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Abstract—The integration, mining, and analysis of person-
specific data can provide enormous opportunities for organiza-
tions, governments, and researchers to leverage today’s massive
data collections. However, the use of personal or otherwise
sensitive data also raises concerns about the privacy, confiden-
tiality, and potential discrimination of people. Privacy-preserving
record linkage (PPRL) is a growing research area that aims
at integrating sensitive information from multiple disparate
databases held by different organizations while preserving the
privacy of the individuals in these databases by not revealing
their identities and thereby preventing re-identification and
discrimination. PPRL approaches are increasingly required in
many real-world application areas ranging from healthcare to
national security. Previous approaches to PPRL have mostly
focused on linking only two databases. Scaling PPRL to several
databases is an open challenge since privacy threats as well as
the computation and communication costs increase significantly
with the number of databases involved. We thus propose a new
encoding method of sensitive data based on Counting Bloom
Filters (CBF) to improve privacy for multi-party PPRL (MP-
PPRL). We investigate optimizations to reduce computation and
communication costs for CBF-based MP-PPRL. Our empirical
evaluation with real datasets demonstrates the viability of our
approach in terms of scalability, linkage quality, and privacy.

I. INTRODUCTION

A wide range of real-world applications, ranging from
government services, healthcare, crime and fraud detection,
to national security, require person-related data from multiple
sources held by different organizations to be integrated or
linked. Integrated data can then be used for data mining and
analytics to empower efficient and quality decision making
with rich data [1]. For example, health outbreak systems that
allow the early detection of infectious diseases before they
spread widely around a country or even worldwide require the
integration of health data, travel data, and consumed drug data.
National security agencies require to integrate data from law
enforcement agencies, Internet service providers, and financial
institutions to enable the accurate identification of crime and
fraud, or terrorism suspects.

In the absence of unique entity identifiers in the databases
to be linked, personal identifying attributes (such as names
and addresses) need to be used for the linkage. Known
as quasi-identifiers (QIDs) [2], such values are in general

well correlated with entities to allow accurate linkage. Using
such personal information across organizations, however, often
leads to privacy and confidentiality concerns. This problem
has been addressed through the development of ‘privacy-
preserving record linkage’ (PPRL) [3] techniques.

PPRL aims to conduct linkage using only masked (encoded)
QIDs without requiring any sensitive or confidential informa-
tion to be exchanged and revealed between the organizations
involved in a linkage. Generally, masking transforms the
original QID values such that a specific functional relationship
exists between the original and the masked QID values [3].

While there have been many different approaches proposed
for PPRL, most work thus far has concentrated on linking data
from only two sources [3]. As the two examples described
above show, linking data from multiple sources (MP-PPRL)
is however commonly required in practical applications.

A challenge with MP-PPRL is that the computation and
communication complexities increase significantly with mul-
tiple parties. The number of naı̈ve (all-to-all) comparisons
required across p databases of n records each is np. Ad-
dressing this complexity challenge, private indexing/blocking
techniques are used to reduce the number of candidate record
sets, which are then compared in detail and classified into
matches and non-matches [1], [3]. However, with increasing
p existing private blocking techniques are not sufficient to
reduce the number of comparisons, as has been empirically
studied [4], [5]. Moreover, with multiple parties the risk of
collusion increases, where a sub-set of parties collude in order
to learn about other parties’ sensitive data.

We propose the use of Counting Bloom Filter (CBF), which
is a variation of Bloom Filter (BF) [3], to enable efficient
and approximate matching for MP-PPRL. BFs are bit vectors
into which values are hash-mapped (as we will describe in
Section III). CBFs, on the other hand, are integer vectors
that contain a count value in each position. Multiple BFs can
be summarized as a single CBF by applying vector addition
between BFs using a secure summation protocol [6].

Calculating the similarity of a set of records using a single
CBF instead of multiple BFs provides increased privacy with-
out compromising the linkage quality, because a CBF contains



Categorical data String data
Blocking / Indexing [7] [4], [8]

Exact matching [9], [10], [11], [12], [13]
Approximate matching - [5]

TABLE I
EXISTING MP-PPRL APPROACHES.

only the summary information of multiple records rather than
the bit values of individual records as in BFs. This privacy
aspect of CBFs has so far not been utilized in PPRL.

To overcome the scalability and privacy challenges of MP-
PPRL, we introduce an efficient CBF-based communication
pattern that significantly reduces the number of record com-
parisons in contrast to naı̈ve all-to-all comparisons. It thereby
improves the scalability while also improving the privacy
(reducing the likelihood of collusions) by arranging parties
into several groups (rings) and distributing computations
among parties. We propose two variations of extended secure
summation protocols for improved privacy against collusion
among the database owners: (a) homomorphic encryption-
based and (b) salting-based (using random seed integers).
We theoretically analyze our protocol in terms of complexity
and privacy, and empirically evaluate and compare with two
baseline approaches using large voter registration datasets.

Outline: In the following section we review the literature
and in Section III we describe the preliminaries. In Section IV
we propose our protocol for MP-PPRL based on CBFs, where
in Section IV-A we propose two extended secure summation
protocols to improve privacy of our approach, and in Sec-
tion IV-B we introduce a communication pattern to improve
scalability (as well as privacy) of our approach. We analyze our
protocol in terms of complexity, linkage quality, and privacy
in Section V, and in Section VI we validate these analyses
through an empirical study. Finally, we summarize and discuss
future research directions in Section VII.

II. RELATED WORK

Various techniques have been proposed in the literature
to tackle the problem of PPRL [3]. However, most of them
consider linking two databases only, and only few approaches
have been proposed for PPRL on multiple databases. As
categorized in Table I, the main drawbacks of the small
number of existing MP-PPRL approaches is that either they
(1) only allow blocking (not matching), (2) only support exact
matching (which classifies record sets as matches if their
masked QIDs are exactly the same), or (3) are applicable to
QIDs of categorical data only (however, linkage using QIDs of
string data, such as names and addresses, is required in many
real applications [3], [5]).

A Secure Multi-party Computation (SMC)-based approach
using an oblivious transfer protocol was proposed by O’Keefe
et al. [12] for PPRL on multiple databases. While provably
secure, the approach can only perform exact matching of
masked values (i.e. variations and errors in the QIDs are
not considered) and it is computationally expensive compared

to efficient perturbation-based privacy techniques, such as
BFs and k-anonymity [3]. Kantarcioglu et al. [10] introduced
a multi-party approach to perform secure equi-join (exact
matching) on k-anonymous databases.

A MP-PPRL approach for categorical values was proposed
by Mohammed et al. [11], where a top-down generalization is
performed to provide k-anonymous privacy and the general-
ized blocks are then classified into matches and non-matches
using the C4.5 decision tree classifier. Another efficient multi-
party approach for categorical data was recently proposed by
Karapiperis et al. [9] using a Count-Min sketch data structure.
Sketches are used to summarize the local set of elements
which are then intersected to provide a global synopsis using
homomorphic operations, secure summation, and symmetric
noise addition privacy techniques.

As we will describe in detail in Section VI, Lai et al. [13]
developed an efficient BF-based approach for MP-PPRL.
However, the approach performs only exact matching. This
approach has been adapted by Vatsalan and Christen [5] for
approximate matching in MP-PPRL.

Several approximate comparison functions for calculating
similarities of pairs of string and other data types have been
proposed for PPRL by adapting existing comparison functions.
A secure version of the Levenshtein edit distance was proposed
by Karakasidis and Verykios [14] using CBFs. However, de-
veloping privacy-preserving comparison functions for multiple
(more than two) records has only recently been considered by
Vatsalan and Christen [5] using the Dice coefficient similarity.

The scalability problem in MP-PPRL has been addressed
recently by Ranbaduge et al. who developed a family of
multi-party private blocking approaches [4], [8]. However,
the number of comparisons required for multi-party linkage
remains very large (O(b×(n/b)p) for linking p databases each
containing n records and b blocks) even with existing private
blocking approaches employed [4], [5]. Therefore, efficient
and advanced multi-party filtering and communication patterns
need to be developed in order to make PPRL scalable and
viable in practical applications.

III. DEFINITION AND PRELIMINARIES

In this section, we define the problem and describe pre-
liminaries required for our approach. We assume p database
owners P1, P2, · · · , Pp with their respective databases D1,
D2, · · · , Dp (containing sensitive or confidential identify-
ing information) participate in the PPRL process under the
honest-but-curious (HBC) adversary model [3]. In this model,
parties are assumed to follow the protocol without deviating
or sending false information while being curious to learn
about other parties’ data. Note that the HBC model does not
prevent parties from colluding among them to learn about
other parties’ data [15]. We quantify the risk of collusion in
MP-PPRL and the reduction of risk by our extended secure
summation protocols and proposed communication pattern in
Section V.

A dedicated trusted linkage unit (honest broker) is com-
monly used in PPRL approaches in the literature [3]. A linkage



Fig. 1. Similarity calculation of two QID values (‘peter’ and ‘pete’)
masked using (a) BFs and (b) CBF (with l = 14, k = 2 and q = 2).

unit (LU ) is an external party that conducts linkage of the
masked records sent to it by the database owners [3]. For our
protocol we assume such a LU is available to conduct the
linkage. We also assume a set of QID attributes A, which
will be used for the linkage, is common to databases D1, · · · ,
Dp. We formally define the problem of PPRL on multiple
databases as follows.

Definition 3.1: MP-PPRL: Assume P1, . . . , Pp are the p
owners (parties) of the databases D1, . . . ,Dp, respectively.
They wish to determine which of their records R1,i ∈ D1,
R2,j ∈ D2, . . ., Rp,k ∈ Dp match (correspond to the same
entity) based on the (masked) QIDs of these records according
to a decision model C(·) that classifies record sets (R1,i, R2,j ,
. . ., Rp,k) into one of the two classes M of matches and U
of non-matches. A party does not wish to reveal its actual
records with any other party. The parties are however prepared
to disclose to each other, or to an external party, the actual
values of some selected attributes of the record sets that are
classified into M to allow analysis.

A. Protocol building blocks

Bloom filter (BF) encoding: A BF bi is a bit array data
structure of length l bits where all bits are initially set to 0.
k independent hash functions, h1, h2, . . . , hk, each with range
1, . . . l, are used to map the elements s in a set S into the BF
by setting the bit positions hj(s), with 1 ≤ j ≤ k, to 1. BF
encoding has been used as an efficient masking technique in
several PPRL solutions [5], [13], [16].

The set S of q-grams (sub-strings of length q) of QID values
of each record in the databases to be linked can be hash-
mapped into a BF. These BFs are then sent to a LU that
calculates the similarity of BFs [16] in order to classify them
as matches or non-matches. The BF encoding of two QID
values ‘peter’ and ‘pete’ into l = 14 bits long BFs using
k = 2 hash functions is shown in Figure 1(a).

Dice coefficient similarity: Any set-based similarity func-
tion (such as Overlap, Jaccard, and Dice coefficient) can be
used to calculate the similarity of pairs or sets of (multiple)
BFs. The Dice coefficient has been used for comparing BFs
since it is insensitive to many matching zeros (bit positions to
which no q-grams are hash-mapped) in long BFs [16].

Definition 3.2: Dice similarity: The Dice coefficient simi-
larity of p BFs (b1, · · · ,bp) is:

Dice sim(b1, · · · ,bp) =
p× z∑p
i=1 xi

, (1)

where z is the number of common bit positions that are set to
1 in all p BFs (common 1-bits), and xi is the number of bit
positions set to 1 in bi (1-bits), 1 ≤ i ≤ p.

Figure 1(a) illustrates the Dice coefficient similarity calcu-
lation of two QID values ‘peter’ and ‘pete’ masked into BFs.

Secure summation: A secure summation protocol [6] can
be used to securely sum the input values of multiple parties
(p ≥ 3), such that no party learns the individual values of
other parties, but only the summed value.

The input can either be a single numerical value or a
vector of numerical values. For example, p numerical vectors
(v1,v2, · · · ,vp) from p parties (P1, P2, · · · , Pp), respectively,
can be securely summed by using a random numerical vector
r which is generated by the LU (and kept secret) and then
sent to the first party P1. The first party P1 that receives r
calculates the vector summation of x1 = r+v1 and sends this
to P2, which adds its own v2 to the received sum and sends
x2 = x1 + v2 to P3. This process is repeated until the last
party sends xp = xp−1+vp back to LU , which then subtracts
r from the summed value xp to calculate the summation of the
p vectors. The protocol employs a ring-based communication
pattern over all parties to learn

∑p
i=1 vi but no party Pi learns

the values vj (with i 6= j) of the other parties.

IV. CBF-BASED MP-PPRL ALGORITHM

In this section, we describe how Counting Bloom filters
(CBFs) can be used for efficiently calculating similarities
(approximate matching) of QID values between a set of
multiple (two or more) records in MP-PPRL. A CBF c of
p (p > 1) BFs is an integer array data structure of the same
length (l) as the BFs. It contains in each position β, with
1 ≤ β ≤ l, the count of values in the position β over a set of
p BFs, such that c[β] =

∑p
i=1 bi[β], where c[β] is the count

value in bit position β of the CBF c and bi[β] ∈ [0, 1] is the
value in the bit position β of BF bi. Given p BFs (bit vectors)
bi with 1 ≤ i ≤ p, the CBF c can be generated by applying
a vector addition operation between the bit vectors such that
c =

∑
i bi.

Proposition 4.1: The Dice coefficient similarity of p BFs
can be calculated given only a CBF c as:

Dice sim(c) =
p× |{β : c[β] = p, 1 ≤ β ≤ l}|∑l

β=1 c[β]
. (2)

Proof: The Dice coefficient similarity of p BFs (b1, · · · ,
bp) is determined by the sum of 1-bits (

∑p
i=1 xi) in the

denominator and the number of common 1-bits (z) in all p
BFs in the nominator of Eq. (1). The number of 1-bits in a
BF bi is xi = bi[1] + bi[2] + · · · + bi[l], with 1 ≤ i ≤ p.
Therefore

∑p
i=1 xi =

∑p
i=1 bi[1] + bi[2] + · · · + bi[l]. The

sum of values in all bit positions of the CBF is
∑l
β=1 c[β] =



∑l
β=1 b1[β]+b2[β]+ · · ·+bp[β] which is equal to

∑p
i=1 xi.

Further, if a bit position β (1 ≤ β ≤ l) contains 1 in all p BFs,
i.e. ∀pi=1bi[β] = 1, then c[β] =

∑p
i=1 bi[β] = p. Therefore,

z = |{β ∈ c : c[β] = p|}.
If the LU only receives the CBF c that contains the summed

values in the bit positions of p BFs instead of the actual p BFs,
then the LU can calculate the Dice coefficient of p BFs using
Eq. (2) without learning any information about the individual
bit positions of each party. Figure 1(b) shows an example of
similarity calculation of two BFs b1 and b2 using CBF c.
The information gained from a CBF is less than what can
be gained from p BFs (i.e. CBFs provide increased privacy
compared to BFs), as we theoretically and empirically validate
in Sections V and VI, respectively.

The vector summation of individual BFs from p different
parties to construct a CBF c needs to be calculated securely
among these parties, such that no party learns the individual
values in the other parties’ bit positions, and the LU only
learns the summed values ∀lβ=1c[β]. However, the basic secure
summation (BSS), as described in Section III-A, is susceptible
to collusion among the parties to learn the values of another
party. For example, parties P1 and P3 can collude to learn
party P2’s values. In Section IV-A, we propose two variations
of extended secure summation protocols for improved privacy
against the risk of collusion among parties.

Our protocol allows efficient, approximate, and private
linking of multiple databases from p (≥ 3) parties. We first
describe a naı̈ve protocol (which we refer as NAI) based
on CBFs, and in Section IV-B we propose an improved
communication pattern to make the protocol more scalable
with increasing number of large databases.

• Step 1: The parties agree upon the following param-
eter values: the BF length l; the k hashing functions
h1, . . . , hk to be used; the length (in characters) of grams
q; a minimum similarity threshold value st (0 ≤ st ≤ 1),
above which a set of records is classified as a match; a
private blocking function block(·); the blocking keys [1]
B used for blocking; and a set of QID attributes A used
for the linkage.

• Step 2: Each party Pi (1 ≤ i ≤ p) individually applies
a private blocking function [3] block(·) to reduce the
number of candidate sets of records C (from

∏p
i ni,

where ni = |Di| is the number of records in Di held by
party Pi), which otherwise becomes prohibitive even for
moderate ni and p. The block(·) function groups records
according to their blocking key values (BKVs) [7] and
only records with the same BKV (i.e. records in the
same block) from different parties are then compared
and classified using our protocol. Any private blocking
technique [4], [8] can be used as the block(·) function.

• Step 3: Each party Pi hash-maps the q-gram values
of QIDs A of each of its ni records in its respective
database Di into ni BFs (one BF per record in Di) of
length l using the hash functions h1, . . . , hk to generate
DM
i . It is crucial to set the BF related parameters in an

optimal way that balances all three properties of PPRL
(complexity, quality, and privacy) [5], [16]. We further
discuss parameter setting for BFs used in our protocol in
Section V.

• Step 4: In the next step, the parties initiate a secure
summation protocol to securely perform vector addition
between their BFs in order to generate a CBF for each set
of candidate records cs ∈ C. A candidate record set cs
contains p masked records (BFs), one from each of the p
parties, and C contains in total npi such cs (exponential
complexity). The secure summation is initiated by an
external linkage unit LU that provides a vector (of length
l) of random values.

The LU sends a random vector R[cs] to a party
(assume P1) for each candidate record set cs ∈ C to
sum with the party’s BF vector bi ∈ DM

i (i = 1) by
applying a vector addition operation. The summed vectors
∀cs∈CR[cs] + bi are then sent to party Pi+1. Party Pi,
2 ≤ i ≤ p, receives the summed vectors from Pi−1
and adds its BF vector bi ∈ DM

i to each candidate set
cs ∈ C and sends the summed vectors to the next party
Pi+1. This process is repeated until the last party (i.e.
Pp) adds its bp vector to each received summed vector
R[cs] +

∑p−1
i=1 bi from party Pp−1 and sends the final

summed vector back to the LU for each cs.
• Step 5: Finally, the LU that has provided the random

vectors R generates the CBF c = (R[cs] +
∑p
i=1 bi)−

R[cs] for each candidate set cs ∈ C. The LU then
calculates the Dice coefficient similarity of each resulting
CBF c following Eq. (2) to classify the compared sets
of records (BFs) within a block into matches and non-
matches based on the similarity threshold st. The final
matching sets of records will then be used by the database
owners or an external party for further analysis using
certain set of attribute values.

A. Extended secure summation

The basic secure summation protocol (BSS) described in
Section III-A is susceptible to collusion risk by the parties
involved, as we will discuss in detail in Section V. In order
to overcome this risk (to improve privacy), we propose two
extended secure summation protocols.
• Homomorphic-based secure summation (HSS): The par-

tially homomorphic Paillier cryptosystem [17] is a re-
liable secure multi-party computation (SMC) technique
for performing secure joint computation among several
parties. In the HSS approach a pair of private and public
keys is used for encrypting and decrypting the individual
BF values. Successive encryption of the same value using
the same public key generates different encrypted values
with high probability, and decrypting the encrypted values
using a private key returns the correct original value.
The public key is known to all parties while the private
key is known only to the LU . Each party Pi receives
summed vectors containing encrypted values to which
Pi adds its encrypted bi vector (using the public key)



Fig. 2. Ring-by-ring (RBR) communication pattern for comparison
of CBFs from p = 6 parties, as described in Section IV-B. In this
example, the number of parties per ring is r = 2.

and sends the encrypted summed vectors to the next
party. Without knowing the private key a party Pi cannot
decrypt the received vectors and therefore colluding with
a party to learn another party’s bj (with i 6= j) would be
impossible.

• Salting-based (using random seed integers) secure sum-
mation (SSS): The HSS approach provides a secure so-
lution compared to the BSS approach against collusion
attacks at the cost of an excessive computation overhead,
making it not scalable to linking multiple large databases.
Therefore, we propose the SSS approach to provide
security against collusion attacks in an efficient way.
Salting has been used to defend against dictionary attacks
on one-way hash functions where an additional string is
concatenated with a value to be encrypted [18]. We adopt
a similar concept in the SSS approach where the salting
key is an additional random integer used by each party Pi
individually when performing the secure summation. The
salting key generated and used by each party is sent only
to the LU and therefore a party Pi’s BF values cannot
be identified by means of collusion among the parties,
as without knowing the salting key of Pi its BF values
cannot be learned. Since the salting keys are random
integer values, performing secure summation of BFs with
the salting keys does not add any additional computation
and communication overhead, except the communication
of salting keys from parties to the LU .

B. Improved communication

The number of candidate record sets to be compared for
multi-party linkage in the naı̈ve method (NAI), as described
above, is exponential in the number of parties and their dataset
sizes, which is prohibitively large to be practically feasible
(even when using existing private blocking and filtering ap-
proaches) [5]. In this section, we propose a ring-by-ring (RBR)
communication pattern, as illustrated in Figure 2, for improved
scalability and privacy of our approach based on CBFs for
multi-party scenarios.

The main idea of the improved communication pattern is to
exploit the facts that most candidate sets are true non-matches
(due to the class imbalance problem of record linkage [7]),
and that a true matching set must have a high similarity
between any sub-set of records in that set. Hence for MP-PPRL

Algorithm 1: Comparison of CBFs using ring-by-ring (RBR) communication.

Input:
- DM

i : Party Pi’s BFs, 1 ≤ i ≤ p
- r: Ring sizes, with 2 ≤ r ≤ p/2
- st: Minimum similarity threshold to classify record sets

Output:
- M: Matching record sets

1: rings = group([P1, P2, · · · , Pp], r) // Group parties
2: for ring ∈ rings do:
3: Cring = sec sum([∀Pi∈ring DM

i ]) // Secure summation
4: for cs ∈ Cring do:
5: if Dice sim(cs) ≥ st then: // Eq. (2)
6: Mring.append(cs) // M in this ring
7: C = sec sum([∀ring∈rings Mring]) // Secure summation
8: for cs ∈ C do:
9: if Dice sim(cs) ≥ st then: // Eq. (2)

10: M.append(cs) // M in all rings

applications with many parties it is promising to determine
partial matches for a sub-set of parties and consider additional
parties only for these partial matches.

The parties are first arranged into rings of size r, with
at least 2 rings and a minimum size of each ring being
r = 2 (i.e. 2 ≤ r ≤ p/2). The value of r needs to be
carefully chosen, as it has a trade-off between scalability
(complexity) and privacy. The higher the value for r is, the
better the privacy of the protocol because the resulting CBFs
are more difficult to exploit with an inference attack, as will
be discussed in Section V. On the other hand, higher values
of r results in lower scalability for larger datasets across many
parties because the number of comparisons required per ring
exponentially increases with the ring size r.

The NAI approach can be considered as a special case of
RBR with only one ring of size r = p. With several smaller
rings (r ≤ p/2), each ring reduces the number of candidates
to matches only and thereby enables a significant filtering in
the number of candidate record sets.

The RBR method, as detailed in Algorithm IV-B, consists
of two phases. In the first phase (lines 2-6), the parties in
each ring individually perform secure summation on their sets
of masked records (BFs) using the sec sum(·) function to
generate the CBFs Cring (line 3). The similarity of each CBF
c ∈ Cring is calculated using Eq. (2) to identify matches
Mring in each ring (lines 4-6). In the second phase (lines 7-
10), the rings perform secure summation among them on the
matches identified in each ring Mring in order to identify
matches M from all p parties.

Every ring in the first phase can employ a different set of
BF parameters to reduce the possibility of collusion between
a set of parties in different rings. In the second phase, all
parties then have to agree on another set of parameters for
BF encodings of the matches identified in the different rings
in the first phase. In addition, the rings in the first phase can
be processed independently and in parallel in a distributed
environment making the RBR scalable to larger dataset sizes.

V. ANALYSIS OF THE PROTOCOL

In this section we analyze our MP-PPRL protocol in terms
of complexity, privacy, and linkage quality.



Complexity: We assume p parties participate in the pro-
tocol, each having a database of n records. In step 1 of
our protocol, the agreement of parameters has a constant
communication complexity. Blocking the databases in step 2
has O(n) computation and O(p·b) communication complexity
(assuming b ≤ n blocks) at each party. The masking of records
(with g average q-grams) into BFs of length l using k hash
functions in step 3 is O(n · g · k) at each party.

Steps 4 and 5 consist of the secure summation of BFs
to calculate the CBFs of candidate sets. With the simpli-
fied assumption that all blocks are of equal size n/b, using
the NAI method requires a total of O(

∑p
i=1 b(n/b)

i) vector
summations. Our extended secure summation protocols HSS
and SSS aim to improve privacy at the cost of complexity
overhead. The extended HSS protocol requires n·l·p encrypted
values (long integers of 4 bytes each) to be exchanged among
the parties, while the basic secure summation (BSS) and SSS
require exchanging n · l · p short integer values (of 2 bytes
each), which is more efficient compared to HSS. Further, the
homomorphic encryption and decryption functions used in
HSS are computationally expensive compared to simple vector
addition and subtraction operations [15].

The exponential complexity limits the NAI multi-party link-
age to a small p or a large number of small blocks (small n/b).
(i.e. p or n/b has to be small). Our improved RBR method
reduces the complexity significantly (depending on the number
of parties per ring, r). In general, the complexity is reduced
from exponential growth with p down to max(r, p/r). As-
suming each ring has r parties, the first phase of RBR requires
b(n/b)r candidate sets to be processed in each of the p/r rings,
and the second phase compares the b(n/b) matching sets from
each ring, leading to O(

∑r
i=1 b(n/b)

i ·(p/r) +
∑p/r
i=1 b(n/b)

i).
Overall, the complexity of the NAI method is O(b(n/b)p), and
the RBR method is O(max(b(n/b)r · p/r, b(n/b)p/r). This
theoretical analysis shows that the proposed communication
method RBR is computationally more efficient compared to
the NAI method.

Privacy: As with most of the existing PPRL approaches,
we assume that all parties follow the honest-but-curious (semi-
honest) adversary model [3], where the parties follow the
protocol while being curious to learn the other parties’ data by
means of inference attacks on input data [2] or collusion [3].
To analyze the privacy against inference attacks, we discuss
what the parties can learn from the data exchanged among
them during the protocol.

Communication occurs among the parties in step 1 of our
protocol (as described in Section IV) where they agree on
parameter settings, and in steps 4 and 5 where they participate
in a secure summation protocol. The agreement of parameters
(in step 1) does not reveal any sensitive information about the
underlying data. Secure summation (steps 4 and 5) involves
the exchange of masked data where the parties communicate
the partial and full summations of their BFs among them in
step 4 and to the LU in step 5, respectively, to calculate the
CBFs of the candidate sets and their similarities. The secure

summation protocol is secure against inference attacks by the
LU because the random value used by a party is unknown to
the LU [6]. We assume a trusted LU is available, which does
not collude with any parties, as is commonly used in many
practical PPRL applications [19].

However, collusion among the database owners is a privacy
risk in the basic secure summation protocol where a set of
parties can collude to learn the BF of another party using
their received summation values. To overcome this problem,
in Section IV-A we have proposed two extended secure
summation protocols, HSS and SSS. The HSS protocol uses
homomorphic encryptions for secure summation which makes
the protocol more secure because without knowing the private
key (which is only known to the LU ) identifying a party’s BF
values by means of collusion will not be successful. However,
this protocol encrypts each integer value in a BF (in total
l values for each BF) into a hash key (long integers) and
thus incurs a very large communication overhead making the
protocol not viable for linkage of multiple large databases.
The SSS protocol similarly makes the protocol more secure
by adding additional integer values as salting keys by each
party individually (known only to the LU ) in the secure
summation, such that without knowing the salting key value
collusion among parties to learn a party’s BF is not possible.
Compared to HSS, the SSS approach does not incur any
expensive communication overhead as the salting keys are
small integer values.

Compared to calculating similarities of records using mul-
tiple (p) BFs, a single CBF improves privacy by making the
inference of individual BFs and thus their q-grams mapped into
them more difficult. An inference attack allows an adversary to
map a list of known values from a global dataset (e.g. q-grams
or attribute values from a public telephone directory) to the
encoded values (BFs or CBF) using background information
(such as frequency) [2], [20]. The only information that can
be learned from such an inference attack using a CBF c of a
set of x BFs (summed over x parties, where either x = p in
NAI and x = r in RBR) is if a bit position in c is either 0 or x
which means it is set to 0 or 1 in the BFs from all x parties,
respectively.

Proposition 5.1: The probability of re-identifying the orig-
inal (unencoded) values of x (x > 1) records R1, R2, · · · ,
Rx given a single CBF c is smaller than the probability of re-
identifying the original values of Ri given their x individual
BFs bi (with 1 ≤ i ≤ x),

∀xi=1Pr(Ri|c) < Pr(Ri|bi). (3)

Proof: Assume the number of matching (unencoded)
values to a masked BF pattern bi from an inference attack
is ng , where ng = 1 in the worst case (i.e. a one-to-one
mapping exists between the masked BF bi and the original
unencoded value of Ri [2]). The probability of re-identifying
the original value Ri given a BF in the worst case is therefore
Pr(Ri|bi) = 1/ng = 1.0. However, a CBF c represents x
BFs and thus in the worst case ng = x, which leads to a



Runtime (sec) Size (MBytes) F-measure

BSS 34.03 47.11 1.0
HSS 60557.93 1257.06 1.0
SSS 34.03 47.15 1.0

TABLE II
RESULTS OF SECURE SUMMATION PROTOCOLS (p = 3, n = 5000).

maximum of Pr(Ri|c) = 1/x with x > 1 (when x = 1,
c ≡ b1). Hence, ∀xi=1Pr(Ri|c) < Pr(Ri|bi).

We will empirically evaluate and compare the privacy
of CBFs and BFs in Section VI. A larger r in the RBR
method (i.e. a larger x) results in a smaller probability of
re-identification of 1/x (improved privacy) by the LU at the
cost of more record comparisons. Further, using different BF
encodings by different rings in our RBR method improves
privacy by reducing the collusion possibilities compared to the
NAI method. More specifically, when p parties are involved in
the linkage, the maximum number of possible combinations
for collusion in the NAI method is θN = p · (p− 1), while in
the RBR it is θR = p/r · r · (r− 1) = p · (r− 1). For example,
p = 9 results in θN = 72 and θR = 18 collusion possibilities
for the NAI and RBR (with r = 3) methods, respectively.
The extended secure summation protocols (both HSS and SSS)
have zero collusion risk among the parties (i.e. θH = 0 and
θS = 0. In addition, hardening BF techniques [18], such as
hash-mapping of several QID values from each record into one
compound BF [21], [16], can be applied to make an inference
attack more difficult.

Linkage quality: Our protocol supports approximate
matching of QID values, in that data errors and variations are
taken into account depending upon the minimum similarity
threshold st used. The Dice coefficient similarity of p records
calculated using their respective p BFs is the same as the
similarity calculated using a single CBF c, as we have proven
in Proposition 4.1.

The quality of BF-based masking depends on the BF
parameterization [5]. For a given BF length, l, and the number
of elements (e.g. q-grams) to be inserted into the BF, g, the
optimal number of hash functions, k, that minimizes the false
positive rate f (of a collision of two different q-grams being
mapped to the same bit position), is k = l/g · ln(2), leading
to a false positive rate of f = (1/2ln(2))l/g .

While k and l determine the computational aspects of BF
masking, linkage quality and privacy will be determined by the
false positive rate f . A higher value for f will mean a larger
number of false matches and thus lower linkage quality [16].
The false positive rate f in a CBF c is the summation of the
false positive rates fi introduced in the corresponding p BFs
bi, with 1 ≤ i ≤ p. Therefore, a CBF provides increased
privacy compared to a BF while resulting in the same number
of false matches as with its corresponding p BFs (i.e. results
in the same similarity with increased privacy).

VI. EXPERIMENTAL EVALUATION

We have conducted experiments on the datasets used in [5]
that were extracted from the North Carolina Voters Registra-
tion (NCVR) database (from ftp://alt.ncsbe.gov/data/). These
datasets contain 5,000 to 1,000,000 records for 3, 5, 7, and 10
parties, with 50% of records occurring in all parties (i.e. 50%
of records are true matches). We used datasets with 0% and
20% (No-mod and 20% -mod in figures) corrupted values in
the matching records.

We used an exact matching BF-based PPRL approach (EM-
BF) [13] and an approximate matching BF-based PPRL ap-
proach (AM-BF) [5] as baseline methods. Since other existing
approaches for MP-PPRL (as reviewed in Section II and
categorized in Table I) either allow blocking only, support
exact matching only, or are applicable to categorical data only,
we cannot directly compare them with our approach.

In the EM-BF approach, a conjuncted BF (that contains
common 1-bits) is jointly calculated such that each party
processes a particular segment in the BF. Each party then
checks its BFs with the conjuncted BF to classify them
as matches or not. The AM-BF approach adapts the EM-
BF approach for approximate matching in PPRL [5]. Once
the conjuncted BF segments are computed by the respective
parties, a secure summation protocol is used by the parties to
securely sum the number of common as well as all 1-bits to
calculate the Dice similarity (Eq. (1)).

We implemented all approaches in Python (version 2.7),
and ran all experiments on a server with 2.4 GHz CPUs,
128 GBytes of main memory and running Ubuntu 14.04. The
programs and test datasets are available from the authors. We
used first name, last name, city, and zipcode as the QIDs. We
set the parameters for all three approaches as l = 500, k = 20,
q = 2, st = 0.8, block(·) = Soundex(·) [1] on first and last
names, and p = [3, 5, 7, 10]. For RBR, we set r ≥ 3.

We evaluated the scalability using runtime and the number
of comparisons required for the linkage, and the linkage
quality using the F-measure [3]. In line with other work
in PPRL [4], [5], we evaluated privacy using the average
disclosure risk measure, DRMean, based on the probability
of suspicion Ps, i.e. the likelihood a masked database record
in DM can be matched with one or several record(s) in a large
public database [22] (DRMean =

∑
(Ps)/|DM |).

Table II shows the runtime and memory size required and
the F-measure results achieved with the three secure summa-
tion protocols. As can be seen, the HSS requires significantly
higher runtime and memory (which is not practical in real
applications) to improve privacy against collusion attacks on
the BSS without compromising the F-measure results. How-
ever, the SSS approach requires similar runtime and memory
as the BSS for improving privacy against collusions with no
loss in linkage quality. We therefore use SSS in all following
experiments.

Figure 3 (a) shows the number of comparisons required
between records by the RBR and NAI methods. For the NAI
method, this number grows exponentially with the size of the



Fig. 3. (a) Number of comparisons between records, (b) runtime, (c) F-measure, and (d) privacy results for all three approaches.

datasets for increasing p. As shown in Figure 3 (b), although
the baseline approaches require lower runtime for linking
p ≤ 5 datasets than our approach they are not scalable to
larger p and datasets. We were unable to conduct experiments
for the baseline methods with p ≥ 5 on the 50K datasets due
to the exponential increase in the number of comparisons. Our
approach is scalable and requires significantly lower runtime
for linking datasets from multiple parties.

As can be seen in Figure 3 (c), our approach achieves similar
F-measure as AM-BF and outperforms EM-BF on modified
datasets. Finally, we compared the privacy results of our CBF-
based approach with the BF-based baseline approaches in
Figure 3 (d). The results show that the DRMean of CBF is
consistently lower (and thus privacy is better) than BF, and as
expected it decreases with larger p.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a scalable protocol for PPRL on multi-
ple databases with an improved communication pattern. Our
approach performs approximate matching on the QID values
(of string data) masked using efficient and simple privacy
techniques, namely counting BFs (CBFs) and secure sum-
mation. Experiments conducted on real datasets of up-to one
million records showed the scalability and improved privacy
of our approach compared to two baseline approaches while
achieving superior or similar linkage quality results.

In future work, we plan to investigate other improved col-
lision resistant secure summation protocols and different ap-
proximate string comparison functions [1] to be incorporated.
We also aim to develop efficient PPRL techniques for identify-
ing matching record sets within sub-sets of parties, which is an
important research problem. Another research direction would
be to develop MP-PPRL approaches under other adversary
models such as the covert model or accountable computing [2]
(where honest parties can verify fake data from dishonest
parties with high probability) to overcome the limitations of
the semi-honest (HBC) adversary model. Finally, we plan to
investigate improved classification techniques for MP-PPRL
including relational clustering and graph-based approaches [1]
which are successfully used in non-PPRL applications.
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