (6.22)

P̂(a.selector ≥ l) = 1− P̂(a.selector < l) (6.23)

Regardless of a being labelled or not, for most literals l it is very unlikely that a.selector = l. Hence,
the corresponding estimations are set to constants.

P̂(a.selector = l) = 10−3 (6.24)

P̂(a.selector 6= l) = 1− P̂(a.selector = l) (6.25)
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Selectors for interval boundaries can also be compared among each other. Let a and b be labelled
query variables (a 6= b) and sela, selb ∈ {tx-from, tx-to,val-from, val-to}. Estimating comparisons
like a.sela comp b.selb using bins is significantly more difficult. Hence, for this kind of estimation, it
is assumed that the four temporal properties are normally distributed. This means that for every
reservoir and temporal property, the mean and variance must be computed.

The reason for this assumption is that the difference between two normally distributed random
variables X1 ∼ N (m1, σ

2
1) and X2 ∼ N2(m2, σ

2
2) is normally distributed, too: X1 − X2 ∼ (m1 −

m2, σ
2
1 + σ2

2). Thus, P̂(a.sela ≤ b.selb) can be simply estimated as

P̂(a.sela ≤ b.selb) = P̂((a.sela − b.selb) ≤ 0) (6.26)

where P̂((a.sela−b.selb) ≤ 0) is computed with the cumulative probability function for a normal dis-
tribution. Moreover, estimations on how many elements have Long.MIN_VALUE or Long.MAX_VALUE

are taken into account. Estimations for equality predicates are obtained analogously, using the
density function of the normal distribution:

P̂(a.sela = b.selb) = P̂((a.sela − b.selb) = 0) (6.27)

Estimations for the remaining comparators (<, 6=, ≥, >) can then be computed using Equations
6.26 and 6.27 in a straightforward way, e.g.

P̂(a.sela < b.selb) = P̂(a.sela ≤ b.selb)− P̂(a.sela = b.selb) (6.28)

The normal distribution is a continuous probability distribution, while time stamps are discrete
values. However, this is not problematic here, as Equation 6.26 only uses a cumulative probabil-
ity. Exact probability densities are needed for estimating the probability of equality between two
stamps. However, because equality between two time stamps is, in general, considered very unlikely,
it is acceptable that Equation 6.27 might yield a very small value.

In order to estimate comparisons between one or two unlabeled query variables, weights for different
bin sets, analogously to Equations 6.20 and 6.21, are employed. The formulas are omitted here for
the sake of brevity.

As shown in Section 6.1.2, many types of MIN/MAX comparisons are reformulated to simple
time stamp comparisons during the query transformation pipeline. For the remaining MIN/MAX
comparisons, estimating their selectivity would be possible with some overhead. Every MIN/MAX
comparison can be unfolded to a boolean formula including only simple time stamp comparisons,
as shown in detail by Lemma 4. Such a formula could be transformed to a CNF and then estimated
with the methods introduced above. Given this extra complexity and the fact that many MIN/-
MAX comparisons are already eliminated at this point, the remaining MIN/MAX comparisons’
probability estimations are ignored. This means, they are always set to 1.
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Besides comparing time stamps, GDL also allows the comparison of interval durations. The esti-
mations for such terms also makes use of normal distributions.

6.2.4. Duration Comparisons

Statistics about durations are computed based on the reservoir samples, too. It is assumed that du-
rations are normally distributed. Hence, for every reservoir sample like sV (l) four values µdur(tx)

V (l),
σ
dur(tx)
V (l), µdur(val)V (l) and σdur(val)V (l) are computed as follows.

µ
dur(tx)
V (l) = 1

|sV (l)|
∑

a∈sV (l)
tx-duration(a)

with

tx-duration(a) =

a.tx-to− a.tx-from if a.tx-to < Long.MAX_VALUE

stamp(now)− a.tx-from else

Here, tx-duration(a) ensures that the duration is never infinite. Then, the standard deviation
σ
dur(tx)
V (l)2 can be computed using µdur(tx)

V (l).

The values µdur(val)V (l) and σ
dur(val)
V (l)2 are, of course, computed analogously. For every reservoir

sample like sV (l) transaction and valid durations are assumed to be normally distributed ran-
dom variables Dtx

V (l) ∼ (µdur(tx)
V (l), (σdur(tx)

V (l))2) and Dval
V (l) ∼ (µdur(val)V (l), (σdur(val)V (l))2). These

distributions are used to estimate probabilities in a straightforward way, e.g.

P̂(duration(a.tx) ≤ d | τ(a) 6= ε) = P(Dtx
V (τ(a)) ≤ d) (6.29)

For the same reasons as in Section 6.2.3, the continuous normal distribution is acceptable for
discrete durations.

As already mentioned, the difference between two normally distributed random variables is normally
distributed again. Hence, estimations for comparisons between two variable durations can be easily
computed, e.g.

P̂(duration(a.tx) ≤ duration(b.tx) | τ(a) 6= ε 6= τ(b)) = P((Dtx
V (τ(b))−Dtx

V (τ(b))) ≤ 0) (6.30)

Comparisons involving non-labeled elements are estimated using weights in the same way as in
Section 6.2.3. Equation 6.31 provides an example for a comparison between two non-labeled vertices
a and b.
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P̂(duration(a.tx) ≤ duration(b.tx) | τ(a) = τ(b) = ε) =∑
l vertex label

∑
m vertex label

( |Vl|
|V |
|Vm|
|V |
P((Dtx

V (l)−Dtx
V (m)) ≤ 0))

(6.31)

The selectivities of all types of temporal comparisons can now be estimated. In the following two
chapters estimations for comparisons between property values are discussed.

6.2.5. Numerical Property Comparisons

Numeric Property Values (e.g. Age in the graph in Figure 2.2) are treated very similar to dura-
tions. Just like them, they are assumed to be normally distributed. The only difference is that not
every graph element is guaranteed to have a non-NULL value for a certain property. Thus, for
every reservoir sample (e.g. sV (l)) and property p, ratiop(sV (l)) := |{x∈sV (l)|κ(x,p)6=NULL}|

|sV (l)| must be
computed.

Similar as for durations, random variables P pV (l) for every reservoir sample sV (l) (analogously for
edges) and property p can be created. Their means and variances are computed using only the
elements in sV (l) that actually havea non-NULL value for property p.

A comparison between some vertex a’s property value for p and a literal x can then be estimated
as shown exemplary in Equation 6.32. It is always assured that probabilities are strictly greater
than zero. The reason for this is the small chance of ratiop(sV (l)) being 0, even though there are
actually l-vertices with property p in the data graph.

P(a.p ≤ x) = max{ratiop(sV (l)) ∗ P(P pV (l) ≤ x), 10−5} (6.32)

Again, these estimations can be extended to handle comparisons between two property selectors
in a natural way. For two labelled vertices a and b and properties p,q, Equation 6.34 estimates the
probability that a.p ≤ b.p holds.

P(a.p ≤ b.q | τ(a) 6= ε 6= τ(b)) =

max{ratiop(sV (l1)) ∗ ratioq(sV (l2)) ∗ (P((P pV (l1)− P qV (l2)) ≤ 0), 10−5}
(6.33)

Furthermore, comparisons involving unlabelled graph elements are estimated analogously to Sec-
tions 6.2.3 and 6.2.4. To give an example, Equation 6.34 shows the estimation for a.p1 ≤ b.p2 if a
and b are not labelled.

P(a.p ≤ b.q | τ(a) = τ(b) = ε) = max{
∑

l vertex label

∑
mvertex label

|Vl|
|V |
∗ |Vm|
|V |
∗

ratiop(sV (l)) ∗ ratioq(sV (m)) ∗ (P((P pV (l)− P qV (m)) ≤ 0), 10−5}
(6.34)
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This completes the discussion of numeric property values. However, property values can be non-
numeric, i.e. categorical, too.

6.2.6. Categorical Property Comparisons

Categorical Properties can only be compared using = or 6= as there is no order on them. All other
comparisons are estimated to hold with probability 0.

As before, the distribution of these property values are estimated based on the reservoir samples.
For this purpose, let sp=x

V (l) ⊆ sV (l) denote those elements of sV (l) where the value of property p
is equal to x. Then, a comparison a.p = x, where a is a labeled graph element and x a literal, is
easy to handle.

P̂(a.p = x | τ(a) 6= ε) = max{ratiop(sV (τ(a))) ∗ |s
p=x
V (τ(a))|
|sV (τ(a))| , 10−5} (6.35)

Other than in the Sections before, it is not reasonable to simply assume that every equality is
rather unlikely. The range of a categorical property value might be very small, e.g. for fields like
gender or nationality. Estimations for inequalities are defined using Equation 6.35

P̂(a.p 6= x) = max{1− P̂(a.p = x), 10−5} (6.36)

Again, these comparisons can be straightforwardly adjusted to non-labeled vertices, e.g.

P̂(a.p = x | τ(a) = ε) = max(
∑

l vertex label

|Vl|
|V |
∗ ratiop(sV (l)) ∗ |s

p=x
V (l)|
|sV (l)| , 10−4) (6.37)

The estimation for equality between two property selectors is given in Equation 6.38. Here, rangel(p)
is the set of values x where |sp=x

V (l)| > 0.

P̂(a.p = b.q | τ(a) 6= ε 6= τ(b)) = max(
∑

x∈range(p)∪range(q)

ratiop(sV (τ(a))) ∗ ratioq(sV (τ(b))) ∗ |s
p=x
V (τ(a))|
|sV (τ(a))| ∗

|sq=xV (τ(b))|
|sV (τ(b))| , 10−4)

(6.38)

If there are one or two unlabeled elements in such a comparison, the estimation can be extended
analogously to Equation 6.37.

All types of comparisons can now be assigned a probability estimation. Hence, for every possible
CNF, P̂CNF can be computed. The comparison selectivity estimations are used to apply another
transformation on the query.
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6.2.7. Clause Reordering

In its Gradoop implementation, Algorithm 2 always checks CNF clauses from left to right. Thus,
the number of expected clauses to check can be minimized by sorting the clauses according to their
estimated selectivity. The most selective clauses should be encountered first in order to filter out
embeddings as soon as possible.

Disjunctive clauses are processed from left to right, too. Within them, less selective comparisons
should be checked first, as one positively evaluated comparison is enough to satisfy the clause.
Hence, the expected number of comparisons to check the clause is minimized.

Algorithm 19 sums up this CNF transformation.

Algorithm 19 Clause Reordering
1: procedure ReorderClauses(cnf)
2: cnf ′ = empty CNF
3: for clause = (c1, ..., c|clause|) ∈ cnf do
4: clause′ = reorder clause′ acc. to estimateSel(ci) (descending)
5: cnf ′ = cnf ′ ∧ clause′

6: cnf ′′ = reorder cnf ′ acc. to estimateSel(Ci)(cnf’=C1 ∧ ... ∧ C|cnf ′|) (ascending)
7: return cnf ′

Lemma 13. For a CNF φ and a formula φ′ :=reorderClauses(φ), φ′ is a CNF and φ′ ≡ φ.

Proof. As only clauses and comparisons within clauses are reordered by Algorithm 19, it is clear
that φ′ is a CNF again and φ ≡ φ′.

This transformation was not introduced in Section 6.1, as it is not part of the pipeline described
there. Instead, the output of the query rewriting pipeline is the basis for all selectivity estimations.
Algorithm 19 can only be applied after these estimations are available.

6.2.8. Structural Properties

The join cardinality estimation approach introduced in Section 5.1.4 is based on selectivity of query
predicates as well as on structural properties of the data graph. Estimations for query predicate
selectivities have been pointed out above, those for structural properties are yet missing.

These structural properties are, as mentioned in Section 5.1.4:

• the overall number of vertices (|V |) and edges (|E|)

• the number of vertices or edges labelled l (|Vl| and |El| respectively) for every label l

• the cardinalities |Values(R, a.ID)| for an edge join of some vertex variable a
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|V | and |E| as well as |Vl| and |El| for every label l are computed exactly during sampling. To
achieve this, the respective graph elements are simply counted, even though only a fraction of them
may be sampled.

|Values(R, a.ID)| is more problematic. R is the relation containing the edge e to join, a is either
e’s source or target vertex. W.l.g., assume that a is e’s source vertex. Then, |Values(R, a.ID)| is
the number of distinct source vertices of type a for an edge of type e. Here, the type of a vertex
(analogously, an edge) is the set of vertices with the same label, if the vertex is labeled. Otherwise,
the type of a is just the set of all vertices.

Hence, for every combination of a vertex label lv and an edge label le, the number of distinct source
and target vertices labelled lv for edges labelled le is needed. Furthermore, for every edge label
le, the number of distinct source and target vertices overall, regardless of the vertex label, must
be computed. All these values can be computed exactly on the graph using the graph statistics
provided by Gradoop. In order to save time, however, in the implementation described here, they
are only estimated based on the Reservoir Samples. E.g., for an edge e and its source vertex a,
labeled la, |Values(R, a.ID)| (where e is specified in R) is computed as

|Values(R, a.ID)| = |{(u, v) ∈ sE(τ(e)) | u ∈ Vla | ∗
|Eτ(e)|
|sE(τ(e))| (6.39)

Since edge sampling does not preserve structural properties like vertex degrees [38], this estimation
is not accurate. Its advantage is that it can be computed fast and provides reasonable values in
many cases. As the focus of the estimations implemented here was on estimations for property
values, no other method for structural properties is provided. However, the implementation allows
for better approaches being added in future work, as the next Section shows.

6.2.9. Implementation of Estimations

The estimations introduced above can be seen as a reference implementation. They could be re-
placed by other implementations of the abstract class TemporalGraphStatistics.java in the
future. This class prescribes several methods to estimate probabilities and structural properties.
The class
BinningTemporalGraphStatistics.java extends it and implements the methods described in this
Section. Because of TemporalGraphStatistics.java being employed in query planning, the query
planning component is different from the EPGM implementation.

TemporalGraphStatistics.java forces its sub-classes to provide four types of factory methods
for creating instances:

• fromGraph(TemporalGraph g): create statistics for the graph. Consider every property.

• fromGraph(TemporalGraph g, Set<String> numericalProperties,

Set<String> categoricalProperties): create statistics for the graph, but consider only
the specified properties.
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• fromGraphWithSampling(TemporalGraph g, int sampleSize): create statistics for the graph
that are guaranteed to be based on a sample. The sample should have size sampleSize.

• fromGraphWithSampling(TemporalGraph g, int sampleSize,

Set<String> numericalProperties, Set<String> categoricalProperties): create statis-
tics for the graph based on a sample of size sampleSize, considering only the specified prop-
erties.

In the API (see Appendix B), the user is free to choose any statistics implementation. It is also
possible to call the operator without using any statistics. In this case, a dummy implementation of
TemporalGraphStatistics.java is employed that sets every estimation to 1.

84
Lukas Christ

3756213



7. Evaluation

In the following, the implemented Pattern Matching operator is evaluated. Section 7.1 describes
the technical details of the Evaluation. In Section 7.2, the data sets used are introduced. Finally,
the results are presented and discussed in Section 7.3.

7.1. Evaluation Setup

Evaluation is performed on a share-nothing cluster. It consists of 16 physical workers, each of them
handling up to 6 parallel threads. Thus, the degree of parallelity is 6 for one worker, 12 for two,...,
and 96 if all 16 workers are used.

1 GBit/s Ethernet connections link the workers among each other. Every worker is equipped with
an Intel Xeon E5-2430 v2 CPU (2,5 GHz) and 48 GB of RAM. For the execution, the Flink version
1.9.0 and Hadoop in the version 2.6.0 was used.

The program is run three times for every query. The mean duration of these runs is then considered
the query’s run time. A run of a query comprises reading the data graph from the source, executing
the matching and writing the results back to a sink.

7.2. Evaluation Data Sets

Two data sets are used for the evaluation: the real-world citibike data set (Section 7.2.1) and the
synthetic LDBC data set (Section 7.2.2).

7.2.1. The Citibike Data Set

Citibike8 is a bike-sharing company based in New York. They provide data about their customers’
bike trips from 2013 on9.

This data is very homogeneous: every row in the data set describes a trip from one place (’station’)
in NYC to another. For each trip, a start and end time stamp as well as the trip’s duration is
provided. Furthermore, some information about the bike (bike id) and the customer is given, e.g.
gender and year of birth. Stations have various attributes, including their capacity, id and name.
Further attributes for each station are given in a separate JSON10, e.g. a short name and whether
the station has a kiosk.

In Gradoop, an importer for citibike data is already implemented. It offers two options for im-
porting the data. With the option TRIPS_AS_EDGES, stations are imported as vertices and trips
as edges connecting stations. The option TRIPS_AS_VERTICES allows to map trips to vertices. As

8citibikenyc.com, accessed August 2020
9citibikenyc.com/system-data, accessed August 2020

10https://gbfs.citibikenyc.com/gbfs/en/station_information.json, accessed August 2020
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the TRIPS_AS_EDGES option creates a more intuitive graph, it is chosen for the evaluation. The
importer also loads the additional station attributes into station vertices.

There are no explicit transaction and valid intervals in citibike data. However, the trip interval
ranging from start of a trip to its end is a natural choice for a trip edge’s valid interval. Transaction
intervals are not set, i.e. they keep their default range from Long.MIN_VALUE to Long.MAX_VALUE.

All citibike data sets from 06/2013 to 05/20202 are used to create the evaluation data set. It is stored
in Gradoop’s IndexedCSV format, occupying about 23 GB of memory. To evaluate the operator’s
behaviour regarding different data set sizes, two smaller data sets are created from the citibike data
set. The whole citibike data set is considered having scalability factor (SF)100. Sampling edges with
a probability of 10% creates the citibike data set with SF10. By sampling edges with probability
1%, the citibike data set with SF 1 is obtained. Consequently, SF10 takes about 2.3 GB space while
SF1’s size is about 230 MB.

A problem with the citibike data set is that it is relatively small. As Gradoop is intended to handle
big data, the operator must be evaluated on a larger data set, too.

7.2.2. The LDBC Data Set

LDBC-SNB [13] is a synthetic benchmark for big data operations inspired by social networks. Its
schema is richer than the citibike schema. Furthermore, it is possible to create large data sets using
the provided generator11.

LDBC SNB graphs are property graphs according to the PGM (cf. Definition 5). There are various
types of vertices and edges in LDBC SNB graphs. For the evaluation here, the dynamic parts of the
graph are most interesting. Dynamic vertex types are Person, Forum, Post, Comment and Message,
where Message is the super-type of Post and Comment. These vertices are connected via different
types of dynamic edges, among them knows (between Persons), likes (from Persons to Messages)
and replyOf (from Comments to Messages).

All the mentioned dynamic vertex and edge types are equipped with a creationDate property of
type DateTime. This property is used as val-from timestamp in the evaluation. The other three time
stamps defined by TPGM are not set, i.e. set to their default values. Intervals of graph elements
without creationDate property are set to default values, too. An exception is the hasMember edge
from Forums to Persons. For this type of edge, the joinDate property is used as val-from value.
The LDBC data generator provides the opportunity to create synthetic data graphs of different
sizes. LDBC graphs of scalability factors (SF) 100, 10 and 1 are used for the evaluation. Again, the
data is stored in Gradoop’s IndexedCSV format. SF100 requires ca. 422 GB, SF10 about 42 GB
and SF1 4.2 GB of disk space.

11https://github.com/ldbc/ldbc_snb_datagen, accessed August 2020
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7.3. Results

Based on the two data sets, the operator’s performance regarding different query complexities
(7.3.1) and queries of different selectivity (7.3.2) is evaluated. Furthermore, the runtime for various
data sizes and degrees of parallelity is measured (7.3.3). After that, the problems of comparing the
TPGM operator with the EPGM operator are discussed in Section 7.3.4.

7.3.1. Query Complexity

Queries consist of a (potentially labelled) graph pattern and a set of constraints. Thus, queries can
be of different complexity regarding their pattern as well as their constraints. The complexity of a
query is expected to influence the operator’s runtime.

First, the complexity of patterns is examined more closely. Pattern complexity determines the
number of joins needed to construct the result set (cf. Algorithm 2). Hence, it is reasonable to
expect different patterns to affect the run time differently. In order to gain insight into the influence
of pattern complexity on the performance, 8 different citibike graph patterns are considered. For
every pattern, a query is built by restricting the pattern’s edges’ val-from values, leading to queries
c0,...,c7. The restrictions are different for each query. For the more complex queries c3-c7, the
temporal restrictions are tuned so that the results of all these queries are of similar size. The queries
and their result sizes on the whole citibike data set are listed in Table 7.1. Temporal restrictions
are given in round brackets in the Query column.

Query Pattern Cardinality
c0 (-) (s1) 1174
c1 (1d) (s1)-[t]->(s2) 65462
c2 (1d) (s1)-[t]->(s1) 1215
c3 (1d) (s1)-[t1]->(s2)<-[t2]-(s3) 12294676
c4 (1d) (s1)-[t1]->(s2)-[t2]->(s3) 12311535
c5 (1d) (s3)<-[t2]-(s1)-[t1]->(s2) 12267234
c6 (1h) (s1)-[t1]->(s2)-[t2]->(s3)<-[t3]-(s1) 14254172
c7 (90m) (s1)-[t1]->(s2)-[t2]->(s3)<-[t3]-(s4) 14633859

Table 7.1.: Citibike query patterns and their result cardinalities on citibike SF100

All of them are executed on the whole citibike data set, using 16 workers, i.e. 96 parallel threads.
Figure 7.1 shows the average run time for each query.
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Figure 7.1.: Runtimes of patterns c0...c7 on citibike SF100 (parallelity 96)

Not surprisingly, queries including joins (i.e., all but c0) require more time than c0, the only query
without any join. Comparing the queries ranging over one day (c1, c2, c3, c4, c5) indicates that
there is indeed a correlation between number of joins and run time. The very similar run times of
queries c3, c4 and c5 demonstrate that the complexity, i.e. the number of necessary joins, but not
the exact structure of a pattern is relevant for the operator’s performance. Furthermore, for the
simple queries c1 and c2, the result set size is less important than the pattern complexity. Both
queries have nearly identical run times. Here, the intermediate results of c2 are even smaller than
those of c1, since only self-loop edges are kept as candidates for t in the first step of c2’s execution.
As both queries’ results are comparatively small, the result sets’ sizes may not heavily influence
the run time here.

Another indication of the pattern complexity’s importance is the run time of c7. As c7 is restricted
to just 90 minutes, the number of edge candidates for each edge is way smaller than in the queries
c1-c5. Nevertheless, c7 as a more complex query involving three edges takes significantly more
time than any of the queries c1-c5. More surprising, c6’s run time is rather low, similar to that
of c1 and c2. The main reason for this is that the pattern is restricted to one hour, which is the
strictest restriction of all queries. Thus, the initial candidate sets for vertices and edges are smaller
than for any other query. As c7 is restricted to 1.5 hours, the number of candidate edges for c7
is about 1.53 = 3.375 times larger than the number of c6’s candidate edges. Moreover, because of
(s1) appearing two times in c6, there is one less vertex candidate set than in c7.

The performance for different query patterns is evaluated for LDBC data, too. Patterns similar to
those used in the citibike evaluation above are created, resulting in queries l0,...,l7. All likes edges
are restricted to one day by means of their valid interval. Vertices referring to messages (i.e. posts
and comments) are restricted to two days in the same way. Table 7.2 lists all the patterns and their
result cardinalites for LDBC SF100.

The queries are executed on LDBC SF100 with parallelity 96. Figure 7.2 visualizes the results.
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Query Pattern Cardinality
l0 (p1:person) 448626
l1 (p1:person)-[l:likes]->(m) 211945

l2 (p1:person)-[l1:likes]->(m)
(p2:person)-[l2:likes]->(m)

12582910

l3 (p:person)-[l:likes]->(c:comment)
(c)-[r:replyOf]->(post:post)

76301

l4
(p1:person)-[k:knows]->(p2:person)
(p2:person)-[l1:likes]->(m)
(p1)-[l2:likes]->(m)

222350

l5
(p1:person)-[l1:likes]->(c:comment)
(c)-[r:replyOf]->(m)
(p1)-[l2:likes]->(m)

608

l6

(p1:person)-[k1:knows]->(p2:person)
(p2)-[l1:likes]->(m)
(p3:person)-[l2:likes]->(m)
(p1)-[k2:knows]->(p3)

22141686

l7

(p1:person)-[l1:likes]->(c1)
(c1)-[r1:replyOf]->(m)
(c2)-[r2:replyOf]->(m)
(p1)-[l2:likes]->(c2)

622

Table 7.2.: LDBC query patterns and their result cardinalities
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Figure 7.2.: Runtimes of patterns l0...l7 on LDBC SF100 (parallelity 96)

Analysing them is more complicated than for the homogeneous citibike data set. Not surprisingly,
the run times are, in general, longer than for the queries on the much smaller citibike data. As
one would expect, l0 requires the least time. Comparing the run times of l6 and l7 to the other
queries’ run times shows that pattern complexity, i.e. the number of joins, is not the only factor
influencing the run time. Once again, the results demonstrate that the size of intermediate results
has a crucial impact on the run time. For l6, they are bigger than for any other query, as indicated
by l6’s result cardinality. The run times of l1 - l5 and l7 are very similar, even though the patterns
are of different complexity. These queries have either comparatively small (intermediate) result sets

Lukas Christ
3756213

89



7. Evaluation

(l5, l7) or just two (l2, l3) joins. A special case is l4 with more results than l3, l5 and l7 and a more
complex pattern than in l2 and l3.

Figure 7.3 combines the results for comparable citibike and LDBC queries. The diagram makes
clear that the run times behave similar for both data sets. Furthermore, it is interesting that, even
though LDBC (SF100) is about 20 times larger than CB (SF100), the run times do not differ as
much. This is mostly due to the fact that for the citibike data set, the result sizes are, in general,
not smaller. Thus, only the candidate selection step takes significantly longer for LDBC.
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Figure 7.3.: Runtimes of selected patterns on citibike SF100 and LDBC100 (parallelity 96)

Overall, none of the results contradict the intuition that run time mainly depends on the amount
of data that needs to be passed through the query plan execution. This, in turn, depends on the
number of joins as well as on the number and size of intermediate result embeddings. Hence, it is
not possible to predict a query’s run time by only considering pattern complexity.

The other aspect of query complexity is the complexity of constraints, which is more elusive than
pattern complexity. How a constraint influences the run time depends on several aspects of the
constraint: whether it refers to one or two elements, its selectivity and its redundancy.

An experiment shows the impact of a constraint’s position in the query plan. A constraint referring
only to a single variable can always be evaluated in the first step of Algorithm 2 , i.e. the initial
candidate selection. Constraints comparing two different variables can only be processed in the
context of a join. Hence, a single variable constraint will reduce the intermediate result size earlier
than a join constraint. This will of course affect the run time that mainly depends on the size
intermediate results. To demonstrate this effect, three variants c5a, c5b and c5c of query c5 for
citibike are created. In c5a, only constraints referring to a single variable are contained, while c5b
only includes join constraints (except the temporal constraints restricting the edges’ val-from). The
third variant, c5c, features both types of constraints. All three queries’ constraints are tuned to
return a comparable number of results. Table 7.3 gives an overview over the queries. The exact
queries can be found in Appendix B.1

The three queries are run for citibike SF100. In Figure 7.4, the results of the experiment are
visualized.
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Query Constraints Cardinality
c5a only single-element constraints 5117478

c5b only join constraints
(besides temporal restrictions for the pattern) 4868340

c5c both single-element and join constraints 4832533
Table 7.3.: Caption
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Figure 7.4.: Cardinalities and characteristics of c5a, c5b and c5c on citibike SF100 (parallelity 96)

Not surprisingly, c5a has the lowest run time. In c5a, the intermediate results are the smallest as
all the constraints are already checked in the first step of Algorithm 2. Because c5b has only join
constraints (except the constraints restricting the edge’s valid from values), it has the longest run
time. The reason for this is that c5b’s intermediate results are the largest among the three queries
due to less restrictive single element constraints. Consistent with this reasoning, c5c’s performance
is better than c5b’s but worse than c5a’s. It is clearly demonstrated by this experiment, that the
type of constraints is an important factor of a query’s run time. Hence, the query transformation
inferring additional single element constraints (cf. Section 6.1.7) is justified.

The number of constraints influences a query’s performance, too, as every constraint must be
checked on possible results during query processing. However, the impact of the number of con-
straints depends on the type of the constraints (as shown in the experiment above), their se-
lectivity and on their redundancy. To demonstrate the latter aspect, another experiment is con-
ducted. For every variant of c5 introduced above, a redundant version is created by doubling
the number of constraints. The newly introduced constraints do not change the results. Further-
more, every newly added constraint corresponds to a constraint already present in the query and
is checked in the same step as the corresponding constraint. For example, given a comparison
t1.val.lengthAtMost(Hours(10)), a redundant constraint t1.val.lengthAtLeast(Seconds(0))

is added to the query. The whole queries can be found in the Appendix. It is ensured that the re-
dundant constraints are not removed by a query transformation. The queries are executed using
96 parallel threads. Figure 7.5 shows the experiment’s results by comparing the run time of the
original queries c5a, c5b and c5c with their redundant versions on citibike SF100.
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Figure 7.5.: Runtimes for c5a, c5b and c5c, original and redundant version (parallelity 96)

Obviously, the additional constraints increase the run time. This is not surprising as for every re-
sult embedding, every constraint has to be checked. However, the impact of redundant constraints
is not always drastic here. For c5a, the run time only increases from 228 to 234 seconds (2,6%).
All additional constraints in q5a can be handled by the estimation methods introduced in Section
6.2. Hence, the redundant constraints are always checked last and thus only for actual result can-
didates due to the query reordering transformation (cf. Section 6.2.7). The other two queries are
slowed down more notably. There may be two reasons for this: first, the estimation component can
not handle the the complex duration constraints introduced here. Hence, a redundant constraint
like Interval(t1.val_from, t2.val_from).lengthAtLeast(Seconds(0)) is not guaranteed to
be checked only after its corresponding meaningful constraint. Because of that, redundant con-
straints are checked more often in c5b and c5c than in c5a. Second, by construction of the queries,
the intermediate results after the first step (candidate selection) are bigger in c5b and c5c than in
c5a. This means that the redundant single element constraints are checked more often in these two
queries than in c5a.

Overall, query complexity is a complicated concept. It has been shown that many of its aspects
impact the operator’s performance. In general, every query facet reducing the number of joins or the
size of intermediate results will also reduce the run time. Moreover, the order in which constraints
are checked is important, as demonstrated by the last experiment. This order, in turn, depends on
whether the estimation component can handle the constraints.

Another aspect of queries is their selectivity.

7.3.2. Selectivity

The selectivity of a query determines its result size and is thus a crucial factor of the query processing
run time as well. In order to further examine the influence of query selectivity, three variants with
different selectivites are created for each of the citibike queries c5a, c5b, c5c. Now, for each of
the three queries, there are variants of high, intermediate and low selectivity. Furthermore, they
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are tuned so that the queries of each selectivity class have comparable result sizes. The result
cardinalities for the variants are listed in Table 7.4.

high middle low
c5a 162 43136 5117478
c5b 229 37247 4868340
c5c 235 47751 4832533

Table 7.4.: Result cardinalities for different versions of c5a, c5b and c5c

All nine queries are executed on citibike SF100 using 96 parallel threads. The results are given in
Figure 7.6.
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Figure 7.6.: Runtimes for different versions of c5a, c5b and c5c on citibike SF100 (parallelity 96)

As expected, higher selectivity leads to a faster processing of the query. In the queries c5a and
c5c, intermediate result sizes are reduced early due to selective single element predicates. Hence,
it is not surprising, that their respective version of middle selectivity is more close to the highly
selective version than to the version of low selectivity.

A similar experiment is carried out for the LDBC data set. First, three variants of the query l4
are created, analogously to the citibike evaluation. The query l4a has only constraints referring to
single elements. Query l4b has join predicates, but less selective single element predicates, while
l4c can be seen as a compromise between l4a and l4b. For each of the three queries, three variants
with high, middle and low selectivity are created. The exact queries can be found in the appendix.
Their result cardinalities for SF100 are presented in Table 7.5.

high middle low
l4a 807 84449 12518290
l4b 800 99895 7455989
l4c 231 73456 9241786

Table 7.5.: Result cardinalities for different versions of l5a, l5b and l5c on LDBC SF100

In Figure 7.7, the results for the LDBC SF100 data set and parallelity 96 are shown.
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Figure 7.7.: Runtimes for different versions of l4a, l4b and l4c on LDBC 100 (parallelity 96)

The outcome resembles that of the analogous experiment for citibike data. It is clear that for each
query, the highly selective version performs better than the version of middle selectivity, which in
turn runs faster than the version of low selectivity. For high and middle selectivity, l4b performs
the worst, as one could expect. This is different for low selectivity, which might be due to the fact
that l4c has about 2 ∗ 106 results more than l4b.

For each query, the result cardinalites of high and middle selectivity and those of middle and low
selectivity differ by a factor in the order of magnitude 100. Other than in the citibike evaluation,
here, the run times of queries of middle selectivity are always close to those of queries of high
selectivity. This indicates that intermediate results for middle and high selectivity are more similar
here, which might be due to LDBC being a data set with more than one type. Hence, the labels for
vertices and edges already account for many edges being filtered out during candidate selection.

In Figure 7.8, the selectivity evaluation diagrams (Figures 7.6 and 7.7) are united as one diagram.
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Figure 7.8.: Runtimes for different versions of c5a, c5b, c5c, l4a, l4b and l4c (parallelity 96)

Similar to the diagram in Figure 7.3, most run times of comparable queries do not mirror the two
data sets’ different sizes. One reason for this was already mentioned: the candidate selection of
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queries on LDBC is inherently more selective because labels are employed to distinguish between
different types of vertices and edges. Another reason is certainly that the result sizes of queries on
citibike are quite similar to that of corresponding LDBC queries (cf. Tables 7.4, 7.5). Hence, most
of the filtering is done in the first step, candidate selection. This reasoning also explains why the
run time difference between the queries q5a and l4a, both only containing constraints referring to
just one element, is quite notable.

This concludes the discussion of the influence of queries on the run time. Next, the operator’s
scalability is evaluated.

7.3.3. Scalability

Gradoop is capable of processing large data sets in parallel. Thus, it is of high interest how the
operator performs with respect to different data set sizes and degrees of parallelity.

A representative set of queries is selected and evaluated on the three citibike data sets using
parallelity 96 (16 workers). The results are visualized in Figure 7.9, now with logarithmic y-axis as
the data set sizes differ by factor 10.
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Figure 7.9.: Runtimes for different queries on citibike SF1, SF10 and SF100 (parallelity 96)

The run times for citibike SF1 hardly differ at all, implying that on such small data sets, a wide
range of different queries can be processed in similar time. Here, all run times are about 15 seconds.
For SF10, run time differences for different queries surface. These differences are analogous to the
run time differences in SF100, however, they are less extreme with run times ranging from 18
seconds (c1) to 29 seconds (c5b). Furthermore, the run times for SF10 do not even double the
run times for SF1. Hence, the operator scales good for comparatively small data sets, the speedup
is superlinear here. The results for SF100 do not scale that well: while the run time for c1 is 64
seconds here (18s for SF10), c5b now takes 931 seconds to process (29s for SF10).

So, the scalability in terms of data set sizes depends on query complexities for larger data sets,
while for small data sets like SF1 and SF10, the operator scales superlinearly for various kinds of
queries - at least for a sufficiently high parallelity.
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Scalability is also evaluated on the LDBC data set. Figure 7.11 displays the run times of the queries
l0, l1,...,l7 for all three data sets.
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Figure 7.10.: Runtimes for different queries on LDBC SF1, SF10 and SF100 (parallelity 96)

The speedup from SF1 compared to SF10 is superlinear in all cases, too. In the worst case, the run
time for SF10 differs from that for SF10 by a factor of 7 (l6). Similarly, the speedup from SF10
compared to SF100 is superlinear in almost every case. There is only one exception, as l6 takes 160
seconds for SF10 but 1721 seconds for SF100 (factor 10.76).

Another experiment with the variants of the queries l4a, l4b and l4c yields similar results, as shown
in Figure 7.11.
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Figure 7.11.: Runtimes for different variations of l4 on LDBC SF1, SF10 and SF100 (parallelity 96)

Again, the speedup from SF1 to SF10 is superlinear for every query. This is also true for the speedup
from SF10 to SF100, except for the queries l4b (high selectivity) and l4c (low selectivity). However,
for these two queries, the speedup is almost linear, too. Overall, the run time scales satisfactorily
for the bigger data set, LDBC.

Parallelity is another aspect of scalability. The operator is thus evaluated for different numbers of
workers: 1,2,4,8 and 16 workers corresponding to 6,12,24,48 and 96 parallel threads. First, parallelity
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is investigated for the citibike data set. Again, a set of queries from the ones used before is selected.
Now, however, queries that were processed comparatively fast are preferred in order not to provoke
too high run times for small degrees of parallelity. Figure 7.12 shows the results.
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Figure 7.12.: Runtimes of citibike queries for different degrees of parallelity (citibike SF100)

The curves are of similar shape for all tested queries, indicating that the speedup for different
degrees of parallelity is not heavily dependent on the type of query. In Figure 7.13, the speedup
curves are plotted.
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Figure 7.13.: Speedup of citibike queries for different degrees of parallelity (citibike SF100)

Here it becomes clear, that the speedup for the different queries is indeed very similar. There is
only one exception: the speedup of query c5b is significantly worse than that of the other queries, at
least for 4 and 8 workers. For the other queries, the speedup is nearly linear for up to 4 workers. It
is not surprising that the speedup drops for an increasing number of workers, as more workers also
lead to more communication effort between workers. Additionally, the citibike data set is rather
small so that higher parallelities do not have a notable effect on query processing.

The scalability with respect to different degrees of parallelity is evaluated for LDBC data, too.
Figure 7.14 plots the run times of a diverse set of queries, again for 1, 2, 4, 8 and 16 workers,
corresponding to 6, 12, 24, 48 and 96 parallel threads.
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Figure 7.14.: Runtimes of LDBC queries for different degrees of parallelity (LDBC SF100)

All queries behave similarly: there is considerable speedup for 1 to 4 workers, while using 16 workers
does not significantly improve the runtime compared to the use of 8 workers. This, again, may be
due to higher communication costs for more workers. In Figure 7.15, the speed up for these run
times is visualized.
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Figure 7.15.: Speedup of LDBC queries for different degrees of parallelity (LDBC SF100)

For up to 4 workers, it is nearly linear, even superlinear in one case, namely l4a(high) for 2 workers.
Junghanns et al. [28] also report super-linear speedups. They argue that this is because for less
main memory, intermediate results are written to disk. For more main memory, however, no such
swapping is necessary.

Figure 7.16 combines speedup curves from Figures 7.13 and 7.15 for some comparable queries on
the citibike and the LDBC data sets.
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Figure 7.16.: Speedup of citibike and LDBC queries for different degrees of parallelity (citibike
SF100, LDBC SF100)

It does not allow to formulate hypotheses on how the speed up depends on the type of data graph.
The curves are, in general, very similar. There is no pattern of similar queries behaving differently
on different data sets.

7.3.4. Comparison between EPGM and TPGM Pattern Matching

Besides measuring run times for different queries and data graphs, it is interesting how the TPGM
operator’s performance compares to that of the EPGM operator. However, investigating this ques-
tion is beyond the scope of this thesis. Comparing the two operators is not trivial.

If one were to evaluate both operators, only non-temporal queries could be considered, as the
EPGM implementation is not able to process temporal GDL queries and TPGM graphs.

Another problem is that most optimizations implemented in this thesis focus on temporal queries.
Hence, for non-temporal queries, the only difference between the two operators are the property
values’ estimations (Sections 6.2.5 and 6.2.6) in the TPGM operator.

Junghanns et al. [28] already evaluated the EPGM pattern matching operator. Unfortunately, the
results can not be compared to the results obtained here. In [28], another data format was used to
store data and write results to. Moreover, many of Junghanns et al.’s [28] queries contained path
expressions. The queries used for evaluation here do not consider them, as they were not part of
the TPGM pattern matching implementation. The results obtained by Junghanns et al. [28] show
surprisingly fast run times. These run times, however, could not be reproduced using the evaluation
set up described in Section 7.1. Instead, the processing of the queries used by Junghanns et al., in
most cases, took significantly longer than processing the queries used here.
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8. Discussion

In this thesis, temporal pattern matching in Gradoop has been implemented. Gradoop’s query
language GDL was extended with several temporal data types and predicates. The existing EPGM
pattern matching implementation was modified to enable Gradoop to process temporal queries.
Moreover, two attempts at speeding up the operator’s run time were made: estimations for predicate
selectivities were provided and a query rewriting pipeline constructed.

All of these aspects leave room for improvement in future work.

Temporal predicates in GDL could be more expressive and flexible. For example, different time
zones can not be handled as of now. Furthermore, there are only 3 options to create a constant
time stamp, see Table 4.1. Another important aspect neglected in this thesis are temporal path
expressions, as pointed out in Section 4.7.

The query pipeline introduced in Section 6.1 may be improved, too. The inference transformation
(Section 6.1.7) only considers singleton temporal CNF clauses and could thus be refined to take
more aspects into consideration. Temporal Subsumption (Section 6.1.8) is rather simplistic. Here,
more sublime implications could be implemented. What is more, the pipeline ignores duration and
non-temporal property constraints.

Section 6.2 presented estimations for property values and structural properties. It also pointed
out the shortcomings of the chosen approach. Especially, the estimation of structural properties,
e.g. the number of distinct source/target vertices for a given edge, could be optimized. Other
sampling approaches, particularly structure-preserving ones, can be implemented and compared to
the provided Reservoir Sampling estimations. Also, more sophisticated methods to approximate
the distributions of property values might be conceived.
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A. Evaluation Data

The following lists all queries used in the evaluation and their measured run times.

A. LDBC Data

A.1. Queries

1 MATCH (p1:person)

Listing A.1: Query l0

1 MATCH (p1:person)-[l:likes]->(m)
2 WHERE l.tx_from >= 2012-06-01 AND
3 l.tx_from <= 2012-06-01T23:59:59 AND
4 m.tx_from >=2012-05-30 AND
5 m.tx_from <= 2012-06-01T23:59:59

Listing A.2: Query l1

1 MATCH (p1:person)-[l1:likes] ->(m)<-[l2:likes]-(p2:person)
2 WHERE l1.tx_from >= 2012-06-01 AND
3 l2.tx_from >= 2012-06-01 AND
4 l1.tx_from <= 2012-06-01T23:59:59 AND
5 l2.tx_from <= 2012-06-01T23:59:59 AND
6 p1.tx_to > 1970-01-01 AND
7 m.tx_from >= 2012-05-30 AND
8 m.tx_from <= 2012-06-01T23:59:59

Listing A.3: Query l2

1 MATCH (p:person)-[l:likes]->(c:comment)-[r:replyOf]->(post:post)
2 WHERE l.tx_from >= 2012-06-01 AND
3 l.tx_from <= 2012-06-01T23:59:59 AND
4 p.tx_to > 1970-01-01 AND
5 c.tx_from >= 2012-05-30 AND
6 c.tx_from <= 2012-06-01T23:59:59 AND
7 post.tx_from >= 2012-05-30 AND
8 post.tx_from <= 2012-06-01T23:59:59

Listing A.4: Query l3

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-01T23:59:59 AND
6 l2.tx_from <= 2012-06-01T23:59:59 AND
7 p1.tx_to > 1970-01-01 AND
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A. Evaluation Data

8 m.tx_from >= 2012-05-30 AND
9 m.tx_from <= 2012-06-01T23:59:59

Listing A.5: Query l4

1 MATCH (p1:person)-[l1:likes]->(c:comment)
2 (c)-[r:replyOf]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-01T23:59:59 AND
6 l2.tx_from <= 2012-06-01T23:59:59 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-05-30 AND
9 m.tx_from <= 2012-06-01T23:59:59 AND

10 c.tx_from >= 2012-05-30 AND
11 c.tx_from <= 2012-06-01T23:59:59

Listing A.6: Query l5

1 MATCH (p1:person)-[k1:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p3:person)
3 (p3)<-[k2:knows]-(p1)
4 WHERE l1.tx_from >= 2012-06-01 AND
5 l2.tx_from >= 2012-06-01 AND
6 l1.tx_from <=2012-06-01T23:59:59 AND
7 l2.tx_from <= 2012-06-01T23:59:59 AND
8 p1.tx_to > 1970-01-01 AND
9 m.tx_from >= 2012-05-30 AND

10 m.tx_from <= 2012-06-01T23:59:59

Listing A.7: Query l6

1 MATCH (p1:person)-[l1:likes]->(c1)
2 (c1)-[r1:replyOf]->(m)<-[r2:replyOf]-(c2)
3 (c2)<-[l2:likes]-(p1)
4 WHERE l1.tx_from >= 2012-06-01 AND
5 l2.tx_from >= 2012-06-01 AND
6 l1.tx_from <= 2012-06-01T23:59:59 AND
7 l2.tx_from <= 2012-06-01T23:59:59 AND
8 p1.tx_to > 1970-01-01 AND
9 m.tx_from >= 2012-05-30 AND

10 m.tx_from <= 2012-06-01T23:59:59 AND
11 c1.tx_from >= 2012-05-30 AND
12 c1.tx_from <= 2012-06-01T23:59:59 AND
13 c2.tx_from >= 2012-05-30 AND
14 c2.tx_from <= 2012-06-01T23:59:59

Listing A.8: Query l7

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
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A. LDBC Data

3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-07 AND
6 l2.tx_from <= 2012-06-07 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from <= 2012-06-07

Listing A.9: Query l4a (low)

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-07 AND
6 l2.tx_from <= 2012-06-07 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-02 AND

10 p1.browserUsed="Chrome" AND
11 p2.browserUsed="Chrome"

Listing A.10: Query l4a (middle)

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-02 AND
6 l2.tx_from <= 2012-06-02 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-02 AND

10 p1.browserUsed="Safari" AND
11 p2.browserUsed="Chrome"

Listing A.11: Query l4a (high)

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-28 AND
6 l2.tx_from <= 2012-06-28 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-28 AND

10 Interval(l1.tx_from, l2.tx_from).lengthAtMost(Hours(36)) AND
11 p1.gender=p2.gender

Listing A.12: Query l4b (low)
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1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-28 AND
6 l2.tx_from <= 2012-06-28 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-28 AND

10 Interval(l1.tx_from, l2.tx_from).lengthAtMost(Hours(1)) AND
11 p1.gender=p2.gender AND
12 p1.browserUsed=p2.browserUsed

Listing A.13: Query l4b (middle)

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-28 AND
6 l2.tx_from <= 2012-06-28 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-28 AND

10 Interval(l1.tx_from, l2.tx_from).lengthAtMost(Seconds(30)) AND
11 p1.gender=p2.gender AND
12 p1.browserUsed=p2.browserUsed AND
13 l1.tx_from < l2.tx_from

Listing A.14: Query l4b (high)

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-21 AND
6 l2.tx_from <= 2012-06-21 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-21 AND

10 Interval(l1.tx_from, l2.tx_from).lengthAtMost(Hours(96)) AND
11 p1.gender=p2.gender

Listing A.15: Query l4c (low)

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-10 AND
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A. LDBC Data

6 l2.tx_from <= 2012-06-10 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-10 AND

10 Interval(l1.tx_from, l2.tx_from).lengthAtMost(Hours(2)) AND
11 p1.gender=p2.gender AND
12 p1.browserUsed=p2.browserUsed

Listing A.16: Query l4c (middle)

1 MATCH (p1:person)-[k:knows]->(p2:person)
2 (p2)-[l1:likes]->(m)<-[l2:likes]-(p1)
3 WHERE l1.tx_from >= 2012-06-01 AND
4 l2.tx_from >= 2012-06-01 AND
5 l1.tx_from <= 2012-06-04 AND
6 l2.tx_from <= 2012-06-04 AND
7 p1.tx_to > 1970-01-01 AND
8 m.tx_from >= 2012-06-01 AND
9 m.tx_from < 2012-06-03 AND

10 Interval(l1.tx_from, l2.tx_from).lengthAtMost(Minutes(2)) AND
11 p1.gender=p2.gender AND
12 p1.browserUsed=p2.browserUsed

Listing A.17: Query l4c (high)

A.2. Cardinalities and Runtimes

SF1 SF10 SF100
l0 9892 65645 448626
l1 999 17353 211945
l2 17262 1076784 12582910
l3 353 5583 76301
l4 558 14059 222350
l5 9 47 608
l6 24880 1196184 22141686
l7 2 10 622

l4a (l) 54355 745551 12518290
l4a (m) 242 5448 84449
l4a (h) 0 39 807
l4b (l) 28781 438082 7455989
l4b (m) 364 5794 99895
l4b (h) 0 50 800
l4c (l) 36884 542353 9241786
l4c (m) 334 4428 73456
l4c (h) 1 12 231

Table A.1.: Cardinalities of LDBC queries
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SF1 SF10 SF100
l0 20 53 439
l1 20 78 763
l2 22 88 811
l3 22 87 828
l4 22 87 802
l5 22 92 818
l6 23 160 1721
l7 22 96 870

l4a (l) 24 118 1283
l4a (m) 23 88 794
l4a (h) 23 87 753
l4b (l) 26 151 1502
l4b (m) 25 102 896
l4b (h) 24 101 854
l4c (l) 27 157 1665
l4c (m) 24 97 816
l4c (h) 24 86 754

Table A.2.: Runtimes of LDBC queries (Parallelity 96)

6 12 24 48 96
l1 650 (1.) 332 (1.96) 174 (3.74) 108 (6.02) 81 (8.02)
l6 893 (1.) 469 (1.90) 312 (2.86) 225 (3.97) 173 (5.16)
l7 549 (1.) 312 (1.76) 176 (3.12) 117 (4.69) 99 (5.55)

l4a (h) 590 (1.) 286 (2.06) 170 (3.47) 110 (5.36) 85 (6.94)
l4b (h) 656 (1.) 381 (1.72) 225 (2.91) 142 (4.62) 107 (6.13)
l4c (h) 622 (1.) 324 (1.92) 161 (3.86) 110 (5.65) 87 (7.15)

Table A.3.: Runtimes and speedup of LDBC queries for different degrees of parallelity (SF10)

B. Citibike Data

B.1. Queries

1 MATCH (s1)

Listing A.18: Query c0

1 MATCH (s1)-[t]->(s2)
2 WHERE 2017-08-01 <= t.val_from AND
3 t.val_from <= 2017-08-01T23:59:59 AND
4 s1.tx_to>2020-01-01

Listing A.19: Query c1

1 MATCH (s1)-[t1]->(s1)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-01T23:59:59 AND
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B. Citibike Data

4 s1.tx_to>2020-01-01

Listing A.20: Query c2

1 MATCH (s1)-[t1]->(s2)<-[t2]-(s3)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-01T23:59:59 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-08-01T23:59:59 AND
6 s1.tx_to>2020-01-01

Listing A.21: Query c3

1 MATCH (s1)-[t1]->(s2)-[t2]->(s3)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-01T23:59:59 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-08-01T23:59:59 AND
6 s1.tx_to>2020-01-01|

Listing A.22: Query c4

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-01T23:59:59 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-08-01T23:59:59 AND
6 s1.tx_to>2020-01-01

Listing A.23: Query c5

1 MATCH (s1)-[t1]->(s2)-[t2]->(s3)<-[t3]-(s1)
2 WHERE 2017-08-01T12:00:00 <= t1.val_from AND
3 t1.val_from <= 2017-08-01T13:00:00 AND
4 2017-08-01T12:00:00 <= t2.val_from AND
5 t2.val_from <= 2017-08-01T13:00:00 AND
6 2017-08-01T12:00:00 <= t3.val_from AND
7 t3.val_from <= 2017-08-01T13:00:00 AND
8 s1.tx_to>2020-01-01

Listing A.24: Query c6

1 MATCH (s1)-[t1]->(s2)-[t2]->(s3)<-[t3]-(s4)
2 WHERE 2017-08-01T17:00:00 <= t1.val_from AND
3 t1.val_from <= 2017-08-01T18:30:00 AND
4 2017-08-01T17:00:00 <= t2.val_from AND
5 t2.val_from <= 2017-08-01T18:30:00 AND
6 2017-08-01T17:00:00 <= t3.val_from AND
7 t3.val_from <= 2017-08-01T18:30:00 AND
8 s1.tx_to>2020-01-01

Listing A.25: Query c7
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1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-08 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-08-08 AND
6 s1.capacity >= 50 AND
7 s2.capacity <= 25 AND
8 s3.capacity <= 25 AND
9 s1.tx_to>2020-01-01

Listing A.26: Query c5a (low)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-02 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-08-02 AND
6 s1.capacity >= 68 AND
7 s2.capacity <= 20 AND
8 s3.capacity <= 20 AND
9 s1.tx_to>2020-01-01

Listing A.27: Query c5a (middle)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01T09:00:00 <= t1.val_from AND
3 t1.val_from <= 2017-08-01T12:00:00 AND
4 2017-08-01T09:00:00 <= t2.val_from AND
5 t2.val_from <= 2017-08-01T12:00:00 AND
6 s1.capacity >= 75 AND
7 s2.capacity <= 18 AND
8 s3.capacity <= 18 AND
9 s1.tx_to>2020-01-01

Listing A.28: Query c5a (high)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-09-01 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-09-01 AND
6 t2.val_from > t1.val_from AND
7 Interval(t1.val_from, t2.val_from).lengthAtMost(Minutes(30)) AND
8 s1.capacity >= s2.capacity AND
9 s1.capacity >= s3.capacity AND

10 s1.tx_to>2020-01-01

Listing A.29: Query c5b (low)
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B. Citibike Data

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-09-01 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-09-01 AND
6 t2.val_from > t1.val_from AND
7 Interval(t1.val_from, t2.val_from).lengthAtMost(Minutes(7)) AND
8 s1.capacity = s2.capacity AND
9 s1.capacity > s3.capacity AND

10 s1.tx_to>2020-01-01

Listing A.30: Query c5b (middle)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-09-01 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-09-01 AND
6 t2.val_from > t1.val_from AND
7 Interval(t1.val_from, t2.val_from).lengthAtMost(Seconds(7)) AND
8 s1.capacity = s2.capacity AND
9 s1.capacity = s3.capacity AND

10 s1.tx_to>2020-01-01

Listing A.31: Query c5b (high)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-09-01 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-09-01 AND
6 t2.val_from > t1.val_from AND
7 Interval(t1.val_from, t2.val_from).lengthAtMost(Minutes(60)) AND
8 s1.capacity >= s2.capacity AND
9 s1.capacity >= s3.capacity AND

10 s1.capacity >= 25 AND
11 s2.capacity >= 25 AND
12 s3.capacity >= 25 AND
13 s1.tx_to>2020-01-01

Listing A.32: Query c5c (low)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-08 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-08-08 AND
6 t2.val_from > t1.val_from AND
7 Interval(t1.val_from, t2.val_from).lengthAtMost(Minutes(10)) AND
8 s1.capacity > s2.capacity AND

Lukas Christ
3756213

IX



A. Evaluation Data

9 s1.capacity > s3.capacity AND
10 s1.capacity >= 50 AND
11 s2.capacity >= 37 AND
12 s3.capacity >= 37 AND
13 s1.tx_to>2020-01-01

Listing A.33: Query c5c (middle)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE 2017-08-01 <= t1.val_from AND
3 t1.val_from <= 2017-08-02 AND
4 2017-08-01 <= t2.val_from AND
5 t2.val_from <= 2017-08-02 AND
6 t2.val_from > t1.val_from AND
7 Interval(t1.val_from, t2.val_from).lengthAtMost(Seconds(25)) AND
8 s1.capacity > s2.capacity AND
9 s1.capacity > s3.capacity AND

10 s1.capacity >= 55 AND
11 s2.capacity >= 42 AND
12 s3.capacity >= 42 AND
13 s1.tx_to>2020-01-01

Listing A.34: Query c5c (high)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE t1.val.lengthAtLeast(Seconds(0)) AND
3 t1.val.lengthAtMost(Hours(10)) AND
4 t2.val.lengthAtLeast(Seconds(0)) AND
5 t2.val.lengthAtMost(Hours(10)) AND
6 s1.capacity <= 50000 AND
7 s2.capacity <= 50000 AND
8 s3.capacity <= 500000 AND
9 s1.tx_to>2020-01-01 AND

10 2017-08-01 <= t1.val_from AND
11 t1.val_from <= 2017-08-08 AND
12 2017-08-01 <= t2.val_from AND
13 t2.val_from <= 2017-08-08 AND
14 s1.capacity >= 50 AND
15 s2.capacity <= 25 AND
16 s3.capacity <= 25

Listing A.35: Query c5a (redundancies)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE t1.val.lengthAtLeast(Seconds(0)) AND
3 t1.val.lengthAtMost(Hours(10)) AND
4 t2.val.lengthAtLeast(Seconds(0)) AND
5 t2.val.lengthAtMost(Hours(10)) AND
6 t2.starttime!=t1.starttime AND
7 Interval(t1.val_from, t2.val_from).lengthAtLeast(Seconds(0)) AND
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8 s1.id!=s2.id AND
9 s1.id!=s3.id AND

10 2017-08-01 <= t1.val_from AND
11 t1.val_from <= 2017-09-01 AND
12 2017-08-01 <= t2.val_from AND
13 t2.val_from <= 2017-09-01 AND
14 t2.val_from > t1.val_from AND
15 Interval(t1.val_from, t2.val_from).lengthAtMost(Minutes(30)) AND
16 s1.capacity >= s2.capacity AND
17 s1.capacity >= s3.capacity AND
18 s1.tx_to>2020-01-01

Listing A.36: Query c5b (redundancies)

1 MATCH (s3)<-[t2]-(s1)-[t1]->(s2)
2 WHERE t1.val.lengthAtLeast(Seconds(0)) AND
3 t1.val.lengthAtMost(Hours(10)) AND
4 t2.val.lengthAtLeast(Seconds(0)) AND
5 t2.val.lengthAtMost(Hours(10)) AND
6 t2.starttime!=t1.starttime AND
7 Interval(t1.val_from, t2.val_from).lengthAtLeast(Seconds(0)) AND
8 s1.id!=s2.id AND
9 s1.id!=s3.id AND

10 s1.capacity <= 50000 AND
11 s2.capacity <= 50000 AND
12 s3.capacity <= 500000 AND
13 s1.tx_to>2020-01-01 AND
14 2017-08-01 <= t1.val_from AND
15 t1.val_from <= 2017-09-01 AND
16 2017-08-01 <= t2.val_from AND
17 t2.val_from <= 2017-09-01 AND
18 t2.val_from > t1.val_from AND
19 Interval(t1.val_from, t2.val_from).lengthAtMost(Minutes(60)) AND
20 s1.capacity >= s2.capacity AND
21 s1.capacity >= s3.capacity AND
22 s1.capacity >= 25 AND
23 s2.capacity >= 25 AND
24 s3.capacity >= 25 AND
25 s1.tx_to>2020-01-01

Listing A.37: Query c5b (redundancies)
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B.2. Cardinalities and Runtimes

SF1 SF10 SF100
c0 - - 1174
c1 632 6668 65462
c2 - - 1215
c3 1124 130382 12294676
c4 1088 129410 12311535
c5 - - 12267234
c6 - - 14254172
c7 15 19164 14633859

c5a (l) - - 5117478
c5a (m) 6 504 43136

c5a (h) = c5a - - 162
c5b (l) - - 4868340
c5b (m) 4 363 37247

c5b (h) = c5b - - 229
c5c (l) - - 4832533
c5c (m) 5 538 47751

c5c (h) = c5c - - 235
Table A.4.: Cardinalities of citibike queries

SF1 SF10 SF100
c0 - - 42
c1 14 18 64
c2 - - 68
c3 15 26 300
c4 15 22 289
c5 - - 293
c6 - - 67
c7 15 21 441

c5a (l) = c5a - - 228
c5a (redund.) - - 234

c5a (m) 15 19 70
c5a (h) - - 67

c5b (l) = c5b - - 1098
c5b (redund.) - - 1403

c5b (m) 15 19 931
c5b (h) - - 110

c5c (l) = c5c - - 792
c5c (redund.) - - 1014

c5c (m) 15 19 76
c5c (h) - - 66

Table A.5.: Runtimes of citibike queries (Parallelity 96)
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6 12 24 48 96
c1 410 (1.) 214 (1.92) 135 (3.04) 80 (5.13) 64 (6.41)
c6 518 (1.) 267 (1.94) 169 (3.07) 99 (5.23) 67 (7.73)

c5a (h) 494 (1.) 292 (1.69) 176 (2.81) 98 (5.04) 67 (7.37)
c5b (h) 683 (1.) 381 (1.79) 267 (2.56) 175 (3.90) 106 (6.44)
c5c (h) 450 (1.) 236 (1.91) 139 (3.24) 88 (5.11) 66 (6.82)

Table A.6.: Runtimes and speedup of citibike queries for different degrees of parallelity (SF100)
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B. User Guide to Temporal Pattern Matching
B. User Guide to Temporal Pattern Matching

A. Pattern Matching in GrALa

To execute a temporal query, the match function must be invoked on the data graph. The data graph
is an instance of TemporalGraph.java. Currently, the API provides several versions of match:

• TemporalGraphCollection query(String query)

Execute the GDL query given in query on the caller without using statistics12. The matching
paradigm is isomorphism.

• TemporalGraphCollection query(String query, String constructionPattern)

Execute the GDL query given in query on the caller without using statistics. Use the pattern
constructionPattern to transform the results. The matching paradigm is isomorphism.

• TemporalGraphCollection query(String query,

TemporalGraphStatistics graphStatistics)

Execute the GDL query given in query on the caller using the statistics provided by
graphStatistics. The matching paradigm is isomorphism.

• TemporalGraphCollection query(String query, String constructionPattern,

TemporalGraphStatistics graphStatistics)

Execute the GDL query given in query on the caller using the statistics provided by
graphStatistics. Use the pattern constructionPattern to transform the results. The
matching paradigm is isomorphism.

• TemporalGraphCollection query(String query, String constructionPattern,

TemporalGraphStatistics graphStatistics)

Execute the GDL query given in query on the caller using the statistics provided by
graphStatistics. Use the pattern constructionPattern to transform the results. The
matching paradigm is isomorphism.

• TemporalGraphCollection query(String query, boolean attachData,

MatchStrategy vertexStrategy,MatchStrategy edgeStrategy,

TemporalGraphStatistics graphStatistics)

Execute the GDL query given in query on the caller using the statistics provided by
graphStatistics. The matching paradigm is set by verbStrategy and edgeStrategy. This
allows a combination of homo- and isomorphism, e.g. vertices could be matched by homo-
morphism and edges by isomorphism. The parameter attachData determines whether data
from the data graph should actually be retrieved (by default, this is done).

12technically, statistics that set every estimation to a default value are used
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• TemporalGraphCollection query(String query, String constructionPattern,

boolean attachData, MatchStrategy vertexStrategy,

MatchStrategy edgeStrategy, TemporalGraphStatistics stats)

Execute the GDL query given in query on the caller using the statistics provided by
graphStatistics. Use the pattern constructionPattern to transform the results. The
matching paradigm is set by verbStrategy and edgeStrategy. This allows a combination of
homo- and isomorphism, e.g. vertices could be matched by homomorphism and edges by iso-
morphism. The parameter attachData determines whether data from the data graph should
actually be retrieved (by default, this is done).

As of now, there is only one reasonable implementation of
TemporalGraphStatistics.java that can be used for stats:
BinningTemporalGraphStatistics.java. To create an instance, first a
BinningTemporalGraphStatisticsFactory must be created. This is done simply by calling the
default constructor BinningTemporalGraphStatisticsFactory(). There are four possibilites to
create a statistics object with such a factory, as explained in Section 6.2.9:

• fromGraph(TemporalGraph g)

Create binning statistics for the graph. Consider every property. The default maximum sample
size for reservoir samples is 5000.

• fromGraph(TemporalGraph g, Set<String> numericalProperties,

Set<String> categoricalProperties)

Create binning statistics for the graph, but consider only the specified properties. The default
maximum sample size for reservoir samples is 5000.

• fromGraphWithSampling(TemporalGraph g, int sampleSize)

Create binning statistics for the graph. Consider every property. The maximum sample size
is set to sampleSize.

• fromGraphWithSampling(TemporalGraph g, int sampleSize,

Set<String> numericalProperties, Set<String> categoricalProperties)

Create binning statistics for the graph, but consider only the specified properties. The maxi-
mum sample size is set to sampleSize.

B. Syntax (Overview)

Most of the following tables can also be found in Section 4. They are assembled here again in order
to serve as a command reference.
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Type Syntax Remarks
valid-from (variable) variable.val_from
valid-to (variable) variable.val_to
tx-from (variable) variable.tx_from
tx-to (variable) variable.tx_to

valid-from (global) val_from
implicitly adds
val-from ≤ val-to

valid-to (global) val_to
implicitly adds
val-from ≤ val-to

tx-from (global) tx_from
implicitly adds
tx-from ≤ tx-to

tx-to (global) tx_to
implicitly adds
tx-from ≤ tx-to

Datetime Literal Timestamp(YYYY-MM-DDThh:mm:ss)
Date Literal Timestamp(YYYY-MM-DD) sets time to 00:00:00

Minimum MIN(t1,...,tn)
n ≥ 2, no nesting of
MIN/MAX

Maximum MAX(t1,...,tn)
n ≥ 2, no nesting of
MIN /MAX

Table B.1.: Options to create time stamps in GDL queries

Type Syntax Remarks
tx interval (variable) var.tx

valid interval (variable) var.val

tx interval (global) tx
implicitly adds
tx-from ≤ tx-to

valid interval (global) val
implicitly adds
val-from ≤ val-to

custom interval Interval(t1, t2)
t1, t2 time stamps, creates [t1, t2 ],
implicitly adds t1 ≤ t2

merge interval i1.merge(i2)
implicitly adds constraints
enforcing overlap of i1 and i2

join interval i1.join(i2)
implicitly adds constraints
enforcing overlap of i1 and i2

Table B.2.: Options to create intervals in GDL queries

Syntax Semantics
t1 < / <= / = / != / >= / > t2 t1 < / ≤ / = / 6= / ≥ / > t2
t1.before(t2) t1 < t2
t1.after(t2) t1 > t2
t1.precedes(i) t1 < ifrom
t1.after(i) t1 > ito
i.contains(t1) ifrom ≤ t ≤ ito
i.fromTo(t1, t2) ifrom < t2 ∧ ito > t1
i.between(t1, t2) ifrom ≤ t2 ∧ ito > t1
Table B.3.: Comparisons involving time stamps in GDL queries
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GDL Predicate Semantics
i1.overlaps(i2) max{a, c} < min{b, d}
i1.contains(i2) a ≤ c ∧ b ≥ d
i1.precedes(i2) b ≤ c
i1.succeeds(i2) b ≤ c
i1.equals(i2) a = b ∧ c = d

i1.immediatelyPrecedes(i2) b = c

i1.immediatelySucceeds(i2) a = d

Table B.4.: Interval relations in GDL: i1 = [a, b], i2 = [c, d]

Duration Syntax
duration of interval i (syntax of i as described in Section 4.2)
n milliseconds Millis(n)
n minutes Minutes(n)
n hours Hours(n)
n days Days(n)

Table B.5.: Options to create durations in GDL queries

Syntax Semantics
i1.longerThan(i2) length(i1) > length(i2)
i1.lengthAtLeast(i2) length(i1) ≥ length(i2)
i1.shorterThan(i2) length(i1) < length(i2)
i1.lengthAtMost(i2) length(i1) ≤ length(i2)

Table B.6.: Options to compare durations in GDL queries
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