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Abstract. The growth of Big Data, especially personal data dispersed
in multiple data sources, presents enormous opportunities and insights
for businesses to explore and leverage the value of linked and integrated
data. However, privacy concerns impede sharing or exchanging data for
linkage across different organizations. Privacy-preserving record linkage
(PPRL) aims to address this problem by identifying and linking records
that correspond to the same real-world entity across several data sources
held by different parties without revealing any sensitive information
about these entities. PPRL is increasingly being required in many real-
world application areas. Examples range from public health surveillance
to crime and fraud detection, and national security. PPRL for Big Data
poses several challenges, with the three major ones being (1) scalability
to multiple large databases, due to their massive volume and the flow of
data within Big Data applications, (2) achieving high quality results of
the linkage in the presence of variety and veracity of Big Data, and (3)
preserving privacy and confidentiality of the entities represented in Big
Data collections. In this chapter, we describe the challenges of PPRL
in the context of Big Data, survey existing techniques for PPRL, and
provide directions for future research.
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1 Introduction

With the Big Data revolution, many organizations collect and process datasets
that contain many millions of records to analyze and mine interesting patterns
and knowledge in order to empower efficient and quality decision making [28,
53]. Analyzing and mining such large datasets often require data from multi-
ple sources to be linked and aggregated. Linking records from different data
sources with the aim to improve data quality or enrich data for further analysis
is occurring in an increasing number of application areas, such as in healthcare,
government services, crime and fraud detection, national security, and business
applications [28, 52]. Effective ways of linking data from different sources have
also played an increasingly important role in generating new insights for popu-
lation informatics in the health and social sciences [100].
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For example, linking health databases from different organizations facilitates
quality health data mining and analytics in applications such as epidemiologi-
cal studies (outbreak detection of infectious diseases) or adverse drug reaction
studies [20, 117]. These applications require data from several organizations to
be linked, for example human health data, travel data, consumed drug data, and
even animal health data [38]. Linked health databases can also be used for the
development of health policies in a more efficient and effective way compared to
traditionally used time-consuming survey studies [37, 89].

Record linkage techniques are also being used by national security agen-
cies and crime investigators for effective identification of fraud, crime, or terror-
ism suspects [74, 125, 168]. Such applications require data from law enforcement
agencies, immigration departments, Internet service providers, businesses, as well
as financial institutions [125].

In recent time, record linkage is increasingly being required by social scien-
tists in the field of population informatics to study insights into our society from
‘social genome’ data, the digital traces that contain person-level data about so-
cial beings [100]. The ‘Beyond 2011’ program by the Office for National Statistics
in the UK, for example, has carried out research to study different possible ap-
proaches to producing population and socio-demographics statistics for England
and Wales by linking data from several sources [56].

Record linkage within a single organization does not generally involve privacy
and confidentiality concerns (assuming there are no internal threats within the
organization and the linked data are not being revealed outside the organiza-
tion). An example application is the deduplication of a customer database by a
business using record linkage techniques for conducting effective marketing ac-
tivities. However, in many countries record linkage across several organizations,
as required in the above example applications, might not allow the exchange or
the sharing of database records between organizations due to laws or regulations.
Some example Acts that describe the legal restrictions of disclosing personal or
sensitive data are: (1) the Data-Matching Program Act in Australia3, (2) the
European Union (EU) Personal Data Protection Act in Europe4, and (3) the
Health Insurance Portability and Accountability Act (HIPAA) in the USA5.

The privacy requirements in the record linkage process have been addressed
by developing ‘privacy-preserving record linkage’ (PPRL) techniques, which aim
to identify matching records that refer to the same entities in different databases
without compromising privacy and confidentiality of these entities. In a PPRL
project, the database owners (or data custodians) agree to reveal only selected
information about records that have been classified as matches among each other,
or to an external party, such as a researcher [165]. However, record linkage re-
quires access to the actual values of certain attributes.

3 https://www.oaic.gov.au/privacy-law/other-legislation/government-data-matching
[Accessed: 15/06/2016]

4 http://ec.europa.eu/justice/data-protection/index en.htm [Accessed: 15/06/2016]
5 http://www.hhs.gov/ocr/privacy/ [Accessed: 15/06/2016]
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Known as quasi-identifiers (QIDs), these attributes need to be common in
all databases to be linked and represent identifying characteristics of entities to
allow matching of records. Examples of QIDs are first and last names, addresses,
telephone numbers, or dates of birth. Such QIDs often contain private and confi-
dential information of entities that cannot be revealed, and therefore the linkage
has to be conducted on masked (encoded) versions of the QIDs to preserve the
privacy of entities. Several masking techniques have been developed (as we will
describe in Sect. 3.4), using two different types of general approaches: (1) secure
multi-party computation (SMC) [112] and (2) data perturbation [88].

Leveraging the tremendous opportunities that Big Data can provide for busi-
nesses comes with the challenges that PPRL poses, including scalability, quality,
and privacy. Big Data implies enormous data volume as well as massive flows (ve-
locity) of data, leading to scalability challenges even with advanced computing
technology. The variety and veracity aspects of Big Data require biases, noise,
variations and abnormality in data to be considered, which makes the linkage
process more challenging. With Big Data containing massive amounts of per-
sonal data, linking and mining data may breach the privacy of those represented
by the data. A practical PPRL solution that can be used in real-world appli-
cations should therefore address these challenges of scalability, linkage quality,
and privacy. A variety of PPRL techniques has been developed over the past two
decades, as surveyed in [154, 165]. However, these existing approaches for PPRL
fall short in providing a sound solution in the Big Data era by not addressing
all of the Big Data challenges. Therefore, more research is required to leverage
the huge potential that linking databases in the era of Big Data can provide for
businesses, government agencies, and research organizations.

In this chapter, we review the existing challenges and techniques, and discuss
research directions of PPRL for Big Data. We provide the preliminaries in Sect. 2
and review existing privacy techniques for PPRL in Sect. 3. We then discuss the
scalability challenge and existing approaches that address scalability of PPRL in
Sect. 4. In Sect. 5, we describe the challenges and existing techniques of PPRL
on multiple databases, which is an emerging research avenue that is being in-
creasingly required in many Big Data applications. In Sect. 6 we discuss research
directions in PPRL for Big Data, and in Sect. 7 we conclude this chapter with
a brief summary of the topic covered.

2 Background

Building on the introduction to record linkage and privacy-preserving record
linkage (PPRL) in Sect. 1, we now present background material that contributes
to the understanding of the preliminaries. We describe the basic concepts and
challenges in Sect. 2.1, and then describe the process of PPRL in Sect. 2.2.

2.1 Overview and Challenges of PPRL

Record linkage is a widely used data pre-processing and data cleaning task where
the aim is to link and integrate records that refer to the same entity from two or
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ID Given nameSurname DOB Gender Address Loan typeBalance

6723 peter robert 20.06.72 M 16 Main Street 2617 Mortgage 230,000
8345 smith roberts 11.10.79 M 645 Reader Ave 2602 Personal 8,100
9241 amelia millar 06.01.74 F 49E Applecross Rd 2415 Mortgage 320,750

Table 1. Example bank database.

PID Last nameFirst nameAge Address SexPressure Stress Reason

P1209 roberts peter 41 16 Main St 2617 m 140/90 high chest pain
P4204 miller amelia 39 49 Aplecross Road 2415 f 120/80 high headache
P4894 sieman jeff 30 123 Norcross Blvd 2602 m 110/80 normal checkup

Table 2. Example health database.

multiple disparate databases. The record pairs (when linking two databases) or
record sets (when linking more than two databases) are compared and classified
as ‘matches’ by a linkage model if they are assumed to refer to the same entity,
or as ‘non-matches’ if they are assumed to refer to different entities [26, 54]. The
frequent absence of unique entity identifiers across the databases to be linked
makes it impossible to use a simple SQL-join [30], and therefore linkage requires
sophisticated comparisons between a set of QIDs (such as names and addresses)
that are commonly available in the records to be linked. However, these QIDs
often contain personal information and therefore revealing or exchanging them
for linkage is not possible due to privacy and confidentiality concerns.

As an example scenario, assume a demographer who aims to investigate how
mortgage stress (having to pay large sums of money on a regular basis to pay off
a house) is affecting people with regard to their mental and physical health. This
research will require data from financial institutions as well as hospitals as shown
in Tables 1 and 2. Neither of these organizations is likely willing or allowed by law
to provide their databases to the researcher. The researcher only requires access
to some attributes of the records (such as loan type, balance amount, blood
pressure, and stress level) that are linked across these databases, but not the
actual identities of the individuals that were linked. However, personal details
(such as name, age or date of birth, gender, and address) are needed as QIDs to
conduct the linkage due to the absence of unique identifiers across the databases.

As illustrated in the above example application (shown in Tables 1 and 2),
linking records in a privacy-preserving context is important, as sharing or ex-
changing sensitive and confidential personal data (contained in QIDs of records)
between organizations is often not feasible due to privacy concerns, legal restric-
tions, or commercial interests. Therefore, databases need to be linked in such
ways that no sensitive information is being revealed to any of the organizations
involved in a cross-organizational linkage project, and no adversary is able to
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learn anything about these sensitive data. This problem has been addressed by
the emerging research area of PPRL [165].

The basic ideas of PPRL techniques are to mask (encode) the databases at
their sources and to conduct the linkage using only these masked data. This
means no sensitive data are ever exchanged between the organizations involved
in a PPRL protocol, or revealed to any other party. At the end of such a PPRL
process, the database owners only learn which of their own records match with a
high similarity with records from the other database(s). The next steps would be
exchanging the values in certain attributes of the matched records (such as loan
type, balance amount, blood pressure, and stress level in the above example)
between the database owners, or sending selected attribute values to a third
party, such as a researcher who requires the linked data for their project [165].
Recent research outcomes and experiments conducted in real health data linkage
validate that PPRL can achieve linkage quality with only small loss compared
to traditional record linkage using unencoded QIDs [134, 136].

Using PPRL for Big Data involves many challenges, among them the follow-
ing three key challenges need to be addressed to make PPRL viable for Big Data
applications:

1. Scalability: The number of comparisons required for classifying record pairs
or sets equals to the product of the size of the databases that are linked. This
is a performance bottleneck in the record linkage process since it potentially
requires comparison of all record pairs/sets using expensive comparison func-
tions [9, 33]. Due to the increasing size of Big Data (volume), comparing all
records is not feasible in most real-world applications. Blocking and filtering
techniques have been used to overcome this challenge by eliminating as many
comparisons between non-matching records as possible [9, 29, 149].

2. Linkage quality: The emergence of Big Data brings with it the challenge of
dealing with typographical errors and other variations in data (variety and
veracity) making the linkage more challenging. The exact matching of QID
values, which would classify pairs or sets of records as matches if their QIDs
are exactly the same and as non-matches otherwise, will likely lead to low
linkage accuracy in the presence of real-world data errors. In addition, the
classification models used in record linkage should be effective and accurate
in classifying matches and non-matches [33]. Therefore, for practical record
linkage applications, techniques are required that facilitate both approximate
matching of QID values for comparison, as well as effective classification of
record pairs/sets for high linkage accuracy.

3. Privacy: The privacy-preserving requirement in the record linkage process
adds a third challenge, privacy, to the two main challenges of scalability
and linkage quality [165]. Linking Big Data containing massive amounts of
personal data generally involves privacy and confidentiality issues. Privacy
needs to be considered in all steps of the record linkage process as only
the masked (or encoded) records can be used, making the task of linking
databases across organizations more challenging. Several masking techniques
have been used for PPRL, as we will discuss in detail in Sect. 3.4.
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Fig. 1. Outline of the general PPRL process as discussed in Sect. 2.2. The steps shown
in dark outlined boxes need to be conducted on masked database records, while dotted
arrows show alternative data flows between steps.

2.2 The PPRL Process and Techniques Used

In this section we discuss the steps and the techniques used in the PPRL process,
as shown in Fig. 1.

Data Pre-processing and Masking: The first important step for quality
linkage outcomes is data pre-processing. Real-world data are often noisy, incom-
plete and inconsistent [8, 128], and they need to be cleaned in this step by filling
in missing data, removing unwanted values, transforming data into well-defined
and consistent forms, and resolving inconsistencies in data representations and
encodings [28, 36]. In PPRL, data masking (encoding) is an additional step. Data
pre-processing and masking can be conducted independently at each data source.
However, it is important that all database owners (or parties) who participate
in a PPRL project conduct the same data pre-processing and masking steps on
the data they will use for linking. Some exchange of information between the
parties about what data pre-processing and masking approaches they use, as
well as which attributes to be used as QIDs, is therefore required [165].

Blocking/filtering: Blocking/filtering is the second step of the process, which
is aimed at reducing the number of comparisons that need to be conducted
between records by pruning as many pairs or sets of records as possible that
unlikely correspond to matches [9, 29]. Blocking groups records according to a
blocking criteria (blocking key) such that comparisons are limited to records in
the same (or similar) blocks, while filtering prunes potential non-matches based
on their properties (e.g. length differences of QIDs) [29]. The output of this step
are candidate record pairs (or sets) that contain records that are potentially
matching, which need to be compared in more detail. Blocking/filtering can
either be conducted on masked records or locally by the database owners on
unmasked records. The scalability challenge of PPRL has been addressed by
several recent approaches using private blocking and filtering techniques [46, 79,
131, 133, 149, 150, 159, 164], as will be described in Sects. 4 and 5.1.

Comparison: Candidate record pairs (or sets) are compared in detail in the
comparison step using comparison (or similarity) functions [31]. Various compar-
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ison functions have been used in record linkage including Levenshtein edit dis-
tance, Jaro-Winkler comparison, Soft-TFIDF string comparison, and set-based
comparison using the Overlap, Dice, or Jaccard coefficient [28]. These comparison
functions provide a numerical value representing the similarity of the compared
QID values, often normalized into the [0, 1] interval where a similarity of 1 cor-
responds to two values being exactly the same, and 0 means two values being
completely different. Several QIDs are normally used when comparing records,
resulting in one weight vector for each compared record pair that contains the
numerical similarity values of all compared QIDs.

The QIDs of records often contain variations and errors, and therefore sim-
ply masking these values with a secure one-way hash-encoding function (as will
be described in Sect. 3.4) and comparing the masked values will not result in
high linkage quality for PPRL [35, 122]. A small variation in a pair of QID values
will lead to completely different hash-encoded values [35], which enables only ex-
actly matching QID values to be identified with such a simple masking approach.
Therefore, an effective masking approach for securely and accurately calculat-
ing the approximate similarity of QID values is required. Several approximate
comparison functions have been adapted into a PPRL context, including the Lev-
enshtein edit distance [77] and the Overlap, Dice, or Jaccard coefficients [165].

Classification: In the classification step, the weight vectors of the compared
candidate record pairs (or sets) are given as input to a decision model which
will classify them into matches, non-matches, and possible matches [33, 54, 64],
where the latter class is for cases where the classification model cannot make
a clear decision. A widely used classification approach for record linkage is the
probabilistic method developed by Fellegi and Sunter in the 1960s [54]. In this
model, the likelihood that a pair (or set) of records corresponds to a match or a
non-match is modelled based on a-priori error estimates on the data, frequency
distributions of QID values, as well as their similarity calculated in the com-
parison step [28]. Other classification techniques include simple threshold-based
and rule-based classifiers [28]. Most PPRL techniques developed so far employ
a simple threshold-based classification [165].

Supervised machine learning approaches, such as support vector machines
and decision trees [14, 25, 51, 52], can be used for more effective and accurate
classification results. These require training data with known class labels for
matches and non-matches to train the decision model. Once trained, the model
can be used to classify the remaining unlabelled pairs/sets of records. Such train-
ing data, however, are often not available in real record linkage applications, es-
pecially in privacy-preserving settings [28]. Alternatively, semi-supervised tech-
niques (such as active learning-based techniques [3, 11, 169]), that actively use
examples manually labeled by experts to train and improve the decision model,
need to be developed for PPRL. Recently developed advanced classification mod-
els, such as (a) collective linkage [13, 75] that considers relational similarities
with other records in addition to QID similarities, (b) group linkage [123] that
calculates group of records’ similarities based on pair-wise similarities, and (c)
graph-based linkage [59, 67, 75] that considers the structure between groups of
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records, can achieve high linkage quality at the cost of higher computational
complexity. However, these advanced classification techniques have not been ex-
plored for PPRL so far.

Clerical review: The record pairs/sets that are classified as possible matches
require a clerical review process, where these pairs are manually assessed and
classified into matches or non-matches [171]. This is usually a time-consuming
and error-prone process which depends upon experience of the experts who con-
duct the review. Active learning-based approaches can be used for clerical re-
view [3, 11, 169]. However, clerical review in its current form is not possible in
a PPRL scenario since the actual QID values of records cannot be inspected
because this would reveal sensitive private information. Recent work in PPRL
suggests an interactive approach with human-machine interaction to improve
the quality of linkage results without compromising privacy [101].

Evaluation: The final step in the process is the evaluation of the complexity,
quality, and privacy of the linkage to measure the applicability of a linkage
project in an application before implementing it into an operational system. A
variety of evaluation measures have been proposed [29, 33]. Given in a practical
record linkage application the true match status of the compared record pairs
are unlikely to be known, measuring linkage quality is difficult [6, 33]. How to
evaluate the amount of privacy protection using a set of standard measures is still
an immature aspect in the PPRL literature. Vatsalan et al. recently proposed
a set of evaluation measures for privacy using probability of suspicion [162].
Entropy and information gain, between unmasked and masked QID values, have
also been used as privacy measures [46].

Tools: Different record linkage approaches have been implemented within a
number of tools. Koepcke and Rahm provided a detailed overview of eleven such
tools in [96] both categories of with and without the use of learning-based (super-
vised) classification. The comparative evaluation study [97] benchmarks selected
tools from both categories for four real-life test cases. It is found that learning-
based approaches achieve generally better linkage quality especially for complex
tasks requiring the combination of several attribute similarities. Current tools for
link discovery, i.e., matching entities between sources of linked open data web,
are surveyed in [120]. A web-based tool was recently developed to demonstrate
several multi-party PPRL approaches (as will be described in Section 5) [132].

3 Privacy Aspects and Techniques for PPRL

Several dimensions of privacy need to be considered for PPRL, the four main
ones being: (1) the number of parties and their roles, (2) adversary models, (3)
privacy attacks, and (4) data masking or encoding techniques. In Sects. 3.1 -
3.4, we describe these four privacy dimensions, and in Sect. 3.5 we provide an
overview of Bloom filter-based data masking, a technique widely used in PPRL.
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Fig. 2. Outline of PPRL protocols with (left) and without (right) a linkage unit (also
known as three-party and two-party protocols, respectively).

3.1 PPRL Scenarios

PPRL techniques for linking two databases can be classified into those that re-
quire a linkage unit for performing the linkage and those that do not. The former
are known as ‘three-party protocols’ and the latter as ‘two-party protocols’ [24,
27, 167]. In three-party protocols, a (trusted) third party acts as the linkage unit
to conduct the linkage of masked data received from the two database own-
ers, while in two-party protocols only the two database owners participate in
the PPRL process. A conceptual illustration and the main communication steps
involved in these protocols are shown in Fig. 2.

A further characterization of PPRL techniques is if they allow the linking of
data from more than two data sources (multi-party) or not. Multi-party PPRL
techniques identify matching record sets (instead of record pairs) from all parties
(more than two) involved in a linkage, or from sub-sets of parties. Only limited
work has been so far conducted on multi-party PPRL due to its increased chal-
lenges, as we will describe in Sect. 5. Similar to linking two databases, multi-party
PPRL may or may not use a linkage unit to perform the linkage.

Protocols that do not require a linkage unit are more secure in terms of
collusion (described below) between one of the database owners and the linkage
unit. However, they generally require more complex techniques to ensure that
the database owners cannot infer any sensitive information about each others’
data during the linkage process.

3.2 Adversary Models

Different adversary models are assumed in PPRL techniques, including the most
commonly used honest-but-curious (HBC) and malicious models [165].

1. Honest-but-curious (HBC) or semi-honest parties are curious in that
they try to find out as much as possible about another party’s input to a
protocol while following the protocol steps [66, 112]. If all parties involved in a
PPRL protocol have no new knowledge at the end of the protocol above what
they would have learned from the output, which is generally the record pairs
(certain attributes) classified as matches, then the protocol is considered to
be secure in the HBC model. However, it is important to note that HBC
does not prevent parties from colluding with each other with the aim to



10 Privacy-Preserving Record Linkage for Big Data

learn about another party’s sensitive information [112]. Most of the existing
PPRL solutions assume the HBC adversary model.

2. Malicious parties can behave arbitrarily in terms of refusing to participate
in a protocol, not following the protocol in the specified way, choosing arbi-
trary values for their data input, or aborting the protocol at any time [111].
Limited work has been done in PPRL for the malicious adversary model [58,
106, 119]. Evaluating privacy under this model is very difficult, because there
exist potentially unpredictable ways for malicious parties to deviate from the
protocol that cannot be identified by an observer [21, 63, 112].

3. Covert and accountable computing models are advanced adversary
models developed to overcome the problems associated with the HBC and
malicious models. The HBC model is not sufficient in many real-world ap-
plications because it is suitable only when the parties essentially trust each
other. On the other hand, the solutions that can be used with malicious
adversaries are generally more complex and have high computation and
communication complexities, making their applications not scalable to large
databases. The covert model guarantees that the honest parties can detect
the misbehavior of an adversary with high probability [4], while the account-
able computing model provides accountability for privacy compromises by
the adversaries without excessive complexity and cost that incur with the
malicious model [73]. Research is required towards transforming existing
HBC or malicious PPRL protocols into these models and proving privacy of
solutions under these models.

3.3 Attacks

The privacy attacks or vulnerabilities that a PPRL technique is susceptible to
allow theoretical and empirical analysis of the privacy guarantees provided by a
PPRL technique. The main privacy attacks of PPRL are:

1. Dictionary attack is possible with masking functions, where an adversary
masks a large list of known values using various existing masking functions
until a matching masked value is identified [165]. A keyed masking approach,
such as the Hashed Message Authentication Code (HMAC) [98], can be used
to prevent dictionary attacks. With HMAC the database owners exchange
a secret code (string) that is added to all database values before they are
masked. Without knowing the secret key, a dictionary attack is unlikely to
be successful.

2. Frequency attack is still possible even with a keyed masking approach [165],
where the frequency distribution of a set of masked values is matched with
the distribution of known unmasked values in order to infer the original
values of the masked values [113].

3. Cryptanalysis attack is a special category of frequency attack that is ap-
plicable to Bloom filter-based data masking techniques. As Kuzu et al. [102]
have shown, depending upon certain parameters of Bloom filter masking,
such as the number of hash functions employed and the number of bits in
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a Bloom filter, using a constrained satisfaction solver allows the iterative
mapping of individual masked values back to their original values.

4. Composition attack can be successful by combining knowledge from more
than one independent masked datasets to learn sensitive values of certain
records [61]. An attack on distance-preserving perturbation techniques [155],
for example, allows the original values to be re-identified with high level of
confidence if knowledge about mutual distances between values is available.

5. Collusion is another vulnerability associated with multi-party or three-
party PPRL techniques, where some of the parties involved in the protocol
work together to find out about another database owner’s data. For example,
one or several database owners collude with the linkage unit or a sub-set of
database owners collude among them to learn about other parties’ data.

3.4 Data Masking or Encoding

In PPRL, the linkage has to be conducted on a masked or encoded version of the
QIDs to preserve the privacy of entities. Data masking (encoding) transforms
original data in such a way that there exists a specific functional relationship be-
tween the original data and the masked data [55]. Several data masking functions
have been used to preserve privacy while allowing the linkage. We categorize ex-
isting data masking techniques into three: (1) auxiliary, (2) blocking, and (3)
matching techniques. Auxiliary techniques are the ones used as helper functions
in PPRL, while blocking and matching categories are used for private blocking
and matching (comparison and classification), respectively. In the following we
describe key techniques in each of these three categories.

– Auxiliary:
1. Pseudo random function (PRF) is a deterministic secure function

that, when given an n-bit seed k and an n-bit argument x, returns an n-
bit string fk(x) such that it is infeasible to distinguish fk(x) for different
random k from a truly random function [115]. In PPRL, PRFs have
been used to generate random secret values to be shared by a group of
parties [58, 122, 151].

2. Reference values constructed either with random faked values, or val-
ues that for example are taken from a public telephone directory, such as
all unique surnames and town names, have been used in several PPRL
approaches [78, 124, 141, 173]. Such lists of reference values can be used
to calculate the distances or similarities between QID values in terms of
the distances or similarities between QID and reference values.

3. Noise addition in the form of extra records or QID values that are
added to the databases to be linked is a data perturbation technique [87]
that can be used to overcome the problem of frequency attacks on PPRL
protocols [44, 101]. An example is shown in Fig. 3. Adding extra records,
however, incurs a cost of lower linkage quality (due to false matches)
and scalability (due to extra records that need to be processed and
linked) [80]. Section 4.1 discusses noise addition for private blocking.
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4. Differential privacy [50] has emerged as an alternative to random
noise addition in PPRL. Only the perturbed results (with noise) of a
set of statistical queries are disclosed to other parties, such that the
probability of holding any property on the results is approximately the
same whether or not an individual value is present in the database [50]. In
recent times, differential privacy has been used in statistical (e.g. counts
or frequencies) microdata publication as well as in PPRL [16, 69, 104].

– Blocking:

1. Phonetic encoding, such as Soundex, NYSIIS or Double-Metaphone,
groups values together that have a similar pronunciation [23] in a one-
to-many mapping, as shown in Fig. 3. The main advantage of using a
phonetic encoding for PPRL is that it inherently provides privacy [80],
reduces the number of comparisons, and thus increases scalability [23],
and supports approximate matching [23, 80]. Two drawbacks of phonetic
encodings are that they are language dependent [127, 146] and are vulner-
able to frequency attacks [162]. Section 4.1 discusses phonetic encoding-
based blocking in more details.

2. Generalization techniques overcome the problem of frequency attacks
on records by generalizing records in such a way that re-identification of
individual records from the masked data is not feasible [107, 116, 152].
k-anonymity is a widely used generalization technique for PPRL [76, 78,
119], where a database is said to be k-anonymous if every combination
of masked QID values (or blocking key values) is shared by at least k
records in the database [152]. Other generalization techniques include
value generalization hierarchies [68], top-down specialization [119], and
binning [109, 163].

– Matching:

1. Secure hash-encoding is one of the first techniques used for PPRL [17,
49, 126]. The widely known Message Digest (like MD5) and Secure Hash
Algorithms (like SHA-1 and SHA-2) [143] are one-way hash-encoding
functions [98, 143] that can be used to mask values into hash-codes (as
shown in Fig. 3) such that having access to only hash-codes will make
it nearly impossible with current computing technology to infer their
original values. A major problem with this masking technique is, how-
ever, that only exact matches can be found [49]. Even a single character



Privacy-Preserving Record Linkage for Big Data 13

difference between a pair of original values will result in two completely
different hash-codes.

2. Statistical linkage key (SLK) is a derived variable generated from
components of QIDs. The SLK-581 was developed by the Australian In-
stitute of Health and Welfare (AIHW) to link records from the Home
and Community Care datasets [140]. The SLK-581 consists of the second
and third letters of first name, the second, third and fifth letters of sur-
name, full date of birth, and sex. Similarly, SLK consisting of month and
year of birth, sex, zipcode, and initial of first name was used for linking
the Belgian national cancer registry [157]. However, as a recent study
has shown these SLK-based masking provides limited privacy protection
and poor sensitivity [135].

3. Embedding space embeds QID values into a multi-dimensional metric
space (such as Euclidean [16, 141, 173] or Hamming [82]) while preserving
the distances between these values using a set of pivot values that span
the multi-dimensional space. A drawback with this approach is that it
is often difficult to determine a good dimension of the metric space and
select suitable pivot values.

4. Encryption schemes, such as commutative [1] and homomorphic [93]
encryption, are used in PPRL techniques to allow secure multi-party
computation (SMC) in such a way that at the end of the computation
no party knows anything except its own input and the final results of
the computation [38, 63, 112]. The secure set union, secure set intersec-
tion, and secure scalar product, are the most commonly used SMC tech-
niques for PPRL [38, 143]. A drawback of these cryptographic encryption
schemes for SMC, however, is that they are computationally expensive.

5. Bloom filter is a bit vector data structure into which values are mapped
by using a set of hash functions. Bloom filters have been widely used
in PPRL for private matching of records as they provide a means of
privacy assurance [46, 47, 77, 105, 147, 170], if effectively used [103]. We
will discuss Bloom filter masking in more detail in the following section.

6. Count-min sketches are probabilistic data structures (similar to Bloom
filters) that can be used to hash-map values along with their frequencies
in a sub-linear space [41]. Count-min sketches have been used in PPRL
where the frequency of occurrences of a matching pair/set also needs
to be identified [81, 139]. However, these approaches only support exact
matching of categorical values.

Other privacy aspects in a PPRL project are public / private key pairs that
are required for secure generation and exchange of keys, employee confidential-
ity agreements to reduce internal threats, as well as encrypted communication,
secure connections, and secure servers to reduce external threats.

3.5 Bloom filters

Bloom filter encoding has been used as an efficient masking technique in a va-
riety of PPRL approaches [46, 105, 130, 148, 149, 158, 160]. A Bloom filter bi is
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Fig. 4. An example similarity (Dice-coefficient) calculation of Bloom filters for approx-
imate matching using Schnell et al.’s approach [147] (taken from [165]).

a bit vector data structure of length l bits where all bits are initially set to 0.
k independent hash functions, h1, h2, . . . , hk, each with range 1, . . . l, are used
to map each of the elements s in a set S into the Bloom filter by setting the
bit positions h1(s), h2(s), . . . , hk(s) to 1. The Bloom filter was originally pro-
posed by Bloom [15] for efficiently checking set membership [18]. Lai et al. [105]
first adopted the concept of using Bloom filters in PPRL for identifying exactly
matching records across multiple databases, as will be described in Sect. 5.2.

Schnell et al. [148] were the first to propose a method for approximate match-
ing in PPRL using Bloom filters. In their approach, the character q-grams (sub-
strings of length q) of QID values of each record in the databases to be linked are
hash-mapped into a Bloom filter using k independent hash functions. The result-
ing Bloom filters are sent to a linkage unit that calculates the similarity of Bloom
filters using a set-based similarity function, such as the Dice-coefficient [28]. The
Dice-coefficient of two Bloom filters (b1 and b2) is calculated as:

Dice sim(b1, b2) =
2× c

(x1 + x2)
, (1)

where c is the number of common bit positions that are set to 1 in both Bloom
filters (common 1-bits), and xi is the number of bit positions set to 1 in bi
(1-bits), i ∈ {1, 2}. An example similarity calculation is illustrated in Fig. 4.

Bloom filters are susceptible to cryptanalysis attacks, as shown by Kuzu et
al. [102]. Using a constrained satisfaction solver, such attacks allow the iterative
mapping of individual hash-encoded values back to their original values depend-
ing upon the number of hash functions employed and the length of a Bloom filter.
Different Bloom filter encoding methods have been proposed in the literature to
overcome such cryptanalysis attacks and improve linkage quality. Schnell et al.’s
proposed method of hash-mapping all QID values of a record into one composite
Bloom filter is known as Cryptographic Long-term Key (CLK) encoding [148].

Durham et al. [48] investigated composite Bloom filter encoding in detail by
first hash-mapping different attributes into attribute-level Bloom filters of differ-
ent lengths. These lengths depend upon the weights [54] of QID attributes that
are calculated using the discriminatory power of attributes in separating matches
from non-matches using a statistical approach. These attribute-level Bloom fil-
ters are then combined into one record-level Bloom filter (known as RBF) by
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sampling bits from each attribute-level Bloom filter. Vatsalan et al. [162] recently
introduced a hybrid method of CLK and RBF (known as CLKRBF) where the
Bloom filter length is kept to be the same (as in CLK) while using different num-
bers of hash functions to map different attributes into the Bloom filter based on
their weights (to improve matching quality as in RBF).

Several non-linkage unit-based approaches have also been proposed for PPRL
using Bloom filter masking, where the database owners (without a linkage unit)
collaboratively (or distributively) calculate the similarity of Bloom filters [105,
158, 160]. A recent work proposed novel Bloom filter-based masking techniques
that allow approximate matching of numerical data in PPRL [161]. Instead of
hash-mapping q-grams of a string, the proposed approaches hash-map a set of
neighbouring numerical values to allow approximate matching.

4 Scalability Techniques for PPRL

PPRL for Big Data needs to scale to very large data volumes of many millions
of records from multiple sources. As for standard record linkage, the main tech-
niques for high efficiency are to reduce the search space by blocking and filtering
approaches and to perform record linkage in parallel on many processors.

These three kinds of optimization are largely orthogonal so that they may
be combined to achieve maximal efficiency. Blocking is defined on selected at-
tributes (blocking keys) that may be different from the QID attributes used for
comparison, for example zip code. It partitions the records in a database into
several blocks or clusters such that comparison can be restricted to the records
of the same block, for example persons with the same zip code. Other blocking
approaches like sorted neighborhood work differently but are similar in spirit.
Filtering is an optimization for the particular comparison approach which opti-
mizes the evaluation of a specific similarity measure for a predefined similarity
threshold to be met by matching records. It thus utilizes different filtering or
indexing techniques to eliminate pairs (or sets) of records that cannot meet the
similarity threshold for the selected similarity measures [28, 43]. Such techniques
can be applied for comparison within blocks, i.e., filtering could be utilized in
addition to blocking.

In the next two subsections, we discuss several proposed blocking approaches
and filtering approaches for PPRL. We then briefly discuss parallel PPRL which
has found only limited attention so far. We will focus on PPRL with two data
sources (multi-party PPRL is discussed in Sect. 5). We will furthermore mostly
assume the use of a dedicated linkage unit (as shown on the left-hand side in
Fig. 2) as well as the masking of records using Bloom filters (as described in
Sect. 3.5). Note that a linkage unit is ideally suited for high performance as it
requires minimal communication between the database owners, and the linkage
unit can utilize a high performance cluster for parallel PPRL as well as blocking
and filtering techniques.
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4.1 Blocking Techniques

Blocking aims at reducing the search space for linkage by avoiding the compari-
son between every pair of records and its associated quadratic complexity. There
are numerous blocking strategies [28] that mostly group records into disjoint or
overlapping blocks such that only records within the same block need to be com-
pared with each other. Standard blocking uses the values of a so-called blocking
key to partition all records into disjoint blocks. The blocking key values (BKVs)
may be the values of a selected attribute or the result of a function on one or
several attribute values (e.g. the concatenation of the first two letters of last
name and year of birth). Other blocking approaches include canopy clustering
that results in overlapping clusters or blocks, and sorted neighborhood that sorts
records according to a sorting key and only compares neighboring records within
a certain window [28]. Comparing records only within the predetermined blocks
may result in the loss of some matches especially if some BKVs are incorrect
or missing. To improve recall a multi-pass blocking approach can be utilized,
where records are blocked according to different blocking keys, at the cost of an
increased number of additional comparisons.

Blocking for PPRL is based on the known approaches for regular record
linkage but aims at improving privacy. A general approach with a central linkage
unit is to apply a previously agreed on blocking strategy at the database owners
on the original records. Then all records within the different blocks are masked
(encoded), e.g. using Bloom filters, and sent to the linkage unit. The linkage
unit can then compare the masked records block-wise with each other. In the
following, we present selected blocking approaches for PPRL and discuss results
from a comparative evaluation of different blocking schemes.

Phonetic Blocking: Blocking records based on their phonetic code is a widely
used technique in record linkage [28]. The basic idea is to encode the values of a
blocking key attribute (e.g. last name) with a phonetic function (as discussed in
Sect. 3.4) such as Soundex or Metaphone [28]. All records with the same phonetic
code, i.e. with a similar pronunciation, are then assigned to the same block. The
use of phonetic blocking for PPRL has been used in several PPRL approaches,
in particular in [77, 80]. Karakasidis et al. in [77] use a multi-pass approach with
both Soundex and Metaphone encodings to achieve a good recall. Furthermore,
they add fake records to the blocks for improved privacy.

As discussed in Sect. 3.4, adding fake records improves privacy but adds over-
head in the form of extra comparisons between records and can reduce linkage
quality due to the introduction of false matches. A theoretical analysis of the
impact of adding fake records for Soundex-based blocking is presented in [80].
The authors study the effect of fake records on the so-called relative informa-
tion gain which is related to the entropy measure. A high entropy within blocks
caused by fake records introduces a high uncertainty and thus a low information
gain [162]. The authors also study different methods to inject fake records to
increase entropy. The most flexible of the approaches is based on the concept of
k-anonymity and adds as many fake records that are required to ensure that each
block has at least k records. The approach typically requires only the addition
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of a modest number of fake records; the choice of k also supports finding a good
trade-off between privacy and quality.

Blocking with Reference Values: An alternative to adding fake records for
improving the privacy of blocking is the use of reference values (as discussed in
Sect. 3.4). The reference values can be used at the database owners for clustering
their database records. Comparison can then be restricted to the clusters (blocks)
of the same or similar reference records. Such an approach has been proposed
in [78] based on k nearest neighbor (kNN) clustering. This approach first clusters
the reference values identically at each database owner such that each cluster
contains at least k reference values to ensure k-anonymity; clustering is based
on the Dice-coefficient similarity between values. In the next step, each database
owner assigns its records to the nearest cluster based on the Dice-coefficient
between records and reference values. Finally each database owner sends its
clusters (encoded reference values and records) to the linkage unit which then
compares the records between corresponding clusters.

An alternate proposal utilizes a local sorted neighborhood clustering (SNC-
3P) for improved performance in the blocking phase while retaining the use of
reference values and support for k-anonymity [159]. Each database owner sorts
a shared set of reference values and then inserts its records into the sorted list
according to their sorting key. From the sorted list of reference values and records
the initial Sorted Neighborhood Clusters (SNCs) are determined such that each
cluster contains one reference value and a set of database records. To ensure k-
anonymity, the initial clusters are merged into larger blocks containing at least k
database records. This differs from kNN clustering where k reference records are
needed per cluster. The merging of the initial clusters can be based on similarity
or size constraints. The remaining protocol with sending the encoded records to
the linkage unit for comparison works as for kNN clustering.

An adaptation of SNC-3P for two parties without a linkage unit (SNC-2P)
was presented in [164]. In this approach, the two database owners generate their
reference values independently, so that they end up with two different sets of ref-
erence values. As for SNC-3P, each database owner sorts its reference values, in-
serts its records into the sorted list, builds initial SNCs (with one reference value
and its associated records), and merges these clusters to guarantee k-anonymity.
Afterwards the database owners exchange their reference values. These values
are then merged with the local reference values and sorted. To find candidate
pairs between the sources a sorted neighborhood method with a sliding window
w is applied on these reference values. The window size w determines the number
of reference values originating from each data source, e.g. for w = 2 the sliding
window includes 2 reference values from each data source. In the last step, the
encoded records falling into a window are exchanged for comparison.

LSH-based blocking: Locality-sensitive hashing (LSH) has been proposed to
solve the problem of nearest neighbor search in high dimensional spaces [62,
70]. For blocking, LSH uses a family of hash functions to generate keys used
to partition the records in a database, so that similar records are grouped into
the same block [90]. Durham investigated the use of LSH for private blocking of
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records masked as Bloom filters [46]. She considered two families of hash func-
tions depending on the used distance function (Jaccard or Hamming distance).
For the Jaccard distance, she proposed the use of MinHash functions. A Min-
Hash function hi permutes the bits of a Bloom filter bi and selects from the
permuted Bloom filter the first index position with a set bit (1-bit). By applying
φ MinHash functions we obtain φ index positions which are concatenated to
generate the final MinHash key. So for Bloom filter bi and the family of hash
functions H, we determine key(bi)H = concat(h1(bi), h2(bi), · · · , hφ(bi)), where
hi ∈ H with 1 ≤ i ≤ φ and function concat() concatenates a set of input values.
For the Hamming distance, Durham proposed the use of HLSH hash functions
that select the bit value of a Bloom filter at a random position ρ. In the same
way as MinHash, φ HLSH functions are applied on a Bloom filter bi and the
values of the φ selected bits are concatenated to obtain the final hash key of bi.

Example: Consider two Bloom filters b1 = 1100100011 and b2 = 1100100111,
two permutations p1 = (10, 7, 1, 3, 6, 4, 2, 9, 5, 8) and p2 = (4, 3, 6, 7, 2, 1, 5, 10, 9, 8),
and the MinHash family H1 with two functions h1 = Min(p1(·)) and h2 =
Min(p2(·)), where Min(·) returns the first position of a set bit in the input bit
vector, and pi(·) returns the input bit vector permuted using pi. The application
of h1 and h2 on b1 results in h1(b1) = Min(p1(b1)) = Min(1010001110) = 1 and
h2(b1) = Min(p2(b1)) = Min(0000111110) = 5. Hence the key of b1 in H1 is
key(b1)H1

= concat(h1(b1), h2(b1)) = (1, 5). In the same way we determine the
key of b2, i.e. key(b2)H1 = (1, 5). Hence, for MinHash family H1 records b1 and
b2 are put into the same block and will be compared with each other.

Both families, MinHash and HLSH, depend on two parameters: the number
of hash functions φ as well as the number of passes or iterations µ. Since the
final hash key of a record concatenates φ values, using a high number φ leads
to more homogeneous blocks and better precision (i.e., blocks containing similar
records with higher probability). However a high φ also increases the probability
of missing true matches (reduced recall). This problem is addressed by applying
µ iterations, each with a different set of hash functions. Therefore each record
bi will be hashed to several blocks to allow identifying more true matches.

In [84] the authors present a theoretical analysis of the use of MinHash func-
tions to identify good values for parameters φopt and µopt to efficiently achieve
a good precision and recall. The näıve approach to improve recall is to increase
the number of iterations µ and thus the number of blocks to which records are
assigned. The drawbacks of this method are the high runtime caused by the
computation of the permutations, increased number of record pairs to compare,
and the large space needed to store intermediate results. This observation was
experimentally confirmed in [46]. The choice of the φopt is also complex and
depends on the expected running time (for details see [84]).

Evaluation of Private Blocking Approaches: The relatively large number
of possible blocking approaches requires detailed evaluations regarding their rel-
ative scalability, blocking quality and privacy for different kinds of workloads.
One of the few studies in this respect has been presented by Vatsalan et al. [162].
For scalability they considered runtime and the so-called reduction ratio (RR),
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a value indicating the number of pruned candidate pairs compared to all pos-
sible record pairs (which thus evaluates to what degree the search space is re-
duced). For blocking quality they considered the recall and precision metrics
pair completeness (PC) and pair quality (PQ), respectively [29]. For privacy
they estimated the so-called disclosure risk (DR) measures, which represent the
probability that masked records/QID values can be linked with records or values
in a publicly available dataset.

The evaluation of [162] considers six simulated blocking strategies includ-
ing kNN [78], SNC-3P [159], SNC-2P [164] and LSH blocking [46]. Regarding
blocking runtime, the SNC and LSH schemes performed best. All strategies ex-
cept SNC-2P achieved a very high RR of almost 1. On the other hand, SNC-2P
achieved the best PC. The best trade-off between RR and PC was observed for
LSH. Considering the privacy aspect, SNC-2P was found to have a low DR while
kNN and LSH generally expose the highest DR.

While this study provides interesting results, we see a need for additional
benchmark studies given that further blocking schemes have been developed
more recently and that the relative behavior of each approach depends on nu-
merous parameter settings as well as characteristics of the chosen datasets.

4.2 Filtering Techniques

Almost all proposed PPRL schemes based on Bloom filters aim at identifying the
pairs of bit vectors with a similarity above a threshold. For regular record linkage,
such a threshold-based computation of comparing record pairs is known as a
similarity join [39]. The efficient processing of such similarity joins for different
kinds of similarity measures has been the focus of much research in the past, e.g.
[2, 65, 138, 172]. Several approaches utilize the characteristics of the considered
similarity measure and the prespecified similarity threshold to reduce the search
space thereby speeding up the linkage process. This holds especially for the broad
class of token-based similarity joins where the comparison of records is based on
the set of tokens (e.g. q-grams) of QIDs. In this case, one can exclude all pairs
of records that do not share at least one token. Further proposed optimizations
for such similarity joins include the use of different kinds of filters (for example,
length and prefix filters) and dynamically created inverted indexes [10]. PPJoin
[172] is an efficient approach that includes these kinds of optimizations. Several
filtering approaches also utilize the characteristics of similarity functions for
metric spaces to reduce the search space, in particular the so-called triangle
inequality (see below) [174].

For PPRL, similar filtering (similarity join) approaches are usable but need
to be adapted to the comparison of masked records such as Bloom filters and the
associated similarity measures. For Bloom filters it is relatively easy to apply the
known token-based similarity measures by considering the set bit positions (1-
bits) in the bit vectors as the “tokens”. This has already been shown in Sect. 3.5
for the Dice-coefficient similarity which is based on the degree of overlapping
bit positions. This is also the case for the related Jaccard similarity. For two bit
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vectors b1 and b2 it is defined as follows:

Jacc sim(b1, b2) =
|b1 ∧ b2|
|b1 ∨ b2|

=
|b1 ∧ b2|

|b1|+ |b2| − |b1 ∧ b2|
, (2)

where |bi| denotes the number of set bits in bit vector bi which is also called
its length or cardinality. For the example Bloom filter pair shown in Fig. 4, the
Jaccard similarity is 5/7 = 0.71. In the following, we outline several filtering
approaches that have been proposed for PPRL.

Length Filter: The similarity function Jacc sim (as well as Dice sim) allows
the application of a simple length filter to reduce the search space. This is because
the minimal similarity (overlap of set bits) can only be achieved if the lengths
(number of set bits, i.e. common 1-bits) of the two input records do not deviate
too much. Formally, for two records ri and rj with |ri| ≤ |rj |, it holds that

Jacc sim(ri, rj) ≥ st ⇒ |ri| ≥ dst · |rj |e (3)

For example, two records cannot satisfy a (Jaccard) similarity threshold st = 0.8
if their lengths differ by more than 20%. Hence for a similarity threshold of 0.8,
the length filter would already avoid the two records from the example Bloom
filter pair shown in Fig. 4 without comparing in detail, since Eq. 3 (5 ≥ d0.8·7e =
6) does not hold. The two-party PPRL approach proposed by Vatsalan and
Christen uses such a length filter for Dice-coefficient similarity [158].

PPJoin for PPRL: The privacy-preserving version of PPJoin (called P4Join)
utilizes three filters to reduce the search space: the length filter as well as a
prefix filter and a position filter [149]. The prefix filter is based on the fact that
matching bit vectors need a high degree of overlap in their set bit positions in
order to satisfy a predefined threshold. Pairs of records can thus be excluded from
comparison if they have an insufficient overlap. This overlap test can be limited
to a relatively small subset of bit positions, e.g. in the beginning (or prefix) of the
vectors. To maximize this filter idea, P4Join applies a pre-processing to count
for each bit position the number of records where this bit is set to 1 and by
reordering the positions of all bit vectors in ascending order of these frequency
counts. This way the prefixes of bit vectors contain infrequently set bit positions
reducing the likelihood of an overlap with other bit vectors. The position filter
of P4Join can avoid the comparison of two records even if their prefixes overlap
depending on the prefix positions where the overlap occurs. For more details of
this filter we refer to [149].

As we will see in the comparative evaluation below, the filtering approaches
achieve only a relatively small improvement for PPRL since the filter tests imply
already a certain overhead which is not much less than for the match tests (which
are relatively cheap for Bloom filters). In addition, Bloom filter masking for
PPRL should ideally have 50% of their bits set to 1 in order to make them less
vulnerable to frequency attacks [118], making P4Join less effective.

Multi-bit Trees: The use of multi-bit trees was originally proposed for fast
similarity search in large databases of chemical fingerprints (masked into Bloom
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filters) [99]. A query Bloom filter bq is being searched for in a database to retrieve
all elements whose similarity with bq is above the threshold st. A multi-bit tree
is a binary tree to iteratively assign fingerprints to its nodes based on so-called
match bits. A match bit refers to a specific position of the bit vector and can be 1
or 0: it indicates that all fingerprints in the associated subtree share the specified
match bit. When building up the multi-bit tree, one match bit or multiple such
bits are selected in each step so that the number of unassigned fingerprints can be
roughly split by half. The split is continued as long as the number of fingerprints
per node does not fall under a limit ([99] recommends a limit of 6). The match
bits can then be used for a query fingerprint to determine the maximal possible
similarity for subtrees when traversing the tree and can thereby eliminate many
fingerprints to compare.

As suggested in [5], multi-bit trees can easily be applied for PPRL using
Bloom filters and Jaccard similarity. For two datasets, the larger input dataset
is used to build the multi-bit trees while each record (fingerprint) of the second
dataset is used for searching similar records. The multi-bit approach of [5] par-
titions the fingerprints according to their lengths such that all fingerprints with
the same length belong to the same partition (or bucket). To apply the length
filter, we can then restrict the search for similar fingerprints to the partitions
meeting the length criterion of Eq. 3. Query efficiency is further improved by
organizing all fingerprints of a partition within a multi-bit tree.

In evaluations of [5] and [145] the multi-bit tree approach was found to be
very effective and even better or similarly effective than blocking approaches
such as canopy clustering and sorted neighborhood.

PPRL for Metric Space Similarity Measures: A metric space consists of
a set of data objects and a metric to compute the distance between the objects.
The main property of interest that a metric or distance function d for metric
spaces has to satisfy is the so-called triangle inequality. It requires that for any
objects x, y and z it holds

d(x, z) ≤ d(x, y) + d(y, z) (4)

Distance functions for metric spaces satisfying this property include the
Minkowski distances (for example, Euclidean distance), edit distance, Hamming
distance and Jaccard-coefficient (but not Dice-coefficient) [174]. The triangle in-
equality has been used for private comparison and classification in PPRL using
reference values [124, 163].

The triangle inequality has also been used to reduce the search space for
similarity search and record linkage [7, 12]. In both cases we have to find for
a query object q those similar objects x with a distance d(q, x) lower than or
equal to a maximal distance threshold (or above a minimal similarity threshold)
which can be seen as a radius rad(q) around q in Fig. 5. The triangle equality
allows one to avoid computing the distance between two objects based on their
precomputed distances to a third reference object or pivot, such as object p in
Fig. 5. Utilizing the precomputed distances d(p, q) and d(p, x) we only have to
compute the distance d(q, x) for objects x that satisfy the triangle inequality
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Fig. 5. Triangle inequality: Object y cannot lie within the search radius of query object
q since the difference between d(p, q) and d(p, y) exceeds rad(q) (taken from [150]).

d(p, q)− d(p, x) ≤ rad(q). In all other cases, comparison can be avoided such as
for object y in Fig. 5.

Several alternatives to utilize the triangle inequality to reduce the search
space for PPRL have been studied in [150], in particular for the Hamming dis-
tance which has been shown to be equivalent to the Jaccard similarity [172]. The
best performance was achieved for a pivot-based approach that selects a certain
number of data objects from a sample of the first dataset as pivots and assigns
each other object of the first dataset to its closest pivot. For each pivot, the
maximal distance (radius) for its objects is also recorded. Pivots are iteratively
determined from the sample set of objects such that the object with the greatest
distance to all previously determined pivots becomes the next pivot. The ratio-
nal behind this selection strategy is to have a relatively large distance between
pivots so that searching for similar objects can be restricted to the objects of
relatively few pivots. Determining the pivots from a sample rather than from all
objects limits the overhead of pivot selection. The search for similar (matching)
objects can be restricted to the pivots for which there is a possible overlap with
the radius of the query objects. For the objects of the relevant pivots the triangle
inequality is further used to prune objects from the comparison.

Comparative Evaluation: The performance of pivot-based approaches for
metric similarity measures has been evaluated in [150] and compared with the
use of P4Join and multi-bit trees. The evaluation has been done for synthetically
generated datasets of 100,000 to 500,000 records such that 80% of the records
are in the first dataset and 20% in the second. Bloom filters of length 1,000
bits are used to mask the QIDs of records, and the comparison is based on a
Jaccard similarity threshold of 0.8 or the corresponding Hamming distance for
the metric-space approach.

Table 3 summarizes the runtimes of the different approaches as well as for a
näıve nested loop approach without any filtering (all implemented using Java)
on a standard PC (Intel i7-4770, 3.4GHz CPU with 16 GB main memory). The
results show that both multi-bit trees and P4Join perform similarly but achieve
only modest improvements (less than a factor 2) compared to the näıve nested
loop scheme. By contrast the pivot-based metric space approach achieves order-
of-magnitude improvements. For the largest dataset it only needs 1.7 minutes
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Table 3. PPRL runtime in minutes for different dataset sizes and filtering approaches
(taken from [150]).

Algorithms Datasets
100,000 200,000 300,000 400,000 500,000

NestedLoop 3.8 20.8 52.1 96.8 152.6

Multi-bit Tree 2.6 11.3 26.5 50.0 75.9

P4Join 1.4 7.4 24.1 52.3 87.9

Pivots (Metric Space) 0.2 0.4 0.9 1.3 1.7

and is 40 times faster than using multi-bit trees. A general observation for all
approaches is that the runtimes increase more than linearly (almost quadrati-
cally) with the size of datasets, indicating a potential scalability problem despite
the reduction of the search space. Substantially larger datasets would thus cre-
ate performance problems even for the best filtering approach indicating that
additional runtime improvements are necessary, e.g. by the use of parallel PPRL.

4.3 Parallel PPRL

PPRL in Big Data applications involves the comparison of a large number of
masked records as the main part of the overall execution pipeline. Parallel linkage
on multiple processors aims at improving the execution time proportionally to
the number of processors [42, 91, 92]. This can be achieved by partitioning the set
of all record pairs to be compared, and conducting the comparison of the different
partitions in parallel on different processors. A special case would be to utilize a
blocking approach to compare the records in different blocks in parallel. In the
following we discuss two approaches for parallel PPRL that have been proposed:
one utilizes graphics processors or GPUs for parallel processing within a single
machine, and the other one is based on Hadoop and its MapReduce framework.
Both approaches have also been used for general record linkage.

Parallel PPRL with GPUs: The utilization of Graphical Processing Units
(GPUs) to speed-up similarity computations is a comparatively new approach
[57, 121]. Modern GPUs provide thousands of cores that allow for a massively-
parallel application of the same instruction set to disjoint data partitions. The
availability of frameworks like OpenCL and CUDA simplify the utilization of
GPUs to parallelize general purpose algorithms. The GPU programs (called
kernels) are typically written in a dialect of the general programming language
C. Kernel execution requires the input and output data to be transferred between
the main memory of the host system and the memory of the GPU, and it is
important to minimize the amount of data to be transferred. Further limitations
are that there is no dynamic memory allocation on GPUs (all resources required
by a program need to be allocated a priori) and that only basic data types (e.g.,
int, long, float) and fixed-length data structures (e.g., arrays) can be used.

Despite such limitations, the utilization of GPUs is a promising approach
to speed-up PPRL. This is especially the case for Bloom filter masking where
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Fig. 6. Parallel PPRL with MapReduce using LSH blocking [83], where the MinHash
keys for Bloom filters are computed in the Map phase and records with the same
MinHash signature will be sent to the same Reduce task for matching.

all records are represented as bit vectors of equal length. These vectors can
easily be stored in array data structures on the GPU. Furthermore, similarity
computations can be broken down into simple bit operations which are easily
processed by GPUs.

A GPU-based implementation for PPRL using the P4Join filtering is de-
scribed in [149]. It sorts the bit vectors of the two input datasets initially accord-
ing to their number of set bits (1-bits) and partitions the set of bit vectors into
equal-sized blocks such that multiple of such blocks fit into the GPU memory.
Pairs of blocks are then continuously loaded into the GPU for parallel compari-
son. To limit unnecessary data transfers, the length filter (described in Sect. 4.2)
is applied to avoid transferring pairs of blocks that do not meet the length filter
restriction. The kernel programs also apply the prefix filter to save comparisons.

The evaluation in [149] showed that the GPU implementation is highly ef-
ficient and improves runtimes by a factor of 20, even for a low-profile graphics
card (Nvidia GeForce GT 540M with 96 CUDA cores@672MHz, 1GB memory).
It would be interesting to realize GPU versions of other PPRL approaches and
to utilize more powerful graphics cards with thousands of cores for improved
performance.

Hadoop-based Parallel PPRL: Many Big Data applications are based on
local Shared Nothing clusters driven by software from the open-source Hadoop
ecosystem for parallel processing. Depending on the data volume and needed
degree of parallelism up-to thousands of multi-processor nodes are utilized. A
main reason for the success of Hadoop is that its programming frameworks, in
particular MapReduce and newer platforms such as Apache Spark6 or Apache

6 http://spark.apache.org [Accessed: 15/06/2016]
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Flink7, make it easy to develop programs that can be automatically executed in
parallel on Hadoop clusters.

Several approaches and implementations have utilized MapReduce for par-
allel record linkage [94, 166]. In its simplest form, the Map tasks read the input
data in parallel and apply a blocking key to assign each record to a block. Then
the data records are dynamically redistributed among the Reduce tasks such
that all records with the same blocking key are sent to the same Reduce task.
Comparison is then performed block-wise and in parallel by the Reduce tasks.
For highly skewed block sizes this simple approach can result in load balanc-
ing problems for the Reduce tasks; approaches to solve this data skew or load
balancing problem are proposed in [95].

The sketched approach can in principle also be applied for parallelizing
PPRL, e.g., if the linkage unit utilizes a Hadoop cluster. One such approach
for using MapReduce to speed-up PPRL has been proposed in [83]. The au-
thors apply a LSH-based blocking method using the MinHash approach (see
Section 4.1). The use of MapReduce is rather straightforward and illustrated in
Figure 6. The Bloom filters of both sources are initially stored in the distributed
file system (HDFS) as chunks. In the Map phase, records are read sequentially
and for each Bloom Filter r a set of j MinHash keys are computed. The records
are then redistributed so that records with the same key are sent to the same
Reduce task for comparison. The main drawback of this strategy is that records
may be compared several times by different Reduce tasks because they could
share many keys (as shown in Fig. 6 for records r2 and s1). To overcome this
problem the authors proposed another strategy by chaining two MapReduce
jobs, where the first one is similar to the described method except that the Re-
duce phase only outputs the pairs of records’ identifiers instead of comparing the
records. In the second MapReduce job, duplicate records pairs are grouped at
the same Reducer to be compared only once. In this process, the Bloom filters
are not redistributed (but only their identifiers) by storing the Bloom filters in
a relational database from where they are read when needed. The evaluation of
this parallel LSH approach in [83] was limited to only 2 and 4 nodes and small
datasets (about 300, 000 records) so that the overall scalability of the approach
remains unclear.

For future work, it would be valuable to investigate and compare different
parallel PPRL approaches utilizing the Hadoop ecosystem. The approaches could
also utilize the Spark or Flink frameworks which support more operators than
only Map and Reduce, and support efficient distributed in-memory processing.

5 Multi-Party PPRL

While there have been many different approaches proposed for PPRL [165],
most work thus far has concentrated on linking records from only two databases
(or parties). Only some approaches have investigated linking records from three

7 https://flink.apache.org/ [Accessed: 15/06/2016]
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or more databases [76, 105, 119, 122, 126, 130, 131, 160], with most of these being
limited to exact matching or matching of categorical data only, as will be dis-
cussed below. However, as the example applications described in Sect. 1 have
shown, linking data from multiple databases is increasingly being required for
several Big Data applications. In the following, we describe existing techniques
of multi-party private blocking and private comparison and classification for
multi-party PPRL (MP-PPRL).

5.1 Multi-Party Private Blocking Techniques

Private blocking for MP-PPRL is crucial due to the exponential growth of the
comparison space with the number of databases linked. However, this has not
been studied until recently, making MP-PPRL not practical in real applications.

Tree-based approaches: The first approach [130] is based on a single-bit tree
(adapted from multi-bit tree [99]) data structure, which is constructed itera-
tively to arrange records (masked into Bloom filters) such that similar records
are placed into the same tree leaf while non-similar records are placed into dif-
ferent leaf nodes in the tree. At each iteration, the set of Bloom filters in a tree
node is recursively split based on selected (according to a privacy criteria) bit
positions which are agreed upon by all parties. A drawback with this approach,
however, is that it might miss true matches due to the recursive splitting of
Bloom filters. Furthermore, a communication step is required among all parties
for each iteration.

This limitation of missing true matches in the single-bit tree-based approach [130]
has been addressed in [131] using a multi-bit tree [99] data structure (as we dis-
cussed in Sect. 4.2) that is combined with canopy clustering. Multi-bit tree-based
filtering for PPRL of two databases was first introduced by Schnell [144]. In [131]
the concept of multi-bit trees was used to split the databases (masked into Bloom
filters) individually by the parties into small mini-blocks, which are then merged
into larger blocks according to privacy and computational requirements based
on their similarity using a canopy clustering technique [40].

Linkage unit-based approaches: A communication-efficient approach for
multi-party private blocking by using a linkage unit was recently proposed [133],
as illustrated in Fig. 7. In the first step of this approach, local blocks are gen-
erated individually by each party using a private blocking technique (which is
considered to be a black box). For example, the private blocking approach based
on multi-bit tree and canopy clustering [131] (described above) can be used for
local blocking. A block representative in the form of a min-hash signature [19]
is then generated for each block and sent to a linkage unit. The linkage unit
applies global blocking using locality sensitive hashing (LSH) to identify the
candidate block sets from all parties or from sub-sets of parties based on the
similarity between block representatives. Local blocking provides the database
owners with more flexibility and control over their blocks while eliminating all
communications among them. This approach outperforms existing multi-party
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Fig. 7. Multi-party private blocking approach as proposed by Ranbaduge et al. [133]
(adapted from [133]). Candidate block sets from all three parties (CA1, CB1, CC1)
and sub-set of two parties (CA2, CB2) are identified to be compared and classified.

private blocking approaches in terms of scalability, privacy, and blocking quality,
as validated by a set of experiments conducted by the authors [133].

Karapiperis and Verykios recently proposed a multi-party private blocking
approach based on LSH [85]. This approach uses L independent hash tables (or
blocking groups), each of which consists of key-bucket pairs where keys represent
the blocking keys and buckets host a linked list aimed at grouping similar records
that were previously masked into Bloom filters. Each hash table is assigned with
a set of K hash functions which is generated by a linkage unit and sent to all the
database owners to populate their set of blocks accordingly. The same authors
extended this approach by proposing a frequent pairs scheme (FPS) [86] for
further reducing the number of comparisons while maintaining a high level of
recall. This approach achieves high blocking quality by identifying similar record
pairs that exhibit a number of LSH collisions above a given threshold, and then
performs distance calculations only for those similar pairs. Empirical results
showed significant improvement in running time due to a drastic reduction of
candidate pairs by the FPS, while achieving high blocking quality [86].

A major drawback of these multi-party private blocking techniques is that
they still result in an exponential comparison space with an increasing number
of databases to be linked, especially when the databases are large. Therefore,
efficient communication patterns, such as ring-based or tree-based [114, 142], as
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well as advanced filtering techniques, such as those discussed in Sect. 4.2, need
to be investigated for multi-party PPRL in order to make PPRL scalable and
viable in Big Data applications.

5.2 Multi-Party Private Comparison and Classification Techniques

Several private comparison and classification techniques for MP-PPRL have been
developed in the literature. However, they fall short in providing a practical solu-
tion either because they allow exact matching only or they are computationally
not feasible with the size and number of multiple databases. In the following we
describe these approaches and their drawbacks.

Secure Multi-party Computation (SMC)-based approach: An approach
based on SMC using an oblivious transfer protocol was proposed in [122] for
multi-party private comparison and classification. While provably secure, the
approach only performs exact matching of masked records and it is computa-
tionally expensive compared to efficient perturbation-based privacy techniques
such as Bloom filters and k-anonymity [165].

Generalization-based approaches: A multi-party private comparison and
classification approach was introduced in [76] to perform secure equi-join of
masked records from multiple k-anonymous databases by using a linkage unit.
The database records are k-anonymised by the database owners and sent to a
linkage unit. The linkage unit then compares and classifies records by applying
secure equi-join, which allows exact matching only.

Another multi-party private comparison and classification approach based
on k-anonymity for categorical values was proposed in [119]. In this approach,
a top-down generalization is performed on the QIDs to provide k-anonymous
privacy (as discussed in Sect. 3.4) and the generalized blocks are then classified
into matches and non-matches using the C4.5 decision tree classifier.
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Probabilistic data structure-based approaches: An efficient multi-party
private comparison and classification approach for exact matching of masked
records using Bloom filters was introduced by Lai et al. [105], as illustrated in
Fig. 8. Each party hash-maps their record values into a single Bloom filter and
then partitions its Bloom filter into segments according to the number of parties
involved in the linkage. The segments are exchanged among the parties such that
each party receives a corresponding Bloom filter segment from all other parties.
The segments received by a party are combined using a conjunction (logical
AND) operation. The resulting conjuncted Bloom filter segments are then ex-
changed among the parties to generate the full conjuncted Bloom filter. Each
party compares its Bloom filter of each record with the final conjuncted Bloom
filter. If the membership test of a record’s Bloom filter is successful then the
record is considered to be a match across all databases. Though the computa-
tion cost of this approach is low since the computation is completely distributed
among the parties without a linkage unit and the creation and processing of
Bloom filters are very fast, the approach can only perform exact matching.

Another efficient multi-party approach for private comparison and classifi-
cation of categorical data was recently proposed [81] using a Count-Min sketch
data structure (as described in Sect. 3.4). Sketches are used to summarize records
individually by each database owner, followed by a secure intersection of these
sketches to provide a global synopsis that contains the common records across
parties and their frequencies. The approach uses homomorphic operations, secure
summation, and symmetric noise addition privacy techniques.

Developing privacy-preserving approximate string comparison functions for
multiple (more than two) values has only recently been considered [160]. This
MP-PPRL approach adapts Lai et al.’s Bloom filter-based exact matching ap-
proach [105] (as described above) for approximate matching to distributively
calculate the Dice-coefficient similarity of a set of Bloom filters from different
parties using a secure summation protocol. This approach is illustrated in Fig. 9.
The Dice-coefficient of P Bloom filters (b1, · · · , bP ) is calculated as:

Dice sim(b1, · · · , bP ) =
P × c∑P
i=1 xi

=
P ×

∑P
i=1 ci∑P

i=1 xi
, (5)

where ci is the number of common bit positions that are set to 1 in ith Bloom
filter segment from all P parties such that c =

∑P
i=1 ci, and xi is the number of

bit positions set to 1 in bi (1-bits), where x =
∑P
i=1 xi and 1 ≤ i ≤ P .

Similar to Lai et al.’s approach [105], the Bloom filters are split into segments
such that each party receives a certain segment of the Bloom filters from all other
parties. A logical conjunction is applied to calculate ci individually by each party
Pi (with 1 ≤ i ≤ P ) which are then summed to calculate c using a secure
summation protocol. A secure summation of xi is also performed to calculate
x. These two sums are then used to calculate the Dice-coefficient similarity of
the Bloom filters using Eq. 5. A limitation of this approach is that it can only
be used to link a small number of databases due to its large number of logical
conjunction calculations (even when a private blocking technique is used).
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Therefore, more work needs to be done in multi-party private comparison and
classification to enable efficient and effective PPRL on multiple large databases
including sub-set matching (i.e. identifying matching records across subset of
parties).

6 Open Challenges

In this section we first describe the various open challenges of PPRL, and then
discuss these challenges in the context of the four V’s volume, variety, velocity,
and veracity of Big Data.

6.1 Improving Scalability

The trend of Big Data growth dispersed in multiple sources challenges PPRL in
terms of complexity (volume), which increases exponentially with multiple large
databases. Much research in recent years has focused on improving the scalability
of the PPRL process, both with regard to the sizes of the databases to be linked,
as well as with the number of databases to be linked. While significant progress
has been made in both these directions, further efforts are required to make all
aspects of the PPRL process scalable. Both directions are highly relevant for Big
Data applications.

Even small blocks can still lead to a large number of record pair (or set)
comparisons that are required in the comparison step, especially when databases
from multiple (more than two) sources are to be linked. For each set of blocks
across several parties, potentially all combinations of record sets need to be
compared. For a block that contains B records from each of P parties, BP

comparisons are required. Crucial are efficient adaptive comparison techniques
that stop the comparison of records across parties once a pair of records has
been classified to be a non-match between two parties. For example, assume the
record set 〈rA, rB , rC , rD〉, where rA is from party A, rB is from party B, and so
on. Once the pair rA and rB are compared and classified as a non-match, there
is no need to compare all other possible record pairs (rA with rC , rA with rD,
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rB with rC , and so on) if the aim of the linkage is to identify sets of records that
match across all parties involved in a PPRL.

A very challenging aspect is the task of identifying sub-sets of records that
match across only a sub-set of parties. An example is to find all patients that have
medical records in the databases of any three out of a group of five hospitals. In
this situation, all potential sub-sets of records need to be compared and classified.
This is a challenging problem with regard to the number of comparisons required
and has not been studied in the literature so far.

6.2 Improving Linkage Quality

The veracity and variety aspects (errors and variations) of Big Data need to
be addressed in PPRL by developing accurate and effective comparison and
classification techniques for high linkage quality. How to efficiently calculate the
similarity of more than two values using approximate comparison functions in
PPRL is an important challenge with multi-source linking. Most existing PPRL
solutions for multiple parties only support exact matching [81, 105] or they are
applicable to QIDs of only categorical data [76, 119]. Thus far only one recent
approach supports approximate matching of string data for PPRL on multiple
databases [160] (as described in Sect. 5.2).

In the area of non-PPRL, advanced collective [13] and graph-based [59, 75]
classification techniques have been developed in recent times. These techniques
are able to achieve high linkage quality compared to the basic pair-wise com-
parison and threshold-based classification approach that is often employed in
most PPRL techniques. Group linkage [123] is the only advanced classification
technique that has so far been considered for PPRL [106].

For classification techniques that require training data (i.e. supervised clas-
sifiers), a major challenge in PPRL is how such training data can be generated.
Because of privacy and confidentiality concerns, in PPRL it is generally not pos-
sible to gain access to the actual sensitive QID values (to decide if they refer
to a true match or a true non-match). The advantage of certain collective and
graph-based approaches [13, 75] is that they are unsupervised and therefore do
not require training data. However, their disadvantage is their high computa-
tional complexities (quadratic or even higher) [137]. Investigating and adapting
advanced classification techniques for PPRL will be a crucial step towards mak-
ing PPRL useful for practical Big Data applications, where training data are
commonly not available, or are expensive to generate.

6.3 Dynamic Data and Real-time Matching

All PPRL techniques developed so far, in line with most non-PPRL techniques,
only consider the batch linkage of static databases. However, a major aspect of
Big Data is the dynamic nature of data (velocity) that requires adaptive systems
to link data as they arrive at an organization, ideally in (near) real-time. Limited
work has so far investigated temporal data [32, 108] and real-time [31, 71, 129]
matching in the context of record linkage. Temporal aspects can be considered



32 Privacy-Preserving Record Linkage for Big Data

by adapting the similarities between records depending upon the time difference
between them, while real-time matching can be achieved using sophisticated
adaptive indexing techniques. Several works have been done on dynamic privacy-
preserving data publishing on the cloud by developing an efficient and adaptive
QID index-based approach over incremental datasets [175, 176].

Linking dynamic databases in a PPRL context opens various challenging
research questions. Existing masking (encoding) methods used in PPRL assume
static databases that allow parameter settings to be calculated a-priori that lead
to secure masking of QID values. For example, Bloom filters in average should
have 50% of their bits set to 1, making frequency attacks more difficult [118].
Such masking might not stay secure as the characteristics of data are changing
over time. Dynamic databases also require novel comparison functions that can
adapt to changing data as well as adaptive masking techniques.

6.4 Improving Security and Privacy

In addition to the four V’s of Big Data, another challenging aspect that needs to
be considered for Big Data applications is security and privacy. As we discussed
in Sect. 3.2, most work in PPRL assumes the honest-but-curious (HBC) adver-
sary model [66, 112]. Most PPRL protocols also assume that the parties do not
collude with each other (i.e. a sub-set of two or more parties do not collaborate
with the aim to learn sensitive information of another party) [112]. However,
in a commercial environment and in PPRL scenarios where many parties are
involved, such as is likely in Big Data applications, collusion is a real possibility
that needs to be prevented. Only few PPRL techniques consider the malicious
adversary model [165]. The techniques developed based on this security model
commonly have high computational complexities and are therefore currently not
practical for the linkage of large databases. Therefore, because the HBC model
might not be strong enough while the malicious model is computationally too
expensive, novel security models that lie between those two need to be investi-
gated for PPRL. Two of these are the covert adversary model [4] and accountable
computing [72], which have been discussed in Sect. 3.2. Research directions are
required to develop new protocols that are practical and at the same time more
secure than protocols based on the HBC model.

With regard to privacy, most PPRL techniques are known to leak some in-
formation during the exchange of data between the parties (such as the number
and sizes of blocks, or the similarities between compared records). How sensi-
tive such revealed information is for a certain dataset heavily depends upon the
parameter settings used by a protocol. Sophisticated attack methods [102] have
been developed that exploit the subtle pieces of information revealed by certain
PPRL protocols to iteratively gather information about sensitive values. There-
fore, there is a need to harden existing PPRL techniques to ensure they are not
vulnerable to such attacks. Preserving privacy of individual entities is more chal-
lenging with multi-party PPRL due to the increasing risk of collusion between a
sub-set of parties which aim to learn about another (sub-set of) party’s private
data. Distributing computations among pairs or groups of parties can reduce
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the likelihood of collusion between parties if individual pairs or groups can use
different secret keys (known only to them) for masking their values.

Most PPRL techniques have mainly been focusing on the privacy of the in-
dividual records that are to be linked [162]. However, besides individual record
privacy, the privacy of a group of individuals also needs to be considered. Often
the outcomes of a PPRL project are sets of linked records that represent peo-
ple with certain characteristics (such as certain illnesses, or particular financial
circumstances). While the names, addresses and other personal details of these
people are not revealed during or after the PPRL process, their overall charac-
teristics as a group could potentially lead to the discrimination of individuals
in this group if these characteristics are being revealed. The research areas of
privacy-preserving data publishing [60] and statistical confidentiality [45] have
been addressing these issues from different directions.

PPRL is only one component in the management and analysis of sensitive,
person-related information by linking different datasets in a privacy-preserving
manner. However, achieving an effective overall privacy preservation needs a
comprehensive strategy regarding the whole data life cycle including collec-
tion, management, publishing, exchange and analysis of data to be protected
(‘privacy-by-design’) [22]. Hence, it is necessary to better understand the role of
PPRL in the life cycle for sensitive data to ensure that it can be applied and
that the match results are both useful and privacy-preserving.

In research, the different technical aspects to preserve privacy have partially
been addressed by different communities with little interaction. For example,
there is a large body of research on privacy-preserving data publishing [60] and
on privacy-preserving data mining [110, 156] that have been largely decoupled
from the research on PPRL. It is well known that data analysis may identify
individuals despite the masking of QID values [152]. Hence, there is similar risk
that the combined information of matched records together with some back-
ground information could lead to the identification of individuals (known as
re-identification). Such risks must be evaluated and addressed within a compre-
hensive privacy strategy including a closely aligned PPRL and privacy-preserving
data analysis/mining approach.

6.5 Evaluation, Frameworks, and Benchmarks

How to assess the quality (how many classified matches are true matches) and
completeness (how many true matches have been classified as matches) of the
records linked in a PPRL project is very challenging because it is generally not
possible to inspect linked records due to privacy concerns. Manual assessment of
individual records would reveal sensitive information which is in contradiction
to the objective of PPRL. Not knowing how accurate and complete linked data
are is however a major issue that will render any PPRL protocol impractical in
applications where linkage completeness and quality are crucial, as is the case in
many Big Data applications such as in the health or security domains.

Recent initial work has proposed ideas and concepts for interactive PPRL [101]
where parts of sensitive values are revealed for manual assessment. How to ac-
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tually implement such approaches in real applications, while ensuring the re-
vealed information is limited to a certain level of detail (for example providing
k-anonymous privacy for a certain value of k > 1 [152]) is an open research
question that must be solved. Interactive manual evaluation might also not be
feasible in Big Data applications where the size and dynamic nature of data, as
well as real-time processing requirements, prohibit any manual inspection.

With regard to evaluating the privacy protection that a given PPRL tech-
nique provides, unlike for measuring linkage quality and completeness (where
standard measurements such as run-time, reduction ratio, pairs completeness,
pairs quality, precision, recall, or accuracy are available [28]), there are currently
no standard measurements for assessing privacy in PPRL. Different measure-
ments have been proposed and used [46, 162, 165], making the comparison of
different PPRL techniques difficult. How to assess linkage quality and complete-
ness, as well as privacy, are must-solve problems as otherwise it will not be
possible to evaluate the efficiency, effectiveness, and privacy protection of PPRL
techniques in real-world applications, leaving these techniques non-practical.

An important direction of future work for PPRL is the development of frame-
works that allow the experimental comparison of different PPRL techniques with
regard to their scalability, linkage quality, and privacy preservation. No such
framework currently exists. Ideally, such frameworks allow researchers to easily
‘plug-in’ their own algorithms such that over time a collection of PPRL algo-
rithms is compiled that can be tested and evaluated by researchers, as well as
by practitioners to allow them to identify the best technique to use for their
application scenario.

An issue related to frameworks is the availability of publicly available bench-
mark datasets for PPRL. While this is not a challenge limited to PPRL but to
record linkage research in general [28, 96], it is particularly prominent for PPRL
as it deals with sensitive and confidential data. While for record linkage tech-
niques publicly available data from bibliographic or consumer product databases
might be used [96], such data are less useful for PPRL research as they have dif-
ferent characteristics compared to personal data. The nature of the datasets to
be linked using PPRL techniques is obviously in strong contradiction to them
being made public. Ideally researchers working in PPRL are able to collaborate
with practitioners that do have access to real sensitive and confidential databases
to allow them to evaluate their techniques on such data.

A possible alternative to using benchmark datasets is the use of synthetic
data that are generated based on the characteristics of real data using data
generators [34, 153]. Such generators must be able to generate data with similar
distribution of values, variations, and errors as would be expected in real datasets
from the same domain. Several such data generators have been developed and
are used by researchers working in PPRL as well as record linkage in general.

6.6 Discussion

As we have discussed in this section, there are various challenges that need to
be addressed in order to make PPRL practical for applications in a variety of
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domains. Some of these challenges are general and not just affect PPRL for Big
Data, others are specific to certain types of applications, including those in the
Big Data space.

The challenge of scalability of PPRL towards very large databases is highly
relevant to the volume of Big Data, while the challenge of linkage quality of
PPRL is highly relevant to the veracity and variety of Big Data. The dynamic
nature of data in many Big Data applications, and the requirement of being able
to link data in real-time, are challenging all aspects of PPRL, as well as record
linkage in general [129]. This challenge corresponds to the velocity of Big Data
and it requires the development of novel techniques that are adaptive to changing
data characteristics, and that are highly efficient with regard to fast linking of
streams of query records. While the volume, variety, and veracity aspects of Big
Data have been studied for PPRL to some extent, the velocity aspect has so far
not been addressed in a PPRL context.

Making PPRL more secure and more private is challenged by all four V’s of
Big Data. Larger data volume likely means that only encoding techniques that
require little computational efforts per record can be employed, while dynamic
data (velocity) means such techniques have to be adaptable to changing data
characteristics. Variety means PPRL techniques have to be made more secure
and private for various types of data, while veracity requires them to also take
data uncertainties into account. The challenge of integrating PPRL into an over-
all privacy-preserving approach has also not seen any work so far. All four V’s
of Big Data will affect the overall efficiency and effectiveness of systems that
enable the management and analysis of sensitive and confidential information in
a privacy-preserving manner. The more basic challenges of improving scalabil-
ity, linkage quality, privacy and evaluation need to solved first before this more
complex challenge of an overall privacy-preserving system can be addressed.

The final challenge of evaluation is affected by all aspects of Big Data. Im-
proved evaluation of PPRL systems requires that databases that are large, het-
erogeneous, dynamic, and that contain uncertain data, can be handled and eval-
uated efficiently and accurately. So far no research in PPRL has investigated
evaluation specifically for Big Data. While the lack of general benchmarks and
frameworks is already a gap in PPRL and record linkage research in general, Big
Data will make this challenge even more pronounced. Compared to frameworks
that can handle small and medium sized static datasets only, it is even more
difficult to develop frameworks that enable privacy-preserving linking of very
large and dynamic databases, as is making such datasets publicly available. No
work addressing this challenge in the context of Big Data has been published.

7 Conclusions

Privacy-preserving record linkage (PPRL) is an emerging research field that is
being required by many different applications to enable effective and efficient
linkage of databases across different organizations without compromising pri-
vacy and confidentiality of the entities in these databases. In the Big Data era,



36 Privacy-Preserving Record Linkage for Big Data

tremendous opportunities can be realized by linking data at the cost of addi-
tional challenges. In this chapter, we have provided background material required
to understand the applications, process, and challenges of PPRL, and we have
reviewed existing PPRL approaches to understand the literature. Based on the
analysis of existing techniques, we have discussed several interesting and chal-
lenging directions for future work in PPRL for Big Data.

With the increasing trend of Big Data in organizations, more research is
required towards the development of techniques that allow for multiple large
databases to be linked in privacy-preserving, effective, and efficient ways, thereby
facilitating novel ways of data analysis and mining that currently are not feasible
due to scalability, quality, and privacy-preserving challenges.
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