
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-017-0265-6
Datenbank Spektrum (2017) 17:245–253

Preserving Recomputability of Results from Big Data
Transformation Workflows
Depending on External Systems and Human Interactions

Matthias Kricke1 · Martin Grimmer1 · Michael Schmeißer2

Received: 9 June 2017 / Accepted: 24 August 2017 / Published online: 12 September 2017
© Springer-Verlag GmbH Deutschland 2017

Abstract The ability to recompute results from raw data at
any time is important for data-driven companies to ensure
data stability and to selectively incorporate new data into
an already delivered data product. However, data transfor-
mation processes are heterogeneous and it is possible that
manual work of domain experts is part of the process to
create a deliverable data product. Domain experts and their
work are expensive and time consuming, a recomputation
process needs the ability of automatically adding former hu-
man interactions. It becomes even more challenging when
external systems are used or data changes over time. In this
paper, we propose a system architecture which ensures re-
computability of results from big data transformation work-
flows on internal and external systems by using distributed
key-value data stores. Furthermore, the system architecture
will contain the possibility of incorporating human inter-
actions of former data transformation processes. We will
describe how our approach significantly relieves external
systems and at the same time increases the performance of
the big data transformation workflows.

Keywords BigData · Recomputability · System
architecture · Bitemporality · Time-to-consistency

� Matthias Kricke
kricke@informatik.uni-leipzig.de

Martin Grimmer
grimmer@informatik.uni-leipzig.de

Michael Schmeißer
michael.schmeisser@mgm-tp.com

1 Leipzig University, Augustusplatz 10, 04109 Leipzig,
Germany

2 mgm technology partners, Neumarkt 2, 04109 Leipzig,
Germany

1 Introduction

For data-driven organizations, the possibility to selectively
incorporate new data into an already calculated data prod-
uct (like a chart, report or recommendation, etc.) can be
required. Hence, the option to recompute information from
their raw data is needed, even if this data comes from sev-
eral external systems. In addition those recomputable data
transformation processes may contain human interactions
of domain experts as a step towards the end result. It is ob-
vious that temporal features are necessary for this kind of
recomputability. In the past, a lot of research has been done
on temporal databases [10]. Temporal features have also
been incorporated in the SQL:2011 standard [8]. Problems
like concurrency control [5] have been solved for modern,
distributed systems of e.g. Microsoft [4], Google [3] and
SAP [9]. Unfortunately, those systems either can’t be used
on-premises or have high licensing costs. Additionally, re-
computability of data products in big data systems with de-
pendencies to external systems and manual changes to the
data has not been addressed in recent research. However,
this is a problem which mgm technology partners GmbH
has been asked to solve for a customer. The recomputabil-
ity of data products enables mgm’s customer to reconstruct
earlier data versions, reports and analysis results to com-
pare them with newer ones. Moreover, it is now possible to
incorporate data changes only from specific external sys-
tems. To deal with the requirements of low license costs
and an on-premises system, mgm’s customer has decided
to use a scalable and distributed key-value data store like
Apache Accumulo1, Apache HBase2 or Apache Cassandra3.

1 https://accumulo.apache.org/
2 https://hbase.apache.org/
3 https://cassandra.apache.org/

K

https://doi.org/10.1007/s13222-017-0265-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-017-0265-6&domain=pdf
http://orcid.org/0000-0003-4279-8172
https://accumulo.apache.org/
https://hbase.apache.org/
https://cassandra.apache.org/


246 Datenbank Spektrum (2017) 17:245–253

Nonetheless, those stores do not offer a proper solution for
recomputability on their own.

In this paper, we present ELSA (the ExternaL System
Adaptor) and ANNA (the Automated MaNual ActioN
Application System), both building a big data system ar-
chitecture which ensures recomputability of data products
with human interactions and dependencies to external sys-
tems by using a variant of the concept of bitemporality [6].
We show an efficient way to recompute data products even
in scenarios where the external systems aren’t versioned.

Customer specific application details are confidential, yet
we will provide simple examples to follow our explanations
in the next sections.

2 Requirements

Mgm’s customer wants a cost efficient system which is ca-
pable of handling external systems from either other com-
pany departments or companies as data sources. There is a
strong requirement for distributed data transformation pro-
cesses [11]. Those processes are incorporating data from
external systems. This leads to the demand to relieve the
external systems from high-frequent distributed requests.
Furthermore, intermediate results are subject to manual or
automated quality checks by domain experts which may
lead to adjustments on the intermediate results. During
(re)computation, manual adjustments made by domain ex-
perts shall be applied automatically when certain precondi-
tions are met.

A solution has to be linearly scalable with low to no
license costs and must support many simultaneous, dis-
tributed data transformation processes. In addition, it has
to be able to selectively incorporate new data into an al-
ready calculated data product by recomputing it. Hence, all
records are immutable and each version of a record has to
be stored. On the one hand, a high volume of external data
is sent to the system. On the other hand, the system has to
store all versions of this data, which leads to a data base
increasing by several terabytes a month.

As mentioned before, recomputability can be ensured by
versioning the data.

Definition 1 (Versioning) A record is versioned if each
of its occurred states is accessible with the corresponding
timestamp. A system is versioned if each of its records is
versioned.

Reality shows that full versioning in external systems is
nothing that can be relied on. Furthermore, it is possible
that external systems do not meet the latency or through-
put requirements of the distributed data transformation pro-
cess. Therefore, the system has to ensure scalability, re-

computability, high throughput and low latency itself which
leads to the necessity of a suitable big data system archi-
tecture.

3 External System Adaptor

To deal with the requirements stated in Sect. 2 a decou-
pling of external systems and the data transformation pro-
cess is necessary. The External System Adaptor (ELSA)
is the junction shown in Fig. 1, which fulfills all require-
ments. However, some demands to an external system are
inevitable. Every external system used in the data transfor-
mation process needs a defined interface which provides
a change history on their data. Furthermore, each change
needs to be well defined as operation as stated in Defini-
tion 2.

Definition 2 (External key-value Operations) There are
insert and delete operations. An insert operation is defined
as a tuple

insert = .k; te; v/:

Where k is the key, te is the event timestamp and v is the
value of the external record.

The delete operation is defined as a tuple

delete = .k; te/

which invalidates every record with an event timestamp
lower or equal to te.

Assuming an external system inserted the tuples t1 =
.a; 1; v/, t2 = .a; 2; v0/ and t3 = .a; 3; v00/, a delete opera-
tion defined as delete = .a; 2/ would remove t1 and t2 in
the external system and retain t3, since the timestamps of
t1 and t2 are lower or equal to the timestamp of the delete
operation. However, to preserve recomputability, in ELSA
data is not deleted but instead not returned in a get request.

To fulfil the aforementioned requirements ELSA consists
of:

● the ELSA Store, which is replacing the external systems
functionality by providing a queryable data history and

● the ELSA Data Synchronization, which is used for keep-
ing the ELSA Store synchronized with the external sys-
tems.

Hence, distributed data transformation processes now
use the ELSA Store instead of the external systems, which
removes the logic of accessing external systems from them.
Moreover, the ELSA Data Synchronization highly reduces
the throughput and latency requirements for an external

K



Datenbank Spektrum (2017) 17:245–253 247

Fig. 1 Decoupling of external systems and the data transformation
process with ELSA

Fig. 2 All data versions of a record with different ingest and event
times with several get requests

system since data is only read once by it. Since those re-
quirements now have to be handled by the store, it has to be
a distributed, scalable, multi-version key-value data store.
Furthermore, the ELSA Store has to be located within the
same cluster infrastructure as the big data transformation
processes to meet the requirements for high throughput and
low latency. To ensure recomputability, records in the store
are immutable and never overwritten or deleted. In addition
the store is subject to a strict back up process to avoid data
loss.

3.1 ELSA Get Requests and Bitemporality

Assuming that ELSA uses the timestamp an external system
provides for storing and querying data, a significant prob-
lem for consistency and production arises: There is always
a delay between the time when an event happens and when
it becomes visible in an external system which is similar to
the problem of application time skew described by Srivas-
tava in [12]. This duration further increases if the external
system doesn’t offer push-based change notifications and
ELSA has to pull the change history on its own. Even if the
external system supports push-based change notifications,
it may only send them intermittently which would cause
get requests to ELSA to return different results for the same
timestamp due to late updates from the external system.

For example, a car sends its current GPS position to its
manufacturer at 9:00 a.m., who forwards the position to
ELSA at 9:30 a.m.. At 9:15 a.m., a get request to ELSA
wants to know the last position of the car five minutes ago
(9:10 a.m.). The request will return no results. If the request
for the last car position at 9:10 a.m. is sent again at 9:45
a.m., the result would be the stored value. Hence, the result
of the first request is no longer recomputable after the late
update has been incorporated in the ELSA Store.

To ensure recomputability, get request result consistency
is necessary. To achieve this, the concept of bitemporality,
as stated in Definition 3, is used.

Definition 3 (Bitemporality) A data record is bitemporal
if it has two decoupled timestamps which distinguish be-
tween the event time te and the ingest time ti.

Be q.kq; tE; tI/ = r a get request to the ELSA Store, where
kq is the key to be queried. tE is the maximum event times-
tamp and tI the maximum ingest timestamp. The resulting
r is an ELSA Record or empty, as defined in Definition 4.

Definition 4 (ELSA Record) An ELSA Record r is cre-
ated from an external key-value operation, see Definition 2,
and defined as r = .k; ti; o; te; v/. Where k is the key of
an external key-value operation and ti is the time the key-
value operation was ingested into ELSA. The type of the
operation is given in o and can either be insert or delete.
The event timestamp te is derived from the insert or delete
operation. The value v is set for an insert operation or
empty for a delete operation.

Our event timestamp te and ingest timestamp ti are sim-
ilar to concepts of temporal databases like the valid and
transaction time as described by Ozsoyoglu et al. [10] and
Jensen et al. [6]. Nonetheless, the valid and transaction
times are defined as intervals while the event and ingest
timestamps are singular values. However, intervals in our
system are defined implicitly by newer versions of the same
ELSA Record.

Let Rq be a set of ELSA Records for a certain external
system

● whose keys are equal to kq

● whose ingest times are smaller than tI
● whose event times are smaller than tE

The ELSA get request takes the record r with the maxi-
mum event time of Rq. If operation o of r is delete, the get
has no result. Otherwise the ELSA Record r is the result of
the get request.

Regarding the car manufacturer example, tE is set to 9:00
a.m. and tI is set to 9:30 a.m.. The ELSA get request has
to use both timestamps to identify the correct value which
will make both aforementioned queries two distinct queries.
While the first request uses a maximum ingest timestamp
of 9:15 a.m. the second one uses 9:45 a.m.. Thus, the first
get will return no results while the second will return a GPS
location.

A more complex example which contains delete opera-
tions is shown in Fig. 2.

During get q1, the event time of insert i2 is matching the
query but the queries maximum ingest time is not. Hence,

K



248 Datenbank Spektrum (2017) 17:245–253

Fig. 3 The ELSA dataflow

the result of query q1 is the record inserted by insert i1.
For request q2 the event times of the delete and insert i3
are too large and they are filtered although the ingest time
requirements are met. This leads to the record of insert i2
as result for the query. In the case of q3, the result is i3
since it has the largest event timestamp and the ingest time
requirements are met.

In the case of mgm’s customer the gap between event and
ingest time varies a lot depending on the type of data, but
the offset is mostly within days. Events are not transmitted
in (near) real-time from the event source. However, in the
future this gap may become smaller for the general case
with the rise of more streaming based industrial applications
but will never vanish.

Specific ingest times are not required in the regular case
for mgm’s customer. However, there are rare cases which
require a specific ingest time, e.g. to recompute intermedi-
ate results for analytical purposes on the intermediate data
which was incorporated into a previously computed final
result of the data transformation process. The alternative to
this would be to keep all intermediate results for all exe-
cuted data transformation processes, which is impractical.

3.2 ELSA Data Synchronization and Store

Fig. 3 shows a more detailed view of ELSA. The ELSA
Data Synchronization subscribes to all changes done in the
external systems and writes them into a queue. This queue
is a replicated queue which is able to handle peaks. An entry
in the queue is an external key-value operation as specified
in Definition 2. A write process pulls the external key-value
operation from the queue and transforms it into an ELSA
Record as defined in Definition 4, which is written into the
ELSA Store.

The ELSA Store is a Big Table 2 like persistent, dis-
tributed, scalable, multi-version key-value data store. It is
able to handle massive, parallel requests from data trans-
formation processes. Furthermore, it is target of backup
processes to ensure that no data is lost and recomputability
stays intact even in the case of a system failure.

4 Automated Manual Action Application System

After the introduction of ELSA, our system architecture is
able to fulfil most of the aforementioned requirements from
Sect. 2. The last missing requirement refers to human in-
teractions on intermediate results during quality checks. A
quality check is an automated or manual process which en-
sures that functional requirements are met. If not, a domain
expert has to manually adjust the result of a data transforma-
tion process in such a way that the requirements are met. We
call this adjustments manual actions. Domain experts who
make these manual actions are expensive and the process
is time consuming. In the case of recomputation, we don’t
want to invest their precious resources in previously solved
problems again. Hence, the architecture needs a component
which can extract, store and apply manual actions result-
ing from quality checks. Therefore, we introduce ANNA
(Automated Manual Action Application System) which is
designed to fulfil these requirements. It consists of three
elements:

● the manual action definition, the process which is exe-
cuted after the requirements of a quality check were not
met. It creates a manual action which is the result of the
manual action done by the domain expert.

● the ANNA Store is the place where manual actions are
stored.

● the automated manual action application, which de-
scribes the process of applying a stored manual action to
the result of a data transformation process.

In the system architecture, ANNA encapsulates the data
transformation process as shown in Fig. 4. Those additional
elements have to be integrated into the data transformation
process.

4.1 Data Transformation Process

A data transformation process describes the complete pro-
cess for creating a data product. It is subdivided by several
data transformation steps. To support the automated appli-
cation of manual actions we have to integrate changes to
the data transformation step workflow. This adapted work-

K



Datenbank Spektrum (2017) 17:245–253 249

Fig. 4 The ELSA dataflow
combined with ANNA

Fig. 5 The flowchart of the data transformation step in combination
with ANNA

flow of a data transformation step is depicted in Fig. 5. The
Figure shows that each data transformation step operates on
data organized in tables using a specified schema as input.
Each cell in the table must be identifiable by using a corre-
sponding row and column id. The data transformation step
contains the functional logic and may change the schema of
the table. For the first run of a data transformation process
we can skip the automated manual action application and
table A is equivalent to table B. The intermediate table B
undergoes quality checks which may lead to the need of
cell adjustments.

4.2 Manual Action Definition

The process of defining an adjustment to a cell in the table is
called manual action definition and shown in Fig. 5. Those
operations are schema-preserving and based on pre-defined
operators like set, add, subtract, multiply, divide and so on.
During the definition of the manual action, the user has
to define preconditions for the case of recomputation. After
the manual action definition, the manual action is applied to
the table cell. To support domain experts with the definition
of these manual actions, the process is tool based and guides
the users through each necessary step. It prompts the user
to specify the above mentioned information:

● the precondition for this manual action based on the input
table

● the cell to modify in the input table
● and the manual action from the set of predefined opera-

tions which modifies exactly one cell.

Furthermore the manual action is transformed into an
ANNA Record as defined in Definition 5 and saved in the
ANNA Store.

Definition 5 (ANNA Record) An ANNA Record a is cre-
ated from a manual action and defined as tuple

a = .dtpuid; dtpr; dtps; tabr; tabc; ti; te; s/:

Where the data transformation process is uniquely identi-
fied by dtpuid , its run number dtpr and the specific data
transformation step dtps within the data transformation
process. The modified table cell is uniquely identified by
the table row tabr and the table column tabc. Furthermore
an ingestion timestamp ti and an event timestamp te for
the creation of the manual action is necessary to fulfil
recomputability requirements as described in Sect. 3.1. The
script s contains the actual precondition and transformation
of the manual action.

With the ELSA Store, we already have a store in our sys-
tem architecture. To reduce the necessary technology stack
which has to be maintained for the system architecture, we
design the ANNA Store to be similar to the ELSA Store.
With an appropriate key-value store, it will be possible that

K



250 Datenbank Spektrum (2017) 17:245–253

Fig. 6 The Figure shows an example where the boss’s salary in table
X is determined as too low by the quality check. Therefore, a manual
action was defined by a domain expert which adjusted the income ac-
cordingly. This manual action was then automatically applied during a
recomputation on table X resulting in table X’

the data of ANNA is another namespace in the distributed
key-value data store.

4.3 Automated Manual Action Application

The stored manual actions can now be applied to recompu-
tation processes. Like it is done in ELSA, a recomputation
with ANNA has to be annotated with a maximum ANNA in-
gestion timestamp tAI and a maximum ANNA event times-
tamp tAE. Before a recomputation run is executed, all apply-
ing adjustments are read from the ANNA Store and added
to the corresponding data transformation step. In Fig. 5 the
automated manual actions are applied to the table right after
the previous transformations. Since our table may contain
new data, it is possible that not all preconditions are met to
execute the stored operations. In that case, the correspond-
ing manual action is not executed. Instead it is possible that
new manual actions are necessary in respond to the new
data. For reproduction, it is important to store those manual
actions in the ANNA Store as well.

An example for the automated manual action application
is given in Fig. 6.

5 Implementation

ELSA and ANNA has been brought into production by mgm
and its customer. In this section, some of the experienced
pitfalls will be described and solved. For a better under-
standing, those pitfalls will be described on specific tech-
nologies. Therefore, the following explanations will be un-

der the assumption that the software for distributed com-
puting is Apache Hadoop4 and the distributed database is
Apache Accumulo which stores its data into the Hadoop
Distributed File System (HDFS). Apache Accumulo is a
BigTable clone and implements the data model as described
by Chang et al. [2] and the Accumulo documentation [1].

5.1 Time-to-Consistency

In databases, there is a delay between the ingest time as-
signed by the store and the moment the value is written.
To write a record, a database has to determine the ingest
timestamp e.g. by using the system clock, and only then it
is able to finally write it. This problem even increases in
distributed databases because of network latency and com-
munication for replication and distribution. This may lead
to the situation where data with a certain ingest time ti is
written at a later time ty, which breaks the recomputability.

The time-to-consistency tcon defines an upper bound for
how long it may take from the determination of the ingest
timestamp of a record till the record is written. A system
fulfills the time-to-consistency if its writing processes at
minimum use the current time tnow as ingest timestamp.
Furthermore, read operations may only choose a maximum
ingest timestamp tI for their read requests which is at most
tnow − tcon.

The concept of time-to-consistency is applied to all read
operations in ELSA and ANNA. An example value for tcon
can be:

tcon = write timeout

This would be 60 seconds for an Apache Hadoop environ-
ment with the default write timeout value. However, this
is only valid if the ingest timestamp is set automatically
within the tablet server of Apache Accumulo. In the case
of a failing write operation, this timestamp would be set
again to a new value determined by the tablet server within
the next write retry.

If for certain reasons (for example the usage of an exter-
nal clock for ingest timestamps) the ingest timestamp has
to be set during the writing process itself, before the data
is send to Apache Accumulo, tcon can be:

tcon = write timeout � .write retries + 1/ + �

In this case � resembles the time needed between the dif-
ferent write attempts.

Even though we describe time-to-consitency as part of
ELSA and ANNA it is a general concept which can be used

4 https://hadoop.apache.org/

K



Datenbank Spektrum (2017) 17:245–253 251

Fig. 7 Custom Server-Side Iterator Algorithm

with every database. For mgm’s customer the time-to-con-
sistency used varies betweeen 10 seconds and 10 minutes. It
is as low as 10 seconds for transactional databases with low
transaction timeouts or CP-type distributed databases like
Apache Accumulo. In the case of relational databases with
long-running transactions or processes where the database
is inaccessible while it is built, e. g. in the case of file-based
databases (RocksDB5) which need to be distributed to all
cluster nodes before reading, 10 minutes are used.

5.2 Schema and Server-Side-Iterator

Table 1 shows the ELSA schema of record r for the dis-
tributed and sorted key-value data store Apache Accumulo.

Each external system has its own table named by an
unique identifier for the external system. The Apache Ac-
cumulo row id is the key k of an ELSA Record r . The
column family contains the event time of r and the version
is set by Apache Accumulo and resembles ti. Operation and
value of r are encoded into the value field. For this version
of the implementation the column qualifier is not used.

When a request is sent to Apache Accumulo, it by de-
fault returns the latest value of a record. Since ELSA uses
a bitemporal approach for the get requests (see Sect. 3.1),
this is not appropriate. Therefore, the version iterator had
to be removed and the problem has been solved by using
custom server-side iterators. This is possible since an itera-
tor processes all records of the same key in ascending order
by column family and column qualifier and in descending
order by version. Even in the case that data is inserted out-
of-order, like it is shown in Table 1, the algorithm returns
the correct result.

For a given get request q = .k; tI; tE/ and store ext the
server-side iterator iterates the records R of table ext with
row-key equal to k.

The following examples describe the Algorithm (Fig. 7)
used by the server-side iterator on Table 1. For a request
q1 = .x; 15; 35/ the iterator takes the following steps:

1. evaluate r1: 5 < 15 ^ 10 < 35 ! result = r1

5 http://rocksdb.org/

Table 1 Example ELSA Store table instance ext

Record Row ID Col. Family Version Value

r k te ti operation & v

r1 x 5 10 insert & v1

r2 x 10 30 delete

r3 x 12 20 insert & v2

r4 x 35 40 insert & v3

2. evaluate r2: 10 < 15 ^ 30 < 35 ! result = r2
3. evaluate r3: 12 < 15 ^ 20 < 35 ! result = r3
4. evaluate r4:

35 � 15 ^ result:o = insert ! return result = r3

For example request q2 = .x; 11; 40/ the iterator takes
the following steps:

1. evaluate r1: 5 < 11 ^ 10 < 40 ! result = r1
2. evaluate r2: 10 < 11 ^ 30 < 40 ! result = r2
3. evaluate r3:

12 � 11 ^ result:o = delete ! return N ULL

During the last example request q3 = .x; 15; 15/ the it-
erator takes the following steps:

1. evaluate r1: 5 < 15 ^ 10 < 15 ! result = r1
2. evaluate r2: 10 < 15 ^ 30 � 15 ! continue

3. evaluate r3: 12 < 15 ^ 20 � 15 ! continue

4. evaluate r4:
35 � 15 ^ result:o = insert ! return result = r1

5.3 ANNA Store

Table 2 shows the schema of the ANNA Store which is able
to store ANNA Records as defined by Definition 5. The
Apache Accumulo row id is a compound key of the data
transformation process identification parameters dtpi, dtpr
and dtps. This ensures fast prefix scans on the ANNA Store
for a given data transformation process and its run num-
ber. The resulting set of ANNA Records contains all manual
actions for each data transformation step. However, this for-
mat even ensures fast look ups for specific data transforma-
tion steps. The column family contains the table cell iden-
tification parameters tabr and tabc. By making a prefix scan
containing the unique data transformation process identifi-
cation number dtpi and the column family it is possible to
get all changes made to a cell without taking into account
in which run or step it was made. To ensure recomputability
the rules for time-to-consistency as explained in Sect. 5.1
and the bitemporality from Definition 3 have to be applied.
Therefore, the event timestamp te is stored in the column
qualifier and the ingest timestamp ti is stored as Apache

K



252 Datenbank Spektrum (2017) 17:245–253

Table 2 The ANNA Store Schema and a stored ANNA Record (see Definition 5)

Row ID Column Family Column
Qualifier

Version Value

data transformation process compound column family

dtpi dtpr dtps tabr tabc te ti s

income report 1 boss 42 income 1496746276031 t1 serialized
script A

income report 1 worker 43 income 1496746289028 t2 serialized
script B

Accumulo timestamp similar to the ELSA Store. The value
stores the serialized manual action definition script s of an
ANNA Record which contains the transformation and its
precondition. Those manual actions can be stored as JSON
with a Base64 [7] encoded precondition and transformation
field. The script language used to define the precondition
and transformation could be any suitable script language.
For this example we used javascript. Assuming a domain
expert generates a manual action with the following data:

● table.row = "42"
● table.column = "income"
● tAE = 1496746276031
● data.transformation.process.identifier

= "income report"
● data.transformation.run.number = "1"
● data.transformation.process.step

= "boss"
● precondition =

function preconditions(inTable) f
if(inTable.get(42,"income") < 1000)

return true;
else

return false;
g

● transformation =
function transformation(cellValue) f

return cellValue * 10;
g

This would result in the following elements of an ANNA
Record:

● dtpi: income report
● dtpr: 1
● dtps: boss
● tabr: 42
● tabc: income
● te: 1496746276031

● ti: t1
● s:

f"precondition":"MS4gWW91IGhhdmUgZGVjb2
RlZCB0aGlzIEJBU0U2NCBjb2RlLg0KMi4gWW91I

GhhdmUgYSBnb29kIHNlbnNlIG9mIGh1bW9yLg==",

"transformation":"U2VuZCBhbiBlbWFpbCB0b

yB0aGUgYXV0aG9yczogbWF0dGhpYXMubWsua3Jp

Y2tlQGdtYWlsLmNvbSBhbmQgbWdyaW1tZXI0MkB

nbWFpbC5jb20sIHRoZXkgd2lsbCBiZSBoYXBweS

BhYm91dCBpdC4="g

This ANNA Record is stored in the ANNE Store as shown
in Table 2 and can be applied as it was shown in Fig. 6.

6 Conclusion and Future Work

We have defined a system architecture composed of ELSA
and ANNAwhich can reliably recompute data products even
when data changes, external systems are used or human
interactions are applied to intermediate results. We have
managed this by keeping all versions of the data and the
human interactions in a bitemporal and consistent way. In
the former system, the database state to be used was not
configurable and depended on the time a get request was
sent. This led to unrecomputable results. In an ELSA get
request the state to be used of the external system is con-
figurable and defined by the ingest timestamp. Therefore,
the ELSA get request allows flexible recomputations of data
transformation processes.

Besides recomputability, the architecture has several
other benefits. It is linearly scalable, has a low latency and
can handle massive parallel requests by using distributed
technologies like Apache Hadoop and Apache Accumulo.
Furthermore, temporary connection issues regarding the
external systems are hidden from the data transformation
process. Hence, we can even execute data transformation
processes while an external system is not accessible. In
addition, there is no possibility of overwhelming the ex-
ternal system with distributed queries when scaling up the
data transformation processes. Moreover, by using ANNA

K



Datenbank Spektrum (2017) 17:245–253 253

data transformation processes of mgm’s customer which
contains human interactions of domain experts are now
recomputable. Formerly automated data transformation
processes which recompute data products were blocked by
this human interactions. Those manual actions are defined
with rich tooling that maps the user interactions onto a
predefined set of operations which can then be applied
automatically as a part of a data transformation step during
a recomputation. To bring this even further, we plan to
investigate whether it is possible to reuse those human
interactions in other data transformation processes.

Additional future work may consider the version of the
software used by data transformation processes since old
versions may no longer be available to recompute results.
We believe this is quite challenging since used frame-
work versions, the runtime environment and hardware may
change significantly. However, it might be possible by the
use of recomputable virtualized environments.

Acknowledgements This work was partly funded by the German
Federal Ministry of Education and Research within the project Compe-
tence Center for Scalable Data Services and Solutions (ScaDS) Dres-
den/Leipzig (BMBF 01IS14014B) and Explicit Privacy-Preserving
Host Intrusion Detection System EXPLOIDS (BMBF 16KIS0522K).

References

1. Accumulo A (2017) Accumulo design – data model. http://
accumulo.apache.org/1.8/accumulo_user_manual.html#_accumulo_
design. Accessed 27 July 2017

2. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Bur-
rows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: A
distributed storage system for structured data. ACM Trans Comput
Syst 26(2):4

3. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghe-
mawat S, Gubarev A, Heiser C, Hochschild P et al (2013) Spanner:
Google’s globally distributed database. ACM Trans Comput Syst
31(3):8

4. Dragojević A, Narayanan D, Nightingale EB, Renzelmann M,
Shamis A, Badam A, Castro M (2015) No compromises: distributed
transactions with consistency, availability, and performance. In:
Proceedings 25th Symposium on Operating Systems Principles,
ACM, pp 54–70

5. Gray J, Reuter A (1992) Transaction processing: concepts and tech-
niques. Elsevier, Amsterdam

6. Jensen CS, Soo MD, Snodgrass RT (1994) Unifying temporal data
models via a conceptual model. Inf Syst 19(7):513–547

7. Josefsson S (2006) The base16, base32, and base64 data encodings.
https://tools.ietf.org/html/rfc4648. Accessed 9 June 2017

8. Kulkarni K, Michels JE (2012) Temporal features in sql:2011. SIG-
MOD Rec 41(3):34–43. https://doi.org/10.1145/2380776.2380786

9. Lee J, Muehle M, May N, Faerber F, Sikka V, Plattner H, Krueger
J, Grund M (2013) High-performance transaction processing in sap
hana. IEEE Data Eng Bull 36(2):28–33

10. Ozsoyoglu G, Snodgrass RT (1995) Temporal and real-time
databases: a survey. IEEE Trans Knowl Data Eng 7(4):513–532

11. Rahm E, Do HH (2000) Data cleaning: problems and current ap-
proaches. IEEE Data Eng Bull 23(4):3–13

12. Srivastava U, Widom J (2004) Flexible time management in data
stream systems. In: Proceedings twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
ACM, pp 263–274

K

http://accumulo.apache.org/1.8/accumulo_user_manual.html#_accumulo_design
http://accumulo.apache.org/1.8/accumulo_user_manual.html#_accumulo_design
http://accumulo.apache.org/1.8/accumulo_user_manual.html#_accumulo_design
https://tools.ietf.org/html/rfc4648
http://dx.doi.org/10.1145/2380776.2380786

	Preserving Recomputability of Results from Big Data Transformation Workflows
	Abstract
	Introduction
	Requirements
	External System Adaptor
	ELSA Get Requests and Bitemporality
	ELSA Data Synchronization and Store

	Automated Manual Action Application System
	Data Transformation Process
	Manual Action Definition
	Automated Manual Action Application

	Implementation
	Time-to-Consistency
	Schema and Server-Side-Iterator
	ANNA Store

	Conclusion and Future Work
	References


