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ABSTRACT
Extracting information from graphs, from finding shortest
paths to complex graph mining, is essential for many ap-
plications. Due to the shear size of modern graphs (e.g.,
social networks), processing must be done on large paral-
lel computing infrastructures (e.g., the cloud). Earlier ap-
proaches relied on the MapReduce framework, which was
proved inadequate for graph algorithms. More recently, the
message passing model (e.g., Pregel) has emerged. Although
the Pregel model has many advantages, it is agnostic to the
graph properties and the architecture of the underlying com-
puting infrastructure, leading to suboptimal performance.

In this paper, we propose Mizan, a layer between the users’
code and the computing infrastructure. Mizan considers the
structure of the input graph and the architecture of the in-
frastructure in order to: (i) decide whether it is beneficial to
generate a near-optimal partitioning of the graph in a pre-
processing step, and (ii) choose between typical point-to-
point message passing and a novel approach that puts com-
puting nodes in a virtual overlay ring. We deployed Mizan
on a small local Linux cluster, on the cloud (256 virtual
machines in Amazon EC2), and on an IBM Blue Gene/P
supercomputer (1024 CPUs). We show that Mizan executes
common algorithms on very large graphs 1-2 orders of mag-
nitude faster than MapReduce-based implementations and
up to one order of magnitude faster than implementations
relying on Pregel-like hash-based graph partitioning.

1. INTRODUCTION
Graphs model complex relationships among objects in a

variety of applications, such as social networks (such as Face-
book and Twitter), the Internet web, biology (e.g., protein-
protein interaction), and public health (e.g., spread of epi-
demics). Many of these applications require very large graphs,
containing hundreds of millions to billions of edges. Because
of their shear size, processing such graphs is very expensive
and must be performed on large parallel computing infras-
tructures. This applies to complex graph mining operators
(e.g., finding frequent subgraphs) as well as to simpler oper-
ators (e.g., calculating the PageRank or finding single-source
shortest paths).

A variety of parallel systems are used for processing graphs,
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ranging from large proprietary infrastructures (e.g., Yahoo!
M45 supercomputer) to general purpose Linux clusters, where
cloud computing (e.g., Amazon’s EC2) has recently emerged
as a cost-effective alternative. Unfortunately, it is extremely
difficult to implement efficient and scalable parallel graph al-
gorithms, especially when scheduling issues and failures are
taken into account.

To alleviate this problem, several frameworks have been
developed. HADI [10], PEGASUS [11] and X-RIME [24] uti-
lize the MapReduce paradigm to implement common graph
mining operators. MapReduce is easy to program and takes
care of scheduling and failures. However, MapReduce is not
efficient for graph algorithms because it is a functional pro-
gramming model that requires transferring the status of the
entire graph between iterations. Recently, the Pregel [16]
programming paradigm has been proposed to minimize this
problem. Pregel is based on message passing: at each iter-
ation, every graph node computes its status independently
and either sends messages to other nodes or becomes inac-
tive. These messages are received in the next iteration. The
process continues until all nodes are inactive. Graph algo-
rithms can be implemented more efficiently in Pregel than
MapReduce because, between iterations, Pregel transfers on-
ly the necessary messages for status updates instead of the
entire graph status.

Despite its advantages, Pregel has two limitations. First,
it is agnostic to the properties of the input graph. Consider
a power-law graph and the PageRank operator. By default,
Pregel will use a hash function to partition the graph nodes
among processing elements (PEs1). Because the graph is
power-law, some PEs will be assigned high-degree nodes and
will receive exponentially more messages than the others,
leading to workload imbalance. Even if Pregel attempts to
reshuffle the data, with high probability, many high-degree
nodes will reside in different PEs than their neighbors. This
will cause significant network communication overhead due
to the exchange of messages. Second, Pregel is agnostic to
the architecture of the underlying computing infrastructure.
Consider again the PageRank operator, but with a more uni-
form graph. Each node will send the same message to many
others, residing across different PEs. Because of the topolo-
gy of the communication network, point-to-point communi-
cation between several pairs of PEs may be routed through
the same physical link. Consequently, the same message will
be transmitted several times, overloading the physical link.

Motivated by these limitations, we developed Mizan. As
shown in Figure 1, Mizan is a layer between the implementa-
tion of the graph processing algorithm and the physical com-

1We use the term processing element (PE) for the computing
nodes of the physical infrastructure to avoid confusion with
the graph nodes.
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Figure 1: Mizan overview

puting infrastructure. Mizan minimizes the execution time
of the graph algorithm by (i) appropriate partitioning of
graph nodes over PEs, and (ii) appropriate implementation
of the message passing mechanism.

The first component of Mizan is the optimizer. It gathers
statistics from the input and estimates whether the graph
is close to power-law. There are two cases. The first case
is when the graph resembles the power-law distribution.
Mizan-α is invoked. Mizan-α runs a minimum-cut algorithm
to partition the graph in as many partitions as the available
PEs. Processing then continues in a Pregel-like fashion, with
point-to-point message passing. Intuitively, by minimizing
the edges that cross different PEs, most message passing
is done locally within each PE using fast in-memory oper-
ations, whereas the physical network is accessed only for
edges between different PEs. Although the minimum-cut al-
gorithm is not new, other systems have avoided it because
of its high computational cost. However, we show that if the
optimizer’s decision is correct, the execution of the user’s
code is much faster. Therefore, the total time of finding the
minimum-cut and executing the user’s code is almost twice
as fast in the worst case, and up to 9 times faster, when
compared to hash-based partitioning.

The second case is when the graph distribution is far from
power-law. The overhead of the minimum-cut partitioning
cannot be justified by the potential gains. In this case, the
optimizer invokes Mizan-γ, which works with any random
graph partitioning. Mizan-γ constructs a virtual overlay ring
between the PEs. Every message is transmitted only once,
must go around the entire ring, and can be used by any
PE. Intuitively, Mizan-γ minimizes the replicas of a mes-
sage transmitted through a physical link; the trade-off is
increased latency. We show that, if the optimizer’s decision
is correct, Mizan-γ is up to one order of magnitude faster
compared to point-to-point message passing.

Although Mizan resembles traditional query optimization
in relational databases, there is an important difference. A
typical DBMS contains several implementations of an opera-
tor (e.g., nested-loop and hash-based join); the user requests
the specific operator (e.g., join) and the optimizer chooses
one of the available implementations. In our case, the user
must provide the code for the graph processing algorithm,
whereas Mizan decides the distribution of the data and mes-
sage passing mechanism.

Mizan supports the Bulk Synchronous Parallel model [23].
It is, thus, as versatile as Pregel, but Pregel is not a prereq-
uisite. Mizan exposes its own API, which can be accessed
directly and provides to the user finer control over the inter-
and intra-PE operations. Mizan supports a variety of parallel
computing infrastructures. We have deployed it successfully
on a small in-house Linux cluster, on Amazon EC2 with hun-
dreds of virtual machines, and on a large IBM Blue Gene/P

supercomputer with thousands of computing nodes.
Our contributions are:

• We propose Mizan, a framework that supports the par-
allel implementation of graph processing algorithms,
such as shortest-paths, PageRank, diameter estima-
tion, and complex graph mining.

• We implement: (i) Mizan-α, a point-to-point message
passing mechanism with optimized partitioning, suit-
able for power-law-like graphs; (ii) Mizan-γ, an overlay
ring message passing mechanism, optimized for non-
power-law graphs; and (iii) an optimizer to decide be-
tween Mizan-α and Mizan-γ.

• We deploy Mizan on a local Linux cluster (16 ma-
chines), on a cloud environment (Amazon EC2, 256
virtual machines) and on a supercomputer (IBM Blue Gene/P,
1024 CPUs).

• We experiment with large real and synthetic graphs.
We demonstrate that Mizan is orders of magnitude
faster than MapReduce based implementations, and
up to 1 order of magnitude faster than implementa-
tions based on Pregel-style hash-based partitioning.

The rest of the paper is organized as follows. Section 2
presents the required background. Section 3 describes our
system, Mizan, followed by case studies in Section 4. Sec-
tion 5 contains the experimental evaluation. Section 6 presents
the related work and Section 7 concludes the paper.

2. BACKGROUND
This section presents two common approaches for imple-

menting large scale parallel graph algorithms: the MapRe-
duce framework and the Message Passing model.

2.1 MapReduce for Graphs
The MapReduce [7] framework allows the implementation

of large scale parallel algorithms and has been used exten-
sively for graph algorithms. HADI [10], for instance, imple-
ments graph diameter estimation on top of Hadoop [1]. PE-
GASUS [11] also uses Hadoop to implement a distributed
generalization of the block matrix vector multiplication al-
gorithm (GIM-V). On top of GIM-V, PEGASUS implements
a variety of graph mining algorithms, including PageRank
and diameter estimation.

Figure 2 shows a typical trace of PageRank on MapReduce
for a graph with 5 nodes. It is an iterative algorithm, which
stops when the calculated PageRank values converge. Each
PageRank iteration requires two MapReduce phases. Phase-
1 reads the structure of the graph (i.e., 〈source, destination〉
pairs), together with the initial PageRank values of the nodes
in the form 〈nodeID, value〉. The input is mapped to reduc-
ers using a simple hash function H(nodeID) = b(nodeID−
1)/2c. The output contains the initial 〈nodeID, value〉 pairs
and the transfer of information. for instance 〈3, f(v2)〉 corre-
sponds to edge 3→ 2. The output is written on the network
file system (HDFS for Hadoop), and is read again by the
mappers in phase-2. The second phase groups together the
partial values for each node and the reducers compute the
new PageRank values. The output is written on the HDFS
and is used as input for the next iteration of PageRank.

The example demonstrates several drawbacks of using MapRe-
duce for graph algorithms:
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Figure 2: PageRank on MapReduce with 3 mappers
and 3 reducers. Each PageRank iteration requires
two MapReduce phases.

Disk intensive. The input of each MapReduce job must
be read from the disk and the output must be written on
disk. This is inefficient especially if deployed in the cloud,
where many virtual machines share a disk, either locally or
through a shared network channel.

Iterative computation model. The previous problem is
amplified by the fact that many graph algorithms require
many iterations and each iteration can be translated to mul-
tiple MapReduce phases. Moreover, the status of the entire
graph, together with the graph structure must be transferred
between iterations.

Poor data locality. Data is scattered and recombined fre-
quently. For example, at the end of phase-1 node 1 is scat-
tered across three machines, but in phase-2, it is recombined
to one reducer. This is a recurring cost since it is repeated
in every iteration of the graph algorithm.

Graph agnostic. Typically, graph algorithms propagate
information along the graph edges. Therefore, high-degree
nodes tend to send or receive most of the information. MapRe-
duce does not take this into account, leading to workload
imbalance, especially for graphs resembling power-law. For
example, reducer-1 in phase-2 is assigned much more work
compared to reducer-3, causing the entire system to delay.

2.2 Message Passing Model: Pregel
Pregel [16] is a framework designed specifically for imple-

menting graph algorithms on large parallel computing in-
frastructures. Pregel is inspired by the Bulk Synchronous
Parallel model [23], where algorithms are executed in multi-
ple stages separated by synchronization barriers and infor-
mation is propagated by sending messages between stages.
In Pregel, each graph node corresponds to an object that can
receive messages, execute a local algorithm and send mes-
sages. Initially, all nodes are active. At iteration k, each node
ui receives the messages that have been sent to it at the pre-
vious iteration k − 1, performs local computations and may
send messages to other nodes; these messages will reach their
destination at iteration k + 1. ui may then change its sta-
tus to inactive. The process is repeated for more iterations,
until all nodes become inactive.

Pregel solves some of MapReduce’s drawbacks. First, it is
less disk-intensive because the graph is loaded in the main
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Figure 3: Different graph partitionings: (a) Input
graph; (b) Hash-based, 8 edges cross PEs; (c) Mizan-
α, only 4 edges cross PEs.

memory of the PEs and only the final result is written back
to the disk.2 Second, it replaces the iterative computation
model with the message passing model. Therefore, instead
of transferring the entire status of the graph, only updates
are propagated between iterations. Third, data locality is
improved because all information of a specific node is kept
in the same PE; moving information is performed only if
necessary for load balancing.

Similar to MapReduce, Pregel is graph agnostic. By de-
fault, it uses a hash function that is based on node IDs to
distribute graph nodes to PEs, ignoring the structure of the
graph. This significantly affects the cost of the message pass-
ing model. In the following section, we will discuss how our
system, Mizan, utilizes the structure of the graph to decide
the data placement and the message passing mechanism.

3. MIZAN
Mizan is similar to Pregel in the sense that it uses mes-

sage passing and implements an instance of the Bulk Syn-
chronous Parallel model. Mizan exposes an API with four
functions: (i) initialize assigns initial values to the nodes
and edges; (ii) compute executes local computation for each
graph node; (iii) sendMessage is used by a node ui to send a
message to a node uj ; (iv) testTerminate is the user-defined
condition for the termination of the graph algorithm. Since
Mizan follows a Bulk Synchronous Parallel model, there are
synchronization barriers between iterations; therefore a mes-
sage sent at iteration k is received at iteration k + 1.

Mizan can be used autonomously, as an alternative to
Pregel. However, Mizan complements the message passing
model by adding awareness of the graph structure, and the
architecture of the underlying message passing mechanism.
Therefore, Mizan corresponds to a layer between the graph
algorithm (which may be expressed in Pregel) and the com-
puting infrastructure (see Figure 1). This section describes
Mizan’s three main components: (i) Mizan-α, which dis-
tributes graph nodes to PEs in a near-optimal way, follows
point-to-point message passing, and is suitable for power-
law-like graphs; (ii) Mizan-γ, which supports random as-
signment of nodes to PEs, implements a novel message-
passing approach using a virtual overlay ring, and is suitable
for non-power-law graphs; (iii) the optimizer that decides
between Mizan-α and Mizan-γ guided by the graph proper-
ties and knowledge of the message passing mechanism.

3.1 Mizan Alpha
Pregel-like systems assign graph nodes to PEs using a

hash function H(nodeID). Typical graph algorithms propa-

2Checkpoints can also be written on disk for failure recovery.
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Figure 4: Node replication reduces cost. (a) Original
partitioning. (b) Nodes u1 and u9 are replicated.

gate information along graph edges. Assuming roughly uni-
form distribution of node degrees, hash-based partitioning
results in balanced workload among PEs. However, this as-
sumption does not hold for many real graphs. Social net-
works, for instance, are usually power-law graphs. In such
cases, hash-based partitioning results in significant commu-
nication because of many edges crossing PEs. A number of
studies [3, 9, 22] have shown that communication cost is the
dominant factor affecting scalability in cloud environments.
This explains the performance deterioration for power-law
graphs with hash-based partitioning.

3.1.1 Minimum-cut Partitioning
Motivated by the problem mentioned above, Mizan-α em-

ploys an m-way minimum-cut algorithm to partition the
graph in m subgraphs, where m is the number of PEs, such
that the number of edges that cross partitions is minimized.
An example is shown in Figure 3, where assuming 3 PEs,
hash-based partitioning (H(nodeID) = b(nodeID − 1)/3c)
results in 8 edges crossing PEs. Mizan-α, on the other hand,
generates better partitioning with only 4 edges crossing PEs.
Edges that are inside a single PE do not introduce signif-
icant message passing overhead, because messages are de-
livered with simple in-memory operations. Only those edges
that cross PEs need to access the communication network.
Therefore, by minimizing such edges, Mizan-α achieves sig-
nificant performance improvement.

Computing the optimal minimum-cut is NP-hard, so we
employ METIS [13], a heuristic multi-level graph partition-
ing algorithm. Intuitively, METIS groups strongly connected
nodes into a single subgraph. The algorithm works in one or
more stages. Each stage reduces the size of the graph by col-
lapsing vertices and edges, partitions the smaller graph, then
maps back and refines this partition of the original graph.
In our system, we use the parallel version of the algorithm,
called ParMETIS [12].

3.1.2 Node Replication
Although the minimum-cut partitioning minimizes the num-

ber of edges that cross PEs, there still exist problematic hub
nodes. Consider the partitioning in Figure 4(a), where nodes
u1 and u9 are hubs. Irrespective of which partition these
nodes belong to, there will be a large number of edges cross-
ing PEs. Mizan-α solves this problem by replicating such
nodes to multiple PEs. In Figure 4(b), node u1 is replicat-
ed to partitions 2 and 3, whereas node u9 is replicated to
partition 1. Therefore, the number of edges that cross PEs
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Figure 5: Minimum-cut versus hash-based partition-
ing. The gain is much higher for (a), which is a
power-law graph, when compared to the random
graph in (b).
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Figure 6: Node replication reduces significantly the
number of edges that cross PEs, both for (a) power-
law and (b) random graphs.

decreases from 10 to only 3.
If the user function (i.e., the implementation of the com-

pute API function) is distributive (e.g., min, max, sum,
PageRank, graph diameter, etc) or algebraic (e.g., average),
partial computation can be done in the replicas. This max-
imizes the advantage of replication. On the other hand, if
the function is holistic (e.g., median) the replica acts on-
ly as communication aggregator that packs all related mes-
sages to one super-message. The user sets a flag to indicate
if partial computation is permitted.

Intuitively, node replication is similar to Pregel’s combin-
ers. However, for the case of distributive or algebraic func-
tions, Pregel’s combiners require the user to know the ac-
tual placement of nodes to PEs and perform the replication
manually. Mizan-α automates this in a transparent way.

3.1.3 Discussion
The trade-off in using the minimum-cut algorithm is its

high computational cost. The benefit depends on the prop-
erties of the graph. In Figure 5, we show the number of edges
that cross PEs over the total number of edges for a power-law
(web-Google) and a random (KG1) graph.3 For web-Google,
minimum-cut reduces the number of edges that cross PEs by
roughly 95% compared to hash-based partitioning. For KG1,
on the other hand, the gain is about 20%. In Section 5, we
will show that if the graph resembles the power-law distri-
bution, then the total cost of computing the minimum-cut
and executing the user’s code is lower than using hash-based
partitioning

Node replication, on the other hand, is always beneficial.
The computational overhead of replication is very low. At
the same time, as shown in Figure 6, the benefit is up to 50%

3Refer to Section 5 for details of the experimental setup.
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Figure 7: Two physical servers with three virtu-
al machines in EC2. (a) Point-to-point. (b) Ring
(PE1 → PE2 → PE3 → PE1) communication.

for web-Google and 29% for KG1. The experiment assumes
that the minimum-cut algorithm has already been applied.
The “saw-teeth” shape in Figure 6(a) is due to the random-
ization step of the METIS heuristic, which results in vari-
ability when the number of partitions changes. Interestingly,
node replication smoothes the variability.

3.2 Mizan Gamma
Mizan-α significantly decreases the execution time for power-

law graphs. However, if the graph is not power-law, Mizan-α
is slower than Pregel-like systems with hash-based partition-
ing, because of the cost of the minimum-cut algorithm. Mo-
tivated by this, we developed Mizan-γ, a system that sup-
ports any random partitioning of the data, thus eliminating
the cost of pre-processing.

3.2.1 Overlay Ring for Message Passing
Observe that, if random partitioning is coupled with a typ-

ical point-to-point message passing mechanism, the commu-
nication cost will overwhelm the system [3,9,22]. To address
this problem, Mizan-γ implements a novel message passing
approach, based on an overlay ring. Assume there are m
processing elements, PE1 . . . PEm. Mizan-γ arranges them
into a virtual overlay ring PE1 → PE2 → . . .→ PEm−1 →
PEm → PE1, such that each PE receives messages only
from its predecessor and sends messages only to its succes-
sor. Each message M is inserted in the ring and travels a
full round along the ring. M does not have a specific PE
destination. Instead, M pass through all PEs and it is used
by those PEs that include graph nodes that need M .

Consider the example of Figure 7, which depicts 3 PEs in
the cloud, each corresponding to a virtual machine (VM). In
cloud environments, it is common to host multiple VMs in
the same physical server; in our example there are two phys-
ical servers. Assume PE1 needs to send the same message
M to PE2 and PE3, and consider the point-to-point mech-
anism in Figure 7(a). PE1 sends two copies of M that travel
through the same physical link and arrive at server 2. If all
3 PEs need to communicate with each other, then six mes-
sages will be sent (2 per PE). For server 1, its outgoing phys-
ical link will be shared across the two messages. For server
2, two of the messages (PE2 → PE3 and PE3 → PE2) will
be passed through local memory copies (by the underlying
hypervisor) and the other two messages (PE2 → PE1 and
PE3 → PE1) will be sent through the physical link. Now
consider the ring topology PE1 → PE2 → PE3 → PE1 in
Figure 7(b). PE1 sends M to PE2 through the physical link.
PE2 uses M locally and also forwards it to PE3. This too
will be through memory copies. Finally, PE3 → PE1 will

send a message on the outgoing link of server 2. Overall,
a ring mechanism pipelines messages in a predictable way,
while improving the sharing of physical links across PEs.

The overlay ring reduces the cost in three ways: (i) It re-
duces the number of messages sent over physical links. In
the worst case, a poorly constructed ring sends messages
proportional to the number of PEs on a physical machine,
where as a point-to-point mechanism sends N -1 messages
(where N is the number of PEs in the system); (ii) It re-
quires only two communication threads (to predecessor and
successor) per PE. Traditional point-to-point approaches re-
quire multiple threads to handle communication by multiple
PEs, which results in high CPU cost, especially in large scale
deployments with a lot of PEs; (iii) Since each message M
travels around the entire ring, M does not need to specify
the destination PE, enabling the dynamic redistribution of
graph nodes to PEs without overhead of bookkeeping.

3.2.2 Discussion
The trade-off of Mizan-γ is latency because a message

M may need to traverse the entire ring before reaching its
destination. If many PEs need M , as is the case for non-
power-law graphs, then the total cost saving is more than
the cost introduced by the increased latency. If, however,
few PEs need M (e.g., power-law graphs), then Mizan-γ is
not appropriate because latency dominates the cost.

The available hardware infrastructure also affects the per-
formance of Mizan-γ. In cloud environments, Mizan-γ re-
duces the number of required messages on the underlying
network fabric. In other architectures the potential benefit
can be much higher. For example, if there is hardware sup-
port for efficient multicast or broadcast operations, Mizan-γ
can use them to further reduce the communication cost. As
another example, we deployed Mizan-γ on an IBM Blue Gene/P
supercomputer, which has 3-dimensional torus network topol-
ogy. A link in Mizan’s virtual ring corresponds to an individ-
ual physical link in Blue Gene/P, therefore network conges-
tion is minimized. Although this is an exotic architecture,
mainstream systems nowadays have similar capabilities. For
instance, in the market there are affordable network cards
(e.g., Infiniband) that support remote direct memory access
(RDMA) and can be used to implement efficiently the ring
topology.

3.3 Mizan Optimizer
From the previous discussion it is clear that Mizan-α is

more suitable for graphs that are roughly power-law, where-
as Mizan-γ is more appropriate for other graph types. There-
fore, it is important to distinguish whether the input graph
is power-law.

A random sample x that follows the power-law has proba-
bility distribution p(x) ∝ x−α, ∀x ≥ xmin, where α and xmin
are constants. To decide if an input graph follows power-law
distribution, α and xmin are estimated for the edge degree
distribution and tested against the theoretical behavior of a
power-law distribution with similar α and xmin values. This
problem is known as empirical data fitting, and generates
a p-value to represent the fitting goodness of the empirical
data on the theoretical distribution.

We developed an optimizer to select between Mizan-α and
Mizan-γ by following the work of Clauset et al. [6] for power-
law empirical data fitting. The optimizer works as follows.
First, it reads a random sample of the graph nodes. Then
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1 Node i n i t i a l i z e ( node graphNode )
2 Assign Random Bitmask to node
3

4 Map compute ( L i s t inputEdge , Map curData )
5 Map newData
6 f o r ( a l l edges in inputEdge )
7 Apply b i twi se−or and save r e s u l t in newData
8 re turn newData ;
9

10 void sendMessage ( L i s t inputEdge ,Map oldData )
11 send bitmask to a l l ne ighbours
12

13 boolean testTerminate (Map curData , Map newData )
14 i f ( curData != newData ) then return f a l s e
15 e l s e re turn true ;

Listing 1: Diameter Estimation in Mizan

it calculates the edge degree (i.e., inDegree + outDegree)
distribution for the input sample and represents it as a set of
probabilities. The probability for each distinct edge degree
distribution is calculated by the number of its occurrences
in the sample data over the total count of the sampled data:
|degreei|/|xsamples|. After that, xmin is estimated by solving
the optimization problem of maximizing:

Dx = maxx≥xmin |S(x)− P (x)|, (1)

where Dx is the distance between the input data S(x) and
the theoretical power-law model P (x). This is known as
Kolmogorov-Smirnov statistic [21]. For each estimated xmin,
P (x) is generated by estimating the parameter α using max-
imum likelihood estimation [2] such that:

α = 1 +
n∑n

i=1 ln xi
xmin

. (2)

The final step is using the best estimated xmin to quanti-
fy the fitting goodness, represented as p-value, to the theo-
retical power-law distribution. This is done by generating a
fairly large number of synthetic random power-law samples
ym that follow the estimated xmin and α, and measure their
distances Dym = |S(ym) − P (ym)|. The p-value is calculat-
ed as the fraction of times that Dyi is greater than Dx. If
the resulted p-value is lower than 10% or unreasonably too
high (above 90%),4 the sampled graph is ruled out of having
power-law distribution.

4. CASE STUDIES
Recall from Section 3 that Mizan’s API exposes four func-

tions: initialize, compute, sendMessage and testTermi-

nate. Mizan is a generic framework and can support any
graph algorithm that can be expressed in the message pass-
ing model, from simple shortest paths to complex graph
mining. In the following, we will present two examples that
demonstrate the use of Mizan’s API to implement two pop-
ular graph algorithms: diameter estimation and PageRank.

Diameter Estimation. The algorithm finds the longest
shortest path between any two nodes in a graph. We imple-
mented the algorithm by Palmer et al. [20] that computes
an estimation of the true diameter using bitmasks to imple-
ment probabilistic counting. Let G = (N,E) be the graph,
where N and E are the sets on nodes and edges, respectively.
The algorithm starts by randomly generating k bitmasks for

4Very high p-value can be indicative that the graph follows
another distribution that exhibits similar characteristics to
power-law distributions.

1 Node i n i t i a l i z e ( node graphNode )
2 a s s i gn 1/ tota lNodes to node . value
3 a s s i ng 1/ totalNodeOutdegree to edge . weight
4

5 Map compute ( L i s t inputEdge , Map curData )
6 Map newData
7 f o r ( a l l edges in inputEdge )
8 Apply s r c . va lue += inputEdge . va lue and s t o r e 0

0 in newData
9 re turn newData ;

10

11 void sendMessage ( L i s t inputEdge ,Map oldData )
12 send oldData * inputEdge . weight to a l l 0

0ne ighbours
13

14 boolean testTerminate (Map curData , Map newData )
15 Apply random f a c t o r on newData
16 i f ( ( curData − newData ) > e r r o r ) re turn f a l s e
17 e l s e re turn true ;

Listing 2: Pseudocode for PageRank in Mizan

each node u ∈ N . At each iteration, each pair of nodes u and
v connected by an edge e = (u, v) exchange their bitmasks
b and apply a bitwise-or operator, such that:

b1u = b0u(bitwiseOR){b0v|e = (u, v) ∈ E}.

The algorithm terminates if during iteration d no bitmask
changes. The complexity is O(d(|E|+ |N |)) and the estimat-
ed diameter is d. The pseudocode is shown in Listing 1.

PageRank. We implement PageRank [19] using the pow-
er iterative method. The algorithm uses matrix-vector mul-
tiplications, which calculate the eigenvalues of the graph’s
adjacency matrix at each iteration. Formally, each iteration
calculates:

v(k+1) = cAtvk + (1− c)/|N |,

where vk is the eigenvector of iteration k, c is the damping
factor used for normalization, and A is a row normalized ad-
jacency matrix. The algorithm terminates when the PageR-
ank values of all nodes change by less that error during an
iteration. The pseudocode is shown in Listing 2.

5. EXPERIMENTAL EVALUATION
We implemented a version of Mizan for Linux clusters

and cloud environments; Mizan-α is implemented in Java
and Mizan-γ in C++. We also ported Mizan-γ to supercom-
puter environments that support MPI. We compared Mizan
against PEGASUS5, which is implemented in Java on top
of Hadoop. We also implemented a striped-down Pregel-like
system that excludes dynamic load balancing and advanced
features such as topology mutation.

We run our experiments on Amazon’s EC2 Cloud us-
ing up to 256 large EC2 instances.6 We also used an IBM
Blue Gene/P supercomputer with 16,384 PowerPC-450 CPUs,
each with 4 cores at 850MHz and 4GB RAM; we accessed up
to 1,024 CPUs concurrently. We downloaded real datasets
from the Stanford Network Analysis Project.7 We also gen-
erated synthetic datasets using the Kronecker [14] generator
that models the structure of real life networks. Our datasets
contain both power-law and non-power-law graphs. The de-
tails are shown in Table 1.

5http://www.cs.cmu.edu/~pegasus
6Type: Large; CPU: 4CU, Memory: 7.5GB; Network: Giga-
bit Ethernet; Storage: EBS; OS: 64-bit Red Hat Linux
7http://snap.stanford.edu
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G(N,E) |N| |E| p-val Opt

KG1 1,048,576 5,360,368 2% γ
KG2m1 2,097,152 2,097,152 58.4% α
KG2m2 2,097,152 2,866,928 28% α
KG2m3 2,097,152 3,901,320 19% α
KG2m4 2,097,152 5,285,328 6.7% γ
KG2m5 2,097,152 11,632,000 0% γ
KG2m6 2,097,152 29,960,082 0% γ
KG2m7 2,097,152 74,082,437 0% γ
KG16me1 1,048,576 17,161,558 0% γ
KG16me2 2,097,152 17,233,107 0% γ
KG16me3 4,194,304 17,112,694 0.3% γ
KG16me4 8,388,608 17,119,151 7.1% γ
KG16me5 16,777,216 17,184,533 7.2% (γ)
cit-Patents 3,774,768 16,518,948 21.6% α
LiveJournal 4,847,571 68,993,773 0% γ
twitter tweets 1,370,080 2,714,598 34.3% α
web-Google 875,713 5,105,039 17.7% α
wiki-Talk 2,394,385 5,021,410 95.7% (γ)

Table 1: Datasets. N , E denote nodes and edges, re-
spectively. Graphs with prefix KG are synthetic. p-val
is calculated by the optimizer and Opt is the opti-
mizer’s decision; parentheses denote wrong decision.

5.1 Experiments on Amazon EC2
The first set of experiments were run on 8 large Amazon

EC2 instances. We execute the diameter estimation algo-
rithm on all graphs in Table 1. Due to space considerations,
we only report the most representative cases.

Non-power-law graphs. Figure 8(a) shows the total exe-
cution time for several non-power-law graphs. As expected,
Mizan-γ is much faster than both Mizan-α and the Pregel-
like system. Interestingly Mizan-α is in some cases slower
than Pregel-like. This is due to the overhead of the minimum-
cut partitioning and the fact that, for non-power-law graphs,
the quality of the partitioning is low. Notice that Pregel-like
is extremely slow for the LiveJournal input. This graph is
problematic because it creates a very imbalanced hash parti-
tioning; therefore, one machine is overloaded and slows down
the entire system. Recall that, in contrast to Google’s imple-
mentation, our Pregel-like system does not include dynamic
load balancing. We believe that, with Google’s implemen-
tation, Pregel will perform much better on this input. We
also run experiments with PEGASUS, but the results are
excluded because they were from 15% to 50% worse than
both Mizan versions. Figure 8(b) shows the amount of da-
ta transferred among PEs. This includes the aggregate traf-
fic flowing in all VMs.8 Mizan-γ always transfers much more
data than the other systems. However, due to the ring topol-
ogy, the communication is pipelined (see Section 3.2) so the
execution time remains low.

Power-law graphs. Figure 9(a) shows the total execution
time for several power-law graphs. Similarly, PEGASUS was
2 to 17 times slower than any of the other system, so its re-
sults are excluded. As expected, Mizan-α is better in most
of the cases. The exception is the wikiTalk, where Pregel-
like is better than both Mizan versions. This graph is almost

8We cannot differentiate between traffic flowing through the
underlying physical network and those between VMs on the
same physical host.
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Figure 8: Non-power-law graphs, using 8 EC2 in-
stances
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Figure 9: Power-law graphs, using 8 EC2 instances

power-law;9 thus, it is not suitable for Mizan-γ. At the same
time, the expensive partitioning of Mizan-α does not pay-off.
Therefore, the best approach is to use point-to-point mes-
sage passing without minimum-cut partitioning. However,
the current version of Mizan’s optimizer does not have this
option. We are currently working on an improved optimizer
to tackle such cases. In Figure 9(b), we focus on Mizan-α
and show separately the amount of time required for the
minimum-cut partitioning and the actual time to run the
user’s code. It is clear that computing the minimum-cut is
expensive. If the partitioning is available from a previous
step (e.g., when running multiple graph mining algorithms
on the same graph), then the benefit of Mizan-α is greater.

Mizan optimizer. Recall from Section 3.3 that the opti-
mizer calculates the p-value for the input graph. If the p-
value is between 10% and 90%, then the optimizer chooses
Mizan-α, else it chooses Mizan-γ. The range has been sug-
gested in the bibliography after empirical evaluation. The p-
values and the corresponding decisions of the optimizer for
all our graphs are shown in Table 1. We run both versions
of Mizan with all inputs and confirmed that the optimizer
was correct for all but two graphs (enclosed in parentheses
in the table): (i) KG16me5 has p-value less than 10%, so it
was processed by Mizan-γ, but in reality it is close to power-
law; (ii) wikiTalk is a special case that does not belong in
either category. As discussed earlier, our optimizer cannot
handle such cases.

Variable number of edges. In this experiment, we fix
the number of graph nodes to 2M and vary the number of
edges. We used graphs KG2m{1,5,6,7}. Based on their p-
values (Table 1), the first one is power-law, whereas the rest
are not. Recall that we are using diameter estimation as the
user’s code. Because the graphs are different, the estimat-

9The graph fails the power-law test described in Section 3.3,
where its p-value is 95% (higher than the 90% maximum
acceptance threshold).
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Figure 10: Graphs KG2m{1,5,6,7}. |N|=2M. 8 EC2
instances. Results are average per iteration.
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Figure 11: Graphs KG16me{1,2,3,4,5}. |E|=17M. 8
EC2 instances. Results are average per iteration.

ed diameter and consequently the number of iterations will
defer. For fair comparisons, we report the average time per
iteration. The results are shown in Figure 10(a). Mizan-γ is
fairly unaffected by the number of edges, whereas the ex-
ecution times for the other two methods increase linearly.
Interestingly, Mizan-α is slower than Pregel-like. To explain
this, Figure 10(b) shows the amount of transferred data,
which is roughly the same for Mizan-α and Pregel-like. This
means that the minimum-cut partitioning did not provide
any benefit, but Mizan-α had to pay the extra cost for the
partitioning.

Variable number of nodes. We perform a similar exper-
iment, but this time we fix the number of edges to 17M and
vary the number of nodes. We used graphs KG16me{1,2,3,4,5}
and report the average time per iteration. The results are
shown in Figure 11. According to their p-values (Table 1),
the smaller graphs are non-power-law, but as the number of
nodes increases, the distribution becomes more power-law-
like. This explains the fact that Mizan-α becomes faster with
increasing number of nodes. For the same reason, Mizan-γ
becomes slower when the number of nodes increases.

5.2 Scalability in the Cloud (Speed-up)
In the next experiment, we test the strong scalability (al-

so known as speed-up) of Mizan on the cloud. We employ
2 to 16 instances of Amazon’s EC2 and use the citPatents
graph. Based on its p-value, the graph is power-law; there-
fore, Mizan-α is invoked. We test two different user algo-
rithms: diameter estimation and PageRank. A significant
difference between these algorithms is the amount of data
they must process. In our implementation, each node in the
diameter estimation algorithm is assigned 32 times more da-
ta compared to a PageRank node. The results are shown in
Figure 12. As expected, diameter estimation benefits more
when more processors are available. There is, however, one
more aspect. The minimum-cut partitioning considers the
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Figure 13: Strong scalability; 2 to 256 compute
nodes in BG/P; Mizan-γ running diameter estima-
tion.

graph as undirected, but in reality, the graph is directed.
Moreover, the diameter estimation algorithm sends messages
to the opposite direction of PageRank’s messages. Therefore,
the same partitioning results in a different number of mes-
sages crossing PEs, which explains why diameter estimation
is faster than PageRank even though messages are 32 times
larger.

5.3 Large-scale Supercomputer Runs
In the final set of experiments, we demonstrate the per-

formance difference when using two different computing in-
frastructures. We compare the Amazon’s EC2 cloud infras-
tructure against an IBM Blue Gene/P (BG/P) supercom-
puter. BG/P is built around a very fast 3-dimensional net-
work. When compared to a traditional x86 cluster, the ar-
chitecture of BG/P favors using a larger number of slower
compute nodes (PowerPC at 850MHz) that can take advan-
tage of its high bisectional bandwidth. We used a synthetic
(KG2m5) and a real (LiveJournal) graph. Based on their p-
values, both are not power-law, so Mizan-γ is invoked. The
results are shown in Figure 13. When the number of process-
ing elements (PEs) is small, the EC2 environment is faster
because the CPUs are roughly 3 times faster. However, when
the number of PEs increases the physical links become the
bottleneck in EC2, both in terms of bandwidth and latency,
leading to slower execution. The BG/P, on the other hand,
has a more efficient network, so performance is improved
when the number of PEs increase. After roughly 200 PEs,
BG/P becomes faster than EC2. We did not have access to
more than 256 PEs in EC2, but in BG/P we managed to
scale up to 1,024 PEs. Note that although a supercomputer
is out of reach for most people, we believe that similar re-
sults can be achieved with affordable modern network cards
that support remote direct memory access (RDMA).
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6. RELATED WORK
A number of research efforts have focused on speeding up

graph mining algorithms [15]. Manaskasemsak and Rung-
sawang [17] implemented a simple parallel PageRank and
showed that by distributing the load over 8 machines and
skipping communication on some iterations, the speed of
the algorithm can be improved at the expense of accuracy.
Bradley et al. [4] improved the performance of parallel MPI-
based PageRank by using a hypergraph-based partitioning
approach with one and two dimensional decomposition.

Hadoop [1] is an open source implementation of MapRe-
duce. Hadoop-based graph mining parallelization has been
adopted in both X-RIME [24], a social network aware data
mining application and PEGASUS [11], a library of graph
mining algorithms for very large graphs. However, due to
the limitations of Hadoop, the structure of the graph can
affect severely the performance.

A lot of work been done to improve the MapReduce [7]
framework, such as Dremel [18], HaLoop [5] and iHadoop [8].
Dremel is a framework for interactive analysis of web-scale
datasets which supports various analysis tasks for Google
products. It is based on column-based storage systems, which
reduces the amount of data read from disk significantly com-
pared to MapReduce. On the other hand, HaLoop [5] and
iHadoop [8] improve MapReduce by reducing the overhead
of successive MapReduce tasks when processing complex ap-
plications. Pregel [16], on the other hand, uses the message
passing model, which is well-suited for many graph mining
algorithms. Our approach, Mizan, follows Pregel’s model but
improves performance by considering the structure of the in-
put graph and the architecture of the underlying computing
infrastructure. Mizan uses MPI and multilevel partitioning
(based on ParMETIS [12]) to improve the performance of
large graph mining algorithms.

7. CONCLUSION
In this work, we developed Mizan, a framework for sup-

porting graph mining algorithms in large parallel computing
infrastructures. Mizan is a layer between the user’s code and
a variety of computing infrastructures, such as Linux clus-
ters, cloud environments and supercomputers. Mizan exam-
ines the graph structure and decides the placement of the
data and the low level message passing mechanism trans-
parently to the user’s code. We deployed Mizan on 256 vir-
tual machines in Amazon’s EC2 and 1,024 CPUs on an
IBM Blue Gene/P supercomputer. Compared to existing ap-
proaches, Mizan executes the user code up to 50% faster for
power-law graphs and up to 500% faster for other graphs.
Currently, we are working on an improved optimizer. Al-
so, we are planning to support the dynamic case, where the
exchanged messages do not depend only on the static struc-
ture of the graph, but on conditions that are modified during
runtime.
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