Object Matching in P2P Data Integration (*From COMA to MOMA*)

<u>Erhard Rahm</u> D. Aumüller, H.H. Do, T. Kirsten, H. Köpcke, S. Maßmann, A. Thor

http://dbs.uni-leipzig.de

Exchange and Integration of Data (EID06) June 10, 2006

Matching objects in web sources @article{DBLP:journals/vldb/RahmB01, DBI P author = {Erhard Rahm and Philip A. Bernstein}, title = {A survey of approaches to automatic schema matching.} journal= {VLDB J.}, year $= \{2001\}, \ldots$ A survey of approaches to automatic schema matching - group of 25 » EJ Rahm, PAJ Bernstein - The VLDB Journal The International Journal on Very Large ... In the next section, we summarize some example applica- tions of schema match Google Scholar 5 provides a classification of different ways to perform Match automatically. ... Cited by 585 Web Search Information Fusion A survey of approaches to automatic schema matching Full text Pdf (196 KB) The VLDB Journal — The International Journal on Very Large Data Bases archive Source Volume 10, Issue 4 (December 2001) table of contents Pages: 334 - 350 Year of Publication: 2001 ACM ISSN:1066-8888 Universität Leipzig, Institut für Informatik, 🗚 🕫 Leipzig, Germany; (e-mail: rahm@informatik.uni-leipzig.de) Erhard Rahm Authors Philip A. Bernstein Microsoft Research, Redmond, WA 98052-8299, USA; (e-mail: philbe@microsoft.com) Publisher Springer-Verlag New York, Inc. Secaucus, NJ OSA Additional Information: abstract citings index terms collaborative colleagues peer to peer

Duplicates within (integrated) sources

* E. Rahm, H. H. Do: Data Cleaning: Problems and Current Approaches. IEEE Techn. Bull. Data Eng., Dec. 2000

Agenda

- Motivation
- Data integration alternatives
 - Physiscal vs. virtual data integration
 - P2P-like data integration
 - Requirements for mapping-based data integration
- The iFuice data integration system
 - Sources, mappings, domain model
 - Operators
 - Use case: citation analysis of database publications
- MOMA Framework for Mapping-based Object MAtching
 - Architecture
 - Match strategies
 - Evaluation
 - Self-Tuning
- Related Work
- Summary

ETL Process*

Data integration: physical vs. virtual (2)

	Physical (Warehouse)	Virtual (Query mediators)
Schema integration	A priori	A priori
Instance data integration	A priori	At query runtime
Achievable data quality	+	0
Analysis of large data volumes	+	-
(HW) ressource requirements	-	0
Data freshness	0	+
Source autonomy	0	+
Scalability to many sources	-	-

P2P Integration: Bibliographic scenario

- Bidirectional mappings between data sources instead of global schema
- Queries refer to single source and are propagated to relevant peers
- Adding new sources becomes simpler
 - Support for local data sources

P2P: Bioinformatics scenario

Data integration in bioinformatics

HG_U95C KEGG PREFILE RG_U34C OMIM ENSEMBL CATH MOE430A UNIGENE
TIGR_FAMS RG_U34A HU35KSUBA HU35KSUBA MG_U74CV2 HC_G110 MOE430B
MG_UZ48V2 PROSITE_ODOC
PROSITE REFECT PROT
RN_U34 HG_UI33A MULTIKSUBA HUGO SUPERFAM HG_UI95A MOLECULAR_FUNCTION SCOP
LOCATION REFEQ PROSTE DOC ORGANISM HUGENERL SMART MG_U74A
TIGR STS HU35KSUBC MG_U74C MG_U74B COFACTOR PKR_HANKS CHR SWSSPROT
GENBANK_NUCL INTERPRO HG_U133B GO GENMAPP MSD HG_U95B

- many, highly connected data sources
- heterogeneous schemas, formats, semantics
- incomplete data sources
 - frequent changes
- global schema ???

Sample web data with cross-references

LocusID: 15	source-specific ID (accession)			
Overview		?		
Product: Alternate Symbols Alias:	arylalkylamine N-acet SNAT, AA-NAT serotonin N-acetyltra	annotations: – names, symbols,		
Function Su	bmit GeneRIF	(All Pubs) ?	synonyms, erc.	
EC Number: 2.3.1	.87 🔶	Enzyme		
Gene Ontology [™] :		·		
Term	tivity setyltransferase activity	- GeneOntology	References	
Additional Links				
• OMIM: <u>600950</u>	4	- OMIM	sources	
 UniGene: <u>Hs.43</u> <u>KEGG pathway</u>: ¹ 	1417 < Tryptophan metabolism	← UniGene ← KEGG		

Bibliographic cross-references

Link to British Library Direct

Requirements for data integration (not only for bioinformatics)

- Utilization of instance-level cross-references (often manually curated, high quality data)
- Easy navigational and query access to many sources
- Support for ad-hoc analysis workflows
- Often no full transparency: users want to know from which sources data comes (data lineage / provenance)
- Need to integrate local (non-public) data
- Need for object matching:
 - data quality
 - create cross-references for information fusion

Solution: Mapping-based P2P-like data integration

The iFuice approach*

- Information Fusion utilizing Instance Correspondences and Peer Mappings
- Generic infrastructure for data integration
 - Applicable to different application domains
 - Different types of sources (databases, files, ...)
- Mapping-based (P2P-like) Integration
 - no global schema, but bidirectional mappings between data sources
 - utilization of existing cross-references / instance mappings
- Set-oriented operators for accessing data sources, traversing mappings, fusing data etc.
- Ontological domain model to categorize sources and mappings

*Rahm, E., et al.: *iFuice - Information Fusion utilizing Instance Correspondences and Peer Mappings*, Proc. 8th WebDB, Baltimore, June 2005

Data sources

- Physical data source (PDS)
 - Web data (DBLP), local data (files), ...
 - Splitted in logical data sources
- Logical data source (LDS)
 - Refers to one object type
 - Contains object instances
- Object instance
 - Refers to real world entity
 - Set of attributes
 - One attribute is id

Publication Name: Generic schema matching with Cupid Id: http://dblp.uni-trier.de/.../vldb/MadhavanBR01 Conference: VLDB 2001 Authors: Jayant Madhavan, Philip A. Bernstein, Erhard Rahm

Mappings

- Directed binary relationship between LDS
- Mappings have a semantic mapping type
 - e.g., "publications of author"
- Kinds of mappings
 - Same mappings vs. association mappings
 - same = "equality" relationship typically between PDS
 - e.g., DBLP publication (id) \rightarrow ACM publication (id)
 - Id mappings vs. query mappings
- Instance data: instance correspondences
 - Materialized: mapping tables
 - Determined on-the-fly: execution result (e.g., from web service or query)

Metadata model

- Used by mediator for mapping/operator execution
- Source/mapping model
- Domain model indicates available object types and relationships

Operators

- Query language capabilites + scripting support
- Set-oriented operators
 - Input: set of object or mapping instances
 + parameters / query specification
 - Output: set of object / mapping instances
- \Rightarrow Can be **combined** within scripts

Operators overview

- Object instances (OI)
 - OI → OI: getInstances, traverse, traverseSame
 - Query → OI: queryInstances, queryMatch, attrTransf
- Aggregated objects (AO)
 - OI \rightarrow AO: agg, disagg, fuseAttributes
 - AO → AO: aggregateSame, aggregateTraverse, aggregateMap

Generic

- union, diff, intersect
- domain, range, compose

Operators for object instances

- queryInstances executes a query on a peer
 - \$S := queryInstances (Conf@DBLP, Series="SIGMOD") returns all SIGMOD conferences from DBLP
- map executes a mapping
 - map (\$S, DBLP.ConfPubs) returns all tuples (conference, publication)
- traverse returns the range of a mapping
 - \$P := traverse (\$S, DBLP.ConfPubs) returns all publications
- traverseSame "navigates" to corresponding objects of another physical source
 - traverseSame (\$P, GoogleScholar) returns "equal" publications at GoogleScholar

Instance fusion

iFuice scripts

- Batch execution of operators
 - Store (intermediate) results in variables
- Scripts can be used by other scripts -> workflows
- Script example: SIGMOD test of time award

\$SIGMODPubs := queryTraverse (LDS=DBLP.Conf, {Name="SIGMOD 1996"}, DBLPConfPubs) \$CombinedConfPub := aggregateSame (\$SIGMODPubs, GoogleScholar) \$CleanedPubs := fuseAttributes (\$CombinedConfPub) \$Result := sort (\$CleanedPubs, "NoOfCitings")

Example: SIGMOD test of time award

🚰 iFuice		
<u>F</u> ile Tools		
Connect to Open s Scripting \Exploring \ Enter script here: \$SIGMODPubs := \$CombinedConfP \$CleanedPubs :: \$Result := sor	 Tian Zhang, Raghu Ramakrishnan, Miron Livny : BIRCH: An Efficient Data Clustering Method for Very Large Databases (617) Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman : Implementing Data Cubes Efficiently (559) Ramakrishnan Srikant, Rakesh Agrawal: Mining Quantitative Association Rules in Large Relational Tables (491) Jim Gray, Pat Helland, Patrick E. O'Neil, Dennis Shasha : The Dangers of Replication and a Solution (441) Peter Buneman, Susan B. Davidson, Gerd G. Hillebrand, Dan Suciu: A Query Language and Optimization Techniques for Unstructured Data 	Set as Tree Root ; conf/sigmod/P tions Environmen /ZhugeGHW95; ization of Traditi d/GriffinL95; ternandez595; gles: A Study wit onGM95; mer, J Widom sing Environment sy.cfm?id=223848&t ina Environment
Execute Line	DBLP.year 1995	

Integration of bibliographic data*

- Citation analysis of scientific database publications
 - 10 years: 1994 2003
 - 2 conference series (SIGMOD, VLDB), 3 journals (TODS, VLDBJ, Sigmod Record)

dblp.uni-trier.de

COMPUTER SCIENCE BIBLIOGRAPHY

- manually curated
- good data quality

UNIVERSITÄT TRIER • no citation counts

- automatic extraction of bibliographic data + citations from fulltext documents (PDF, PS files)
- data quality problems (duplicates, ...)

- ACM Digital Library
- includes
 - citations
 - author addresses / institutions

Integration Result: Impact Factors

- Journal impact factor JIF(X) = average number of times articles from the journal published in the past two years X-1 and X-2 have been cited in year X
- Adopted for conferences; extended to 5 years
- SIGMOD > VLDB > Journals

Aggregated Citation Frequencies

	Country	# Cit.	in %	# Pub.
1.	USA	51783	72.7	599
2.	Germany	4445	6.2	74
3.	Canada	3342	4.7	38
4.	France	2255	3.2	31
5.	Italy	2079	2.9	25
б.	Israel	858	1.2	6
7.	Japan	753	1.1	8
8.	Switzerland	699	1.0	13
9.	Denmark	655	0.9	8
10.	Greece	623	0.9	14

Table 5: Citations by country

	Institution	# Cit.	#Pub.
1.	IBM	9593	73
2.	Stanford University	7064	63
3.	University of Wisconsin-Madison	5150	61
4.	Bell Labs & AT&T Labs	4573	59
5.	University of Maryland	3299	34
б.	Microsoft	2411	27
7.	University of California, Berkely	1925	25
8.	INRIA (France)	1887	22
9.	University of Washington	1 <i>5</i> 06	16
10.	University of Munich (Germany)	1367	15

Table 6: Citations by institution

- based on institution of first author
- only papers with at least 20 citations (w/o self-citations) are considered

MOMA Overview

- MOMA = <u>Mapping based</u> <u>Object</u> <u>Matching</u>
- Object consolidation framework
 - Peer-to-Peer environment with heterogeneous sources
 - Generation of instance mappings (correspondences)
 - Special case: duplicate detection within 1 source (generation of self-mapping)
- Key features
 - Utilization of existing mappings (reuse)
 - Extensible matcher library
 - Mapping combination
 - Construction of match workflows
- Note: similar objectives than in schema matching, e.g. in COMA / COMA++

Object Matching

- Goal: create "good" same-mapping between two sets of input objects A ⊆ LDS_A and B ⊆ LDS_B of the same object type
 - e.g. between subsets of Publications@DBLP and Publications@GoogleScholar
- Mappings are represented by sets of instance correspondences
 - applicable for same-mappings (match results) and association mappings
 - inverting is trivial

LDS _A	LDS _{A'}	Sim
a ₁	a' ₁	1
a ₂	a' ₁	0.9
a ₃	a' ₃	0.8

same-mapping for authors

LDS _P	LDS _A	Sim
p ₁	a ₁	1
p ₁	a ₂	1
p ₂	a ₁	1

association mapping for publications and authors

Architecture

Match Workflows

- Coordinated execution of matchers and combination of mappings
 - single-attribute matcher (e.g. based on specific string similarity function)
 - multi-attribute matcher (hybrid matcher)
 - context matcher ...
- Example: Independent matcher execution

• Implemented as *iFuice* scripts

\$M1 := attrMatch (\$DBLP, \$ACM, "[title]", TFIDF, 0.9); \$M2 := attrMatch (\$DBLP, \$ACM, "[year]", EditDistance, 0.7); \$Union := union (\$M1, \$M2, avg); \$Result := select (\$Union, 0.8);

Match Strategies

Merging Same-Mappings

- Simple combination schemes: union, intersect, consolidate
 - combination of similarity values: avg, min, max, weighted, left, right
- Trade-off
 - Intersect: precision , recall
 - Union: recall ↗, precision ↘
- Consolidate
 - = Intersect + "non-conflicting" correspondences
 - Correspondence (a, b) of map1 is non-conflicting, if map2 doesn't contain any correspondence for a or b
 union

Example

map1		ma	ip2
a1	b1	a1	b1
a2	b2	a3	b3
a4	b4	a4	b5

			a1	b1
int	orsoct	1	a2	b2
21			a3	b3
aı]	a4	b4
			a4	b5

conso	olidate
a1	b1
a2	b2
a3	b3

Composition of Same-Mappings

- Example: Pubs@DBLP Pubs@ACM
 - Map1: Pubs@DBLP Pubs@GS (e.g., result of previous merge)
 - Map2: Pubs@GS Pubs@ACM (e.g., existing mapping provided by GS)
- Compose (map1, map2, f)
 - $(a1,a2) \in \text{composed mapping IF } \exists a3: (a1,a3) \in \text{map1 AND} (a3,a2) \in \text{map2}$
 - similarity function f combines similarity values of compose paths leading to (a1,a2)
- Intermediate source should have good data quality / coverage

Neighborhood Matcher

- Combine same- & association mappings
- Attribute matching may suffer from highly different value representations

- Use information stored in associated objects
- Bibliographic example: Conference@DBLP Conference@ACM

- Utilize Publications of conference
- "Two conferences are the same if they share a significant number of publications."

Neighborhood Matcher (2)

Compose 3 mappings

Mapping Cardinality

 Semantic cardinality of mappings determines quality of resulting mapping

 N:1, N:M cases still useful for combination with other mappings, e.g. attribute match results

Use of Ontology Matching

- Mapping between product catalogs (ontology matching) can be used to match products (object matchings)
 - matching products should have matching product category
- Matching products can be used for ontology matching, i.e. to determine matching product categories

Experiment (EC-Fuice)

- 3 E-shops (Amazon.de, EBay.de, Softunity)
- software / video / games products
 - about 2000 categories, 40.000+ products on Amazon.de
- perfect instance-level (product) matching possible using unambiguous EAN (barcode)
 - products are often listed under several categories (e.g. action games and Xbox games)
 - i.e. category-product association mapping is N:M
- category (ontology) "same-mapping" is N:M
 - products of one category in shop 1 mostly map to several categories in shop 2 and vice versa
 - schema matching tools (and humans) have problems to find "correct" mapping

Evaluation

- Real data sources: DBLP, ACM, GoogleScholar (GS)
- DBLP:
 - 2616 publications, 3319 authors
 - 130 venues from 10 years: 20 conferences (Sigmod, VLDB), 110 journal issues (TODS, VLDBJ, Sigmod Record)
- Match problems
 - publications: DBLP-ACM, DBLP-GS, GS-ACM
 - authors: DBLP-ACM
 - venues: DBLP-ACM
- Perfect mapping: manually determined

Tuning

- Flexibility has its price
- Finding a good configuration of matchers and combination strategies is difficult
- Many possibilities for tuning:
 - Single-attribute matcher
 - Choice of similarity function
 - Threshold
 - Multi-attribute (hybrid) matcher
 - Choice of attributes
 - Choice of similiarity functions
 - Combination of independent matchers
 - Choice of combination strategy
 - Threshold

Related Work

- Surveys
 - Rahm, Do: *Data Cleaning: Problems and Current Approaches*. IEEE Techn. Bull. Data Eng., 2000
 - Gu, Baxter, Vickers, Rainsford. *Record Linkage: Current Practice and Future Directions*. Technical Report, 2003
- Frameworks (new operators for data cleaning, user-controlled workflows)
 - AJAX (Galhardas et al., VLDB 2001)
 - Potter's Wheel (Raman et al., VLDB 2001)
 - TAILOR (Elfeky et al., Data Eng. 2002)
- Tools
 - DataCleanser (EDD), Merge/Purge Library (Sagent/QM Software), MasterMerge (Pitnew Bowes) ...
 - MS SQL Server 2005: Data Cleaning Operators (Fuzzy Join / Lookup)

Related Work (2)

- Attribute Similarity
 - String distance metrics; Edit Distance, Jaro-Winkler, TFIDF, SoftTFIDF,
 - Comparison → Cohen (KDD03-Workshop on Data Cleaning ...)
 - Learnable string distance metrics: Bilenko et al. (KDD, 2003)
- Manually specified combination of matchers
 - Rules : Hernandez et al. (SIGMOD 1995)
 - Constraints: Shen et al. (AAAI 2005) ("age 2 cannot match with salary 200K")
- Adaptive combination of matchers
 - Active Atlas (Tejada et al., Information Systems 2001)
 - Combination of multiple similarity scores for object pairs
 - Interactive decision tree learning to identify most informative example for the user to classify next
 - Multiple profilers: Doan et.al. (IIWeb, 2003)
- Context-based object matchers
 - Co-authors: Bhattacharya, Getoor (DMKD 2004)
 - Warehouse hierarchies: Ananthakrishna et.al. (VDLB 2002)
 - XML hierarchies: Weis et al. (SIGMOD 2005)
 - XML graphs: Dong et al. (SIGMOD 2005)

Summary

- **iFuice**: generic way to mapping-based information fusion
 - utilizes existing instance correspondences
 - powerful operators and script facility to build data transformation and analysis workflows
 - succesful adoption in different domains
- Need for object matching in P2P data integration
 - generation of instance correspondences
- MOMA framework
 - combined use of several matchers
 - reuse of existing and previously determined instance mappings
 - need to combine similarity values in operators like compose, consolidate, ...
 - flexible match strategies, e.g. neighborhood matching
- Evaluation on challenging match tasks (web sources of different completeness, dirtyness, accessibility) showed effectiveness of MOMA
- Flexibility of MOMA framework provides opportunities for self tuning