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ABSTRACT
Annotation graph datasets are a natural representation of
scientific knowledge. They are common in the life sciences
and health sciences, where concepts such as genes, proteins
or clinical trials are annotated with controlled vocabulary
terms from ontologies. We present a tool, PAnG (Patterns
in Annotation Graphs), that is based on a complementary
methodology of graph summarization and dense subgraphs.
The elements of a graph summary correspond to a pattern
and its visualization can provide an explanation of the un-
derlying knowledge. Scientists can use PAnG to develop
hypotheses and for exploration.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks;
H.2.8 [Database Applications]: Data Mining

Keywords
Link Prediction, Graph Summarization, Dense Subgraphs

1. INTRODUCTION
The Linking Open Data (LOD) initiative has been suc-

cessful in providing access to a diversity of data collections.
LOD can facilitate transformative applications that allow
scientists to share and mine richly annotated and/or exten-
sively hyperlinked collections. Annotation graph datasets
are a natural representation of scientific knowledge; for ex-
ample, genes, proteins and clinical trials are annotated with
controlled vocabulary terms (CV terms) from ontologies.
Figure 1 (left) illustrates such a tripartite annotation graph
for the gene CRY2 using terms from the Plant Ontology
(PO) and Gene Ontology (GO). Ontologies capture multi-
ple relationship types between CV terms. Figure 1 (right)
shows a fragment of the Gene Ontology and relationship
types part-of, is-a, and regulates.

Sensemaking from annotation graphs is useful to scien-
tists since it can help in planning a wet-lab experiment or
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serve as a basis for focused literature review. Since annota-
tion graphs can be huge – the Gene Ontology itself contains
more than 35,000 terms as of October 2011 – the challenge
for the scientist is to explore the potentially large num-
ber of annotations and to discover useful patterns. Auto-
matic techniques and tools are therefore needed to support
the scientist. Sensemaking could range from making sim-
ple but valuable link predictions, e.g., predicting new gene
functional annotation, to discovering complex patterns of
annotation across multiple disease conditions and drug in-
terventions that can lead to important scientific advances.

We present PAnG (Patterns in Annotation Graphs), a
tool that allows scientists to identify patterns in annotated
graph datasets. PAnG is based on a complementary method-
ology of graph summarization (GS) and dense subgraphs
(DSG) [5, 7, 8]; these methodologies were developed by the
researchers and their collaborators. DSG uses the ontology
structure, in particular the distance between CV terms, to
filter the graph. DSG shows particular benefit in creating a
promising subgraph, when the input graph is large and in-
cludes a diversity of ontology terms, or when the graph has
sparse annotations. Patterns are represented as graph sum-
maries that consist of node partitions (supernodes). Pat-
terns can include superedges between supernodes as well as
edges between individual nodes. Patterns provide a bet-
ter visualization and understanding of the overall structure
of the underlying graph. Further, the pattern captures se-
mantic knowledge not only about individual nodes and their
connections but also about groups of related nodes. PAnG
offers the following key features:

• Exploration and identification of an annotation graph data-
set (including relevant ontology fragments).
• Identification of dense subgraphs with constraints on the

distances between pairs of ontology terms.
• Visualization of a pattern represented by a graph sum-

mary, i.e., a hypergraph with supernodes, superedges, and
corrections (to be discussed later).

2. OVERVIEW OF PANG
Figure 2 illustrates the overall workflow of PAnG. The

input is typically a tripartite annotated graph G, and the
output is a graph summary. Our workflow consists of two
steps. The first step is optional and deals with the identifica-
tion of dense subgraphs, i.e., highly connected subgraphs of
G that are (almost) cliques. The goal is to identify interest-
ing regions of the graph by extracting a relevant subgraph.
Examples of the parameters that can be used to select sub-
graphs are presented in the next section.



Figure 1: Annotation graph for gene CRY2 using terms from Plant Ontology (PO) and Gene Ontology (GO)
(left); fragment of the Gene Ontology incl. different relationships between terms (right).

Next, graph summarization transforms the graph into an
equivalent compact graph representation. Graph summaries
are made up of the following elements: (1) supernodes; (2)
superedges; (3) deletion and addition edges (corrections).
Figure 3 shows a screenshot of a possible summary of an
annotation graph. For example, there are 3 gene supern-
odes (middle layer) and the top gene supernode includes the
three 3 genes CHX23, CHX10, and CHX28. A superedge is a
solid edge and occurs between two supernodes. It represents
that all nodes in both supernodes are fully connected. For
example, the superedge between the middle PO supernode
(with 2 PO terms carpel and sepal) and the middle gene su-
pernode (with 4 genes) indicates that all 4 genes are each
annotated with both PO terms.

The summary reflects the basic pattern (structure) of the
graph and is accompanied by a list of corrections, i.e., dele-
tions and additions, that express differences between the
graph and its simplified pattern. For example, a deletion re-
flects that a gene does not have a particular annotation that
is shared by other genes within the supernode. In Figure 3,
the gene CHX28 (top supernode) is not annotated with the
GO term sodium · · · (right layer).

A graph summary has many benefits. First, the summary
provides insight into the overall structure of the underly-
ing graph and is good for visualization. Next, it captures
semantic knowledge not only about individual nodes and
their connections but also about groups of related nodes.
Third, the corrections, in particular deletions, are intuitive
indicators for future edge prediction. Tripartite graphs are
chosen as a template for several reasons. Bipartite graphs
may not convey complex relationships, whereas the relation-
ships captured in graphs with N layers, where N>3, may not
be well suited to a graph summary.

Next, we describe the datasets that are currently used
by PAnG, the user interface, and implementation details.
Details about dense subgraphs and graph summarization are
in Sections 3 and 4, respectively, followed by a description
of demonstration use case scenarios in Section 5.

2.1 Datasets
The PAnG tool can be applied to any annotation graph

dataset. A dataset can be populated in different ways, e.g.,
through bulk import of XML tagged files or by executing
SPARQL queries [2]. For all datasets, PAnG keeps the ref-
erences to the original data sources, and can therefore link
all nodes of the graphs to the corresponding (external) web
pages. We discuss two sample datasets, one representing

a model plant organism, and the second representing the
results of clinical trials in the health sciences.

The first dataset is TAIR1, the primary source of anno-
tation data for the Arabidopsis thaliana model organism.
TAIR is a highly curated portal representing the collec-
tive knowledge of the community of Arabidopsis researchers.
Each gene in TAIR is annotated with controlled vocabulary
terms from the Gene Ontology and Plant Ontology.

For example, the resulting tripartite annotation graph for
the gene CRY2 is illustrated in Figure 1 (left). PO terms are
on the left and GO terms are on the right of CRY2. As of
September 2011, there were 17 GO and 37 PO annotations
for CRY2. Figure 1 illustrates partial annotations only due
to space constraints. On the right of Figure 1 is a fragment
of the relevant GO ontology.

The second dataset is the NIH clinical trial data and the
corresponding hyperlinked collection LinkedCT2 [3]. A clin-
ical trial (CT) is associated with terms representing con-
ditions and interventions. Conditions represent the disease
or condition being studied and typically are described us-
ing MeSH terms. Interventions include a (unique) name,
description and type, e.g., a drug, device, procedure, sup-
plement, etc. Additionally, each CT may be hyperlinked to
CV terms from Drugbank, Dailymed, etc. These links may
provide information about equivalent drugs or therapies, ad-
ditional properties or features of a drug, associated genes,
GO terms, etc.

2.2 User interface and Implementation
Figure 5 shows an annotated screenshot of PAnG’s user

interface for the TAIR dataset. The user can specify genes of
interest (CT’s for the clinical trial data set) in two different
ways. She can use a list of predefined set 1© or she can
select genes based on search results 2©. For the latter, a
full-text index is built for all nodes (genes, POs, and GOs)
and a (gene, PO, GO) triplet is retrieved if any of the nodes
matches the search condition.

After selecting a gene subset, the user can vary param-
eter settings for both the dense subgraph and graph sum-
marization. For dense subgraphs, she may choose distance
restrictions for node pairs in the PO and GO hierarchies 3©.
She can also restrict the hierarchies to certain types of re-
lationships, e.g., is-a or part-of. For graph summarization,
she may allow to merge heterogeneous nodes in the same
supernode, e.g., nodes from PO and GO 4©.

1http:// www.arabidopsis.org/
2http://clinicaltrials.gov and http://linkedct.org



Figure 2: The TAG can pass an optional filter step to
identify dense subgraphs. The PAnG tool employs
graph summarization to identify patterns.

Note that both steps, dense subgraph and graph summa-
rization, are optional. PAnG can therefore visualize a graph,
its summary, a specific dense subgraph, and its summary.

PAnG is made available as a web application [1]. It is
written in Java using the Google Web Toolkit. The algo-
rithms for both graph summarization and dense subgraphs
are optimized re-implementations of [5] and [7], respectively.

3. DENSE SUBGRAPHS
Given an initial tripartite graph, a challenge is to find

interesting regions of the graph, i.e., candidate subgraphs,
that can lead to valuable patterns. We commence with the
premise that an area of the graph that is rich or dense with
annotation is an interesting region to identify candidate sub-
graphs. For example, for a set of genes, if each is annotated
with a set of GO terms and/or a set of PO terms, then the
set of genes and GO terms, or the set of genes and PO terms,
form a clique. We thus exploit cliques, or dense subgraphs
(DSG) representing cliques with missing edges. Density is a
measure of the connectedness of a subgraph. It is the ratio
of the number of induced edges to the number of vertices in
the subgraph.

An annotation graph is a tripartite graph G = ((A,B,C),
(X,Y )). PAnG employs our approach in [7] and thus first
transforms the tripartite graph G in a weighted bipartite
graph G′ = (A,C,E) where each edge e = (a, c) ∈ E is
labeled with the number of nodes b ∈ B that have links to
both a and c. We then compute a densest bipartite subgraph
G2 by choosing subsets of A and C to maximize the density
of the subgraph. Finally, we build the dense tripartite graph
G3 out of the G2 by adding all intermediate nodes b ∈ B
that are connected to at least one node of G2.

In the annotated biological web (see Figure 1) nodes from
PO and GO are hierarchically arranged to reflect their re-
lationships (e.g., is-a or part-of). The PAnG tool therefore
allows users to include restrictions on the ontology terms in
the DSG. A distance restriction specifies the maximal dis-
tance between pairs of nodes in set A (C). To this end,
PAnG employs a distance metric dA (dC) and computes the
densest subgraph G3 that ensures that for all node pairs of
A (C) are within a given distance τA (τC). Furthermore, the
user can filter the ontology by the relationship type, i.e., only
node pairs that are in a specific relationship are considered
for distance computation.

4. GRAPH SUMMARIZATION
PAnG generates graph summaries for representing pat-

terns. A summary of a tripartite annotation graph is also a
graph. While there are many methods to summarize graphs,
we focus on the graph summarization (GS) approach of [5].

Figure 3: Screenshot of a PAnG graph summary.
Superedges are represented by green solid lines; cor-
rections by red dashed (deletion) and blue dotted
(addition) lines, resp.

Their graph summary is an aggregate graph comprised of a
signature and corrections. It is the first application of min-
imum description length (MDL) principles to graph sum-
marization and has the added benefit of providing intuitive
coarse-level summaries that are well suited for visualization
and link prediction.

A graph summary (GS) of a graphG = ((A,B,C), (X,Y ))
consists of a graph signature Σ(G) and a set of correc-
tions ∆(G). The graph signature is defined as follows:
Σ(G) = ((SAC , SB), SXY ). The sets SAC and SB are a
disjoint partitioning of A∪C and B, respectively, that cover
all elements of these sets. Each element of SAC or SB is a
supernode and consists of one or more nodes of the origi-
nal graph. An element of SXY is a superedge and it rep-
resents edges between supernodes, i.e., SXY ⊆ SAC × SB .
The corrections are the sets of edge additions and dele-
tions ∆(G) = (Sadd, Sdel). All edge additions are edges of
the original graph G, i.e., Sadd ⊆ X∪Y . Deletions are edges
between nodes of G that do not have an edge in the original
graph, i.e., SDel ⊆ ((A ∪ C) × B) − (X ∪ Y ). Figure 3 de-
picts an example summary that we have already discussed
in Section 2.

Graph summarization uses a two-part minimum descrip-
tion length encoding and a greedy agglomerative clustering
heuristic. The possible summaries of a graph will depend
on the cost model used for an MDL encoding. In general,
the cost model assigns weights to the number of superedges,
deletions, and additions, respectively. Graph summarization
looks for a graph summary with a minimal cost. Currently
PAnG employs a simple cost model that gives equal weight
to supernodes, superedges and corrections.

5. DEMONSTRATION DESCRIPTION
During the tool demonstration we will illustrate how sci-

entists could use PAnG to (1) analyze a known dataset of
interest to develop hypotheses, and (2) explore a previously
unknown dataset.

5.1 Scenario 1: Hypothesis generation
A scientist typically develops expertise with respect to a

set of genes of interest (GOI) within a biological context,
e.g., flowering time genes or photomorphogenesis genes. She
would typically specify a set of familiar genes to PAnG so
that she could identify novel hypotheses, building upon her
expertise and the patterns in the graph summaries.



Figure 4: Graph summary for CRY2 and PHOT1.

In our demo, starting with a set of 10 photomorphogenesis
genes, we generate the graph summary shown in Figure 4.
One supernode contains the two PO terms PO:13 (cauline
leaf) and PO:37 (shoot apex), the second includes the two
genes CRY2 and PHOT1, and the third has the GO term
GO:5773 (vacuole). The three supernodes are connected by
two superedges. Subsequently, our scientist may explore the
literature to understand the evidence supporting this pat-
tern. As discussed in [4, 6], PHOT1 and CRY2 belong to two
different groups of blue light receptors, namely phototropins
(PHOT1) and cryptochromes (CRY2). To date there has
been no evidence reported in the literature to confirm any
interactions between these two groups in the vacuole; thus,
this is a potential discovery.

Additional annotations included in the dense subgraph
and graph summary (not shown) will help the scientist de-
velop a hypothesis. For example, the vacuole is the storage
site for ions. When the concentration of ions changes in
a guard cell, there will be stomatal movement. PAnG re-
veals that both genes are annotated with GO terms related
to stomatal movement. Further, CRY2 is annotated with
the term response to water deprivation; stomata are typically
closed during water deprivation. Next, PAnG could high-
light that PHOT1 is not annotated with this term; for exam-
ple, it may appear as a deletion in the corresponding graph
summary. The scientist would utilize these patterns to de-
velop hypotheses and an experiment to determine whether
response to water deprivation should be predicted as a new
functional annotation for PHOT1. If true, then PAnG would
have identified both a new gene function for PHOT1, and
would have isolated the evidence to support the discovery of
an interaction between the two genes in the vacuole.

5.2 Scenario 2: Exploration
Over 100,000 clinical trials (CTs) have been made avail-

able from LinkedCT circa August 2011. 60,000 CTs are as-
sociated with both intervention and condition term(s) and
GO and MeSH annotations. A scientist interested in spe-
cific drug interventions across a set of disease conditions may
have to investigate multiple CTs, their annotations and hy-
perlinks. For example, 1,109 of the CTs cover breast, col-
orectal, ovarian and lung cancer. Examples of drug inter-
ventions for these cancers include cyclophosphamide, gemc-
itabine hydrochloride and fludarabine phosphate; cyclophos-
phamide itself has been studied in over 490 diseases and in
984 CTs. The challenge for the scientist is to explore the po-
tentially large number of annotations and to discover useful
patterns.

We illustrate three examples of exploration. The drug
intervention everolimus is associated with 260 CTs. Our sci-
entist selects a subset of 100 CTs; an initial graph summary
reveals one supernode with 34 CTs. Next, she experiments
with several settings of the distance metric for dense sub-
graphs. She observes that up to 50% of the 34 CTs are
conserved in this supernode, over all parameter settings, il-

Figure 5: PAnG’s GUI for the TAIR dataset.

lustrating that this is a stable (supernode) pattern. An even
more significant observation is revealed in her second exam-
ple with the intervention tracolimus. A supernode of 8 CTs
is identified in an initial graph summary. This identical su-
pernode will be conserved over all experiment settings! This
indicates that the 8 CTs are closely related to each other.
In her final example, she considers the drug intervention pa-
clitaxel carboplatin gefitinib. She will apply DSG+GS (over
several experiment conditions) and repeatedly isolate one
supernode with 5 CTs, another supernode with the condi-
tion lung cancer and a superedge between the 2 supernodes.
This suggests that the drug paclitaxel carboplatin gefitinib,
the group of 5 CTs and the disease lung cancer share a sta-
ble relationship.
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