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Abstract
The temporal analysis of evolving graphs is an important requirement in many domains but hardly supported in current
graph database and graph processing systems. We therefore have started with extending the distributed graph analysis
framework Gradoop for temporal graph analysis by adding time properties to vertices, edges and graphs and using them
within graph operators. We outline these extensions and illustrate their use within analysis workflows. We further describe
the implementation of the snapshot and diff operators and evaluated them.
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1 Introduction

The flexible analysis of graph data has gained significant in-
terest in the last decade and is supported by graph database
systems (e.g., Neo4j) and a growing number of distributed
graph processing systems [6]. As graphs typically evolve
continuously, graph processing systems mostly focus on the
analysis of static graphs representing the state (or snapshot)
of a graph at a specific point in time. Changes like the addi-
tion of vertices and edges can occur comparatively slowly
(e.g., in bibliographic networks) or at high frequency (e.g.,
as a stream of posts in a social network). An important re-
quirement in many domains is to analyze the temporal di-
mension of graphs, e.g., to analyze the evolution of certain
relationships like the citation patterns of publications or the
development of co-authorships in bibliographic networks.
For streaming-like changes there are specific analysis re-
quirements, in particular to support fast, real-time reaction
to certain changes such as the spread of hate messages in
social networks.
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This paper is an extended version of Temporal Graph
Analysis using Gradoop [14]. We report on work in progress
on temporal graph analysis using GRADOOP [5, 8], a dis-
tributed, open source framework for graph analytics build
on top of Apache Flink1. It supports extended property
graphs as well as many declarative operators, e.g., for pat-
tern matching and structural grouping, that can be used to
realize complex workflows for graph analysis. Inspired by
the temporal extensions in SQL:2011 [10] we extend the
GRADOOP graph data model by time properties for valid
and transactional time. We also show how these temporal
properties can be used within the operators for temporal
graph analysis. Furthermore, we describe the implementa-
tion of two temporal operators, snapshot and diff, and eval-
uate their runtime efficiency and scalability for different
datasets.

After a discussion of related work (Section 2) we in-
troduce the temporal extensions of GRADOOP’s property
graph model (Section 3) and its operators (Section 4). We
then show the use of the operators in building blocks for
common tasks in temporal graph analytics (Section 5). In
Section 6, we describe the implementation of the snapshot
and diff operators and in Section 7 we present an evaluation
of these operators.

1 https://flink.apache.org/
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Fig. 1 TPGM example of a
bibliographic graph. Vertices
and edges are specified by label,
valid-time (with format [val-
from,val-to]) and properties

2 RelatedWork

Date et al. [2] define three classes of time aspects for tem-
poral relational databases that can be applied one-to-one
to temporal graphs: transaction time, valid time, and their
combination bitemporal data. Transaction time is defined
as the time interval in which a fact is considered true in
the database (graph). In most cases, the transaction time is
maintained by the processing system itself and can be used
for versioning so that graph states can be reconstructed for
any point in the past. The valid time is defined as a time
interval in which a fact is valid as defined by the context
of the application [2]. Valid time intervals can also be ex-
pressed by time-stamps if the duration can be neglected.
Such graphs are also known as transient [9] or contact se-
quences [4] since their time-stamps reflect a chronological
order of interactions (e.g., edge additions). Fig. 1 shows an
example of a temporal graph with valid times: The temporal
affiliations of authors to institutions is represented as time
intervals whereas the valid time of publications is the time-
stamp when the publication was published.

There are only few graph processing systems that na-
tively support the storage, analysis and querying of tempo-
ral graphs. Immortalgraph [12] (earlier known as Chronos)
provides a storage and execution engine designed for tem-
poral graphs. It includes locality optimizations and an in-
memory iterative graph computation based on series of
graph snapshots. Snapshots are divided into groups to pro-
vide temporal graph mining approaches. Kineograph [1] is
a distributed platform for incoming stream data to construct

a continuously changing graph. It is also based on in-mem-
ory graph snapshots which are evaluated by conventional
mining approaches of static graphs (e.g., community detec-
tion). The snapshot approach is used to distribute the graph
on different systems. GraphStream [13] is an open-source
Java library focusing on the dynamics aspects of a graph.
It provides a flexible way to build user-defined analyses
upon a dynamic graph structure based on a stream of graph
events. None of these systems is based on a property graph
model to hold detailed contextual information of vertices
and edges besides the structural information. One approach
of a temporal property graph model is presented by Steer et
al. [15]. It is implemented in a distributed graph manage-
ment system that manages the graph history in-memory. It
allows updates only via event streams and offers no anal-
ysis and mining functionalities. Then et al. [16] developed
an automatic algorithm transformation to avoid multiple
executions of graph analytic algorithms on snapshots of a
temporal graph to reduce their runtimes.

A fairly new temporal graph analytics library is Tink [11]
that focuses on several temporal path problems and offers
the calculation of measures like temporal betweenness and
closeness. Similar to GRADOOP, Tink is build on Apache
Flink and employs the Property Graph Model. Temporal
information is represented by time intervals at the edges.
In contrast to Tink, GRADOOP supports not only graphs but
also logical graphs and graph collections. Furthermore, our
extension of the property graph model allows the defini-
tion of both time-stamps and intervals on both vertices and
edges.
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Table 1 Overview of TPGM unary graph operators, their signature and output. Operators marked with * already exist in EPGM and were
extended by temporal support

Operator Signature Output

Transformation* Graph.transform(graphFunction, vertexFunction, edgeFunction) Graph

Subgraph* Graph.subgraph(vertexPredicateFunction, edgePredicateFunction) Graph

Aggregation* Graph.aggregate(aggregateFunction [, ...]) Graph

Snapshot Graph.snapshot(temporalPredicateFunction) Graph

Difference Graph.diff(temporalPredicateFunction, temporalPredicateFunction) Graph

Grouping* Graph.groupBy(vertexGroupingKeys, vertexAggregateFunction, Graph,

edgeGroupingKeys, edgeAggregateFunction) Collection

Pattern Matching* Graph.query(patternGraph [,constructionPattern]) Collection

Table 2 Predefined TPGM predicate functions that can be used by
the operators. Variables x and y are timestamps, whereas c is a graph
element. The predicates differ according to the definition of a time-
stamp or a time-interval

Function Predicate

Time-Stamp Time-Interval

(only from defined) (from and to defined)

asOf(x) from � x from � x ^ to � x

fromTo(x, y) – from< y ^ to > x

between(x, y) – from � y ^ to > x

createdIn(x, y) from � x ^ from � y from � x ^ from � y

deletedIn(x, y) – to � x ^ to � y

precedes(c) from � c.from to � c.from

succeeds(c) from � c.from from � c.to

overlaps(c) – max(from, c.from)

< min (to, c.to)

3 Temporal Property GraphModel

The Temporal Property Graph Model (TPGM) is a sim-
ple but powerful extension of the Extended Property Graph
Model (EPGM) [8] to support an algebra of combinable an-
alytical operators on directed graphs that evolve over time
in GRADOOP. In the EPGM, a single property graph is re-
ferred to as logical graph, which in turn can be part of a
graph collection. Vertices and edges refer to one or more
logical graphs and are accordingly part of them. Logical
graphs, vertices, and edges consist of a unique identifier, a
type label (e.g., User or worksAt), and a (possibly empty)
set of properties represented as key-value pairs.

TPGM extends EPGM by adding four additional time
attributes as obligatory to the schema of vertices, edges,
and logical graphs: tx-from, tx-to and val-from and val-
to. The first two represent the transaction time (prefix tx),
the last two define the valid time (prefix val) by holding
the beginning and end of the elements validity. This ap-
proach offers a flexible representation of temporal graphs
with bitemporal time semantics where the valid time can
be empty, a time-stamp or a time interval by setting ei-
ther none, only the val-from or both val-from and val-to at-

tributes. Since time attributes can be empty, also edge-cen-
tric scenarios where a graph only has time information at its
edges can be modeled. Empty time attributes are interpreted
as NULL values (e.g., in predicate functions) analogous to
SQL. Fig. 1 shows a temporal graph from the bibliographic
domain modeled in TPGM. The graph represents the re-
lationship between authors, affiliations and publications.
There are vertices and edges without a temporal specifica-
tion (e.g., Affiliation), with a time-stamp (e.g., Publication)
and a time interval (member) as valid-time. TPGM does not
specify the data type of the time attributes and leaves it up
to the implementation (e.g., Unix time-stamp or formatted
date/time string). By holding a whole graph with both roll-
back and historical information, this model offers a flexible
retrieval of arbitrary graph snapshots and dissociates itself
from widespread snapshot approaches.

Valid times are typically embedded within the context of
the application before they enter GRADOOP. The respective
timestamps can be extracted while loading the elements as
graph or collection into the system. The transaction times
are maintained by the GRADOOP system automatically. Ver-
tices and edges can be added to (or deleted from) a logical
graph as well as a whole logical graph can be added to (or
deleted from) a graph collection. For newly added graph el-
ements the value of tx-from is set to the current system time
(i. e., import time) and tx-to to a maximum value. If a graph
element is deleted, the value of tx-to is set to the current
system time. The deletion of a vertex automatically triggers
the deletion of all corresponding edges, since they are not
valid without the vertex. In addition, the model supports up-
dates of an element’s label, valid times or properties. The
history of updates is also maintained by the transaction time
attributes. An update is realized as a logical deletion of the
updated element (i. e., the value of tx-to is set to the up-
date transaction time) and a logical addition of the element
including the updates (i. e., the value of tx-from is set to
the update transaction time and tx-to to a maximum value).
As a constraint, only graph elements that are not logically
deleted (i. e., current facts) can be updated.

Another advantage of TPGM is its backward compatibil-
ity to the original EPGM since every EPGM operator can
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Fig. 2 The resulting annotated
graph of the Difference operator.
Vertices and edges are specified
by label, valid-time (with format
[val-from,val-to]) and properties

be applied to a TPGM graph by disregarding the temporal
information of the graph elements. However, we will de-
fine appropriate operator extension for TPGM that allows
the definition of temporal graph analytical workflows in the
next section. Although TPGM offers bitemporal support,
we limit ourselves exclusively to the valid-times for sim-
plicity in the following sections.

4 Operators

The EPGM allows for combining multiple operators to
graph analytical workflows using the domain specific lan-
guage GrALa (Graph Analytical Language). It already pro-
vides operator implementations for graph pattern matching,
subgraph extraction, graph transformation, set operations
on multiple graphs as well as property-based aggregation
and selection. Some operators can be applied on logical
graphs and others on graph collections [8]. For simplicity
we use the terms graph and logical graph, collection and
graph collection interchangeably.

The operators are implemented by a composition of
Apache Flink transformations. As an example, the EPGM
subgraph operator is realized by using the filter transfor-
mation of Flink. In this work we will focus on the TPGM
graph operators that are listed in Table 1. They support the
access and modification of the available temporal informa-
tion in different ways. The following sections provide short
definitions of these temporal operators with some exam-
ples. Pre-defined predicate functions that can be used by

these operators are defined in Table 2. Furthermore, helper
functions that return parts of a date or time information
(e.g., year or day of week) are available. The implementa-
tion of the operators and their integration into GRADOOP is
currently work in progress. Since we focus on valid-times
in this section, each notation of from and to refers to the
attributes val-from and val-to defined in TPGM.

Transformation. The transform operator defines a struc-
ture-preserving modification of graph, vertex and edge data.
User-defined transformation functions can be applied to an
input graph G, which results in an output graph G0 [8].
Within TPGM it is possible to (1) modify the temporal
attributes, (2) define the time attributes from information
stored in properties or (3) create properties resulting from
the temporal information of the time attributes. For exam-
ple, if the temporal attributes are not yet set or calculated
during a workflow, this operator offers the possibility to
define the valid times from and to at runtime.

Subgraph. The subgraph operator is used to extract a sub-
graph from a graph by applying predefined or user-defined
predicate functions [8]. Often, such a function is used to
filter vertices and edges by label or the existence or value
of a property (e.g., vertices with label User and property
age greater than 30). Within TPGM, the temporal infor-
mation of graph elements can be used inside the predicate
functions. The operator is also suitable to declare vertex-
induced or edge-induced subgraphs by providing either a
vertex or edge predicate function. Considering the graph in

K



Datenbank Spektrum (2019) 19:199–208 203

Fig. 3 Part of a graph collection containing matching subgraphs of a
temporal pattern, each as a logical graph

Fig. 1, a subgraph with all author-affiliation memberships
that last longer that 3 years can be extracted with the edge-
induced operator call:

graph.subgraph(
v -> true,
e -> e.label = ’member’

AND YEAR(e.to)-YEAR(e.from) > 3)

Aggregation. The aggregation operator performs one or
more global aggregations on the graph. An aggregation
is specified by a pre- or user-defined aggregate function.
Each can be configured to be applied exclusively on ver-
tices, edges or both. Several aggregation functions are avail-
able in the current TPGM implementation (e.g., MinFrom
or MaxTo). They are realized internally by Flink’s Group-
Combine transformation. As an optimization step, we ap-
ply all given aggregate functions in one groupCombine step
per graph element type (i. e., vertex and edge). The result
of each aggregation is stored as a property on the logical
graph instance. In the example of Fig. 1, the AvgDuration
aggregate function can be used to determine the average
duration of all membership edges.

Snapshot. The snapshot operator allows one to retrieve a
valid snapshot of the whole temporal graph either at a spe-
cific point in time or a subgraph that is valid during a given
time range by providing a temporal predicate function. Be-
sides the operator itself, several predefined predicate func-
tions (see Table 2) are available. They are adopted from
SQL:2011 [10] that supports temporal databases. In the
example of Fig. 1, graph.snapshot(asOf(2010))

would remove the author named Rost and the last three pub-
lications together with their edges. Furthermore, three mem-
ber edges (Rahm-Microsoft, Thor-Uni Leipzig, and Thor-
HfTL) are removed, too.

Difference. The evolution of graphs over time can be
represented by the difference of two graph snapshots,
i. e., by a difference graph that is the union of both
snapshots where each graph element is annotated as
an added, deleted, or persistent element. To this end,
GRADOOP’s structural diff operator consumes two graph
snapshots defined by temporal predicate functions and
calculates the difference graph. For example, the usage
of graph.diff(asOf(2010),asOf(2018)) at the
graph in Fig. 1 would result in the annotated graph at
Fig. 2. The symbols +, - and = represent added, removed
and persisting elements, respectively.

Grouping. A structural grouping of vertices and edges is an
important task in temporal graph analytics. Since temporal
graphs can become very large, a condensation can facilitate
deeper insights about structures and patterns hidden in the
graph. In the current EPGM implementation of the groupBy
operator, a grouping is based on vertex and edge grouping
keys (e.g., the type label or property keys) as well as vertex
and edge aggregation functions [7]. For temporal grouping,
TPGM provides three additional features: First, time-spe-
cific value transformation functions (e.g., year or day of
week) can be applied to compute time values on the de-
sired granularity for grouping. Second, the groupBy opera-
tor supports GROUP BY CUBE and GROUP BY ROLLUP
similar to SQL. If this extension is used for vertex or edge
grouping keys, the output of the operator is a collection
where each graph corresponds to a single combination of
the given grouping keys. Third, aggregation on the temporal
properties from and to of the vertices and edges can not only
be specified by user-defined functions but by one of the pre-
defined time-specific aggregation functions (e.g., MinFrom
or MaxFrom). For example, having a graph whose edges
include time interval definitions, the AvgDuration function
can be used to determine the average duration of all inter-
vals. The temporal attributes of the super vertices and edges
are the minimum and maximum of the grouped elements.

Pattern Matching. Retrieving subgraphs matching a user-
defined pattern graph is an important task within the
graph analytics domain. In the EPGM a pattern match-
ing operator query is already implemented using ba-
sic concepts of Neo4j Cypher2 to define patterns, e.g.,
(a)-[b]->(c) [8]. Predicate functions can be embed-
ded in a pattern inside a WHERE clause by using variables

2 https://neo4j.com/developer/cypher-query-language/
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Fig. 4 The result of a time-specific grouping and aggregation applied
on the matches of Fig. 3. By using the ROLLUP extension, a collection
with two logical graphs is returned

defined in the pattern. Matching subgraphs can be mod-
ified by providing a construction pattern. In TPGM, we
extend this functionality by using the temporal attributes
from and to inside predicate definitions, i. e., by pre-de-
fined (see Table 2) and user-defined predicate functions.
This offers the possibility to define temporal patterns that
describe evolutionary behavior of the graph instances.
For example, the pattern (a:Author)-[m:member]
->(f:Affiliation country: USA) WHERE
m.asOf(2017) describes an author being a member
of an affiliation from the United States as of 2017.

5 Temporal Graph Analytics Workflows

In this section we discuss exemplary workflows for tempo-
ral graph analytics. We illustrate how they can be supported
by GRADOOP and its extension to TPGM.

Snapshot generation and graph evolution. Graph systems
or algorithms might focus on the analysis of static graphs
representing the state (or snapshot) of a graph at a specific
point in time. GRADOOP therefore supports the retrieval of
snapshots using the snapshot operator in combination with
time-based predicates. To identify the difference and thus
the changes between two graph snapshots, the diff operator
can be used.

Temporal pattern matching. Searching for graph patterns
using time-constraints is important for temporal analysis.
In the example of Fig. 1, a query to obtain simultaneous
collaborations between affiliations must take the valid times
of the member edges into account:

graph.query(
// Pattern graph
MATCH
(f1:Affiliation)
<-[m1:member]-(a1:Author)
(a1)-[:write]->(p:Pub)
(p)<-[:write]-(a2:Author)
(a2)-[m2:member]->(f2:Affiliation)

WHERE a1!=a2
AND m1.overlaps(p) AND m2.overlaps(p),
// Construction pattern
(f1)-[:collaborate{from=p.from}]

->(f2))

By applying this to GRADOOP’s query operator together
with the construction pattern (given as second argument),
a collection of matching subgraphs is generated. The re-
sult is illustrated in Fig. 3 by means of three collaborations
found, which are caused by three publications (Model Man-
agement, Citation Analysis and CloudFuice) of the graph in
Fig. 1.

Time-specific grouping and aggregation. The time dimen-
sion automatically introduces a hierarchy, i. e., graphs can
be grouped (summarized) at multiple levels of time-granu-
larity. For example, the graph at the bottom of Fig. 4 sum-
marizes the collaboration between countries per decade
based on co-authored publications, i. e., the Affiliation
vertices are grouped by their country property and the
collaborate edges are aggregated at the level of decades
to reflect the temporal changes in the collaboration over
time. However, this summarization can be rolled-up on
the time hierarchy to have a global aggregation. To this
end, GRADOOP’s groupBy operator can be applied to the
graph collection in Fig. 3 to group all collaborate edges
by year with GROUP BY ROLLUP so that the resulting
graph collection contains both graphs visualized in Fig. 4.
The following snippet illustrates the call of the operator
together with its parameters to configure the time-specific
grouping and aggregation.

graph.groupBy(
[:label, ’country’],
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Fig. 5 Distributed dataflow implementation of the snapshot operator,
that is realized by two Filter functions. Both consume a temporal pred-
icate function representing the snapshot

[(superVertex[’count’] = vertices.
count())],

[:label, (from, t => DECADE(t))]
BY ROLLUP,

[(superEdge[’count’] = edges.
count())])

Vertices will be grouped by their respective label and the
values of the property country. Since the BY ROLLUP ex-
tension is specified in addition to the two given edge group-
ing keys, the grouping results in a graph collection with two
logical graphs. In the first one, the edges are grouped by
their label and the decade of the from timestamp. Latter is
specified by a time-specific value transformation function
and represents the beginning of the edge’s validity. In the
second one, the edges are grouped by their label only. For
both vertex and edge aggregation function, a count aggre-
gation is applied.

Efficient maintenance and re-use of queries and analysis re-
sults. Repeated execution of GRADOOP workflows, e.g.,
at certain times (e.g., once a month) or at certain events
(e.g., when adding a new publication into a bibliographic
network) requires an efficient update of graph transfor-
mations and graph summaries both in their structure
and aggregated property values. In the above mentioned
GROUP BY ROLLUP example, newly added publication
vertices might only update the collaborate edges where
the publication valid time falls into the valid time of the
collaborate edge.

6 Implementation

In this section, we provide details of the implementation of
two selected TPGM operators (snapshot and diff) to demon-

Fig. 6 The diff operator is realized by two FlatMap functions. Both
consume temporal predicate functions representing the snapshots

strate the realization of temporal graph analysis workflows
in the distributed in-memory dataflow model. All operation
implementations are – as with all other GRADOOP opera-
tors – based on Apache Flink. We evaluate both operator
implementations in Section 7.

The TPGM graph data model implementation reuses the
concepts of the EPGM implementation, which is described
by Junghanns et al. in [7]. Thus, a graph is stored in three
Flink datasets: one holding vertices (V), edges (E) and one
for graph identifiers (G). A dataset represents a distributed
collection of elements of the same type. The graph identi-
fiers are used to hold information like label and properties
of a logical graph instance. Therefore, it contains only one
graph identifier whereby a graph collection stores one graph
identifier for each graph instance of the collection. To this
end, our operator implementations consume three datasets
as input and produce three modified datasets as output. The
internal logic is composed of different transformations that
are applied to these datasets to realize the respective func-
tionality.

Snapshot operator. As described in Section 4, the snapshot
operator provides the retrieval of a valid snapshot of the en-
tire temporal graph by applying a temporal predicate func-
tion, e.g., asOf (see Table 2). Fig. 5 shows the data flow
within a simplified architectural sketch. We implemented
the snapshot operator by using two Flink filter transforma-
tions: one for the vertices V and one for the edges E (see
the blue box in Fig. 5). Each transformation applies a tem-
poral predicate to each record of V and E, respectively. The
predicate has access to the valid and transaction time of
each graph element and thus decides whether to keep the
element or to discard it.

Since vertices and edges are handled separately, the filter
step may produce dangling edges. These edges are kept by
the edge filter but their source and/or destination vertex is
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Table 3 LDBC social network dataset statistics including the over-
head of disk usage compared to the EPGM

SF |V| |E| Disk usage Overhead

1 3.3M 17.9M 4.3GB +34.8%

10 30,4M 180.4M 43.1GB +44.5%

100 282.6M 1.77B 430.0GB +45.0%

discarded by the vertex filter function. A subsequent ver-
ification step is thus performed to remove dangling edges
(see the orange box in Fig. 5). The verification is realized
by two of Flink’s semi-joins: ËV:Id =E:srcId and ËV:Id =E:trgId,
where V.Id is the vertex identifier, E.srcId is the identifier
of the edge’s source vertex and E.trgId of the edge’s target
vertex.

The result of this operator is a valid graph, with V 0 � V
and E 0 � E. The graph identifier G remains unchanged.

Difference operator. The diff operator can be used to ex-
plain the changes in a graph between two snapshots (i. e.,
states of the graph at a specific time). In our case, a snapshot
is represented by a temporal predicate, e.g., asOf(x) de-
scribes the graph snapshot at time x. The operator extends
each graph element by a property that characterized it as
added, deleted or persistent.

The architectural sketch of the diff operator is illustrated
in Fig. 6. Since all temporal information is stored in the in-
put graph, we can apply the two predicates that have to be
compared to each other on the same input datasets. Here we
exploit a decisive advantage, namely that all graph elements
are handled independent of each other and thus can be an-
alyzed independently by both given predicates in a single
step. More precisely, having a graph element and two pred-
icates A and B as input, we can check if that element exists
in both, none, only the first or only the second snapshot,
each represented by the predicates A and B. If it exists in
none of the two snapshots, the element will be discarded.
Otherwise, it will be annotated with a property _diff indi-
cating if the element has been added (_diff= +), deleted
(–) or left unchanged (=). The upper gray box of Fig. 6
shows the predicate evaluation matrix. The resulting set of
(annotated) vertices and edges is thus the union of the ver-
tices and edges of both logical snapshots. We implemented
the filtering and annotation step using Flink’s flatMap
transformation operator because flatMap takes one ele-
ment and produces zero, one, or more (modified) elements.

Let us consider the example graph of Fig. 1. The va-
lidity of the Author vertex named Rost begins in 2018
and has an infinite duration. The described operation
graph.diff(asOf(2010),asOf(2018)) evaluates
this vertex against both predicates. The first (asOf(2010))
would be evaluated to false, the second (asOf(2018))

Table 4 Used predicates for the evaluation, their identifiers and the
resulting selectivity

Name Predicate Sel. in %

P1 createdIn(2010-01-01,2010-01-20) 0.01

P2 asOf(2010-10-13) 10

P3 asOf(2011-02-18) 20

P4 asOf(2011-06-13) 30

would be evaluated to true. Consequently, this vertex is
annotated as “added” (i. e., a property _diff:+ is added
to the vertex) (see Fig. 2).

Analogous to the implementation of the snapshot oper-
ator, a subsequent verification step removes possible dan-
gling edges. The result of this operator is again a graph,
with V 0 � V and E 0 � E with the described additional
property. Just like the snapshot operator, the graph identi-
fier G remains unchanged.

7 Evaluation

One of the main goals of a distributed shared-nothing sys-
tem is the ability to respond to growing data sizes or prob-
lem complexity by adding resources. We therefore evaluate
the scalability of the two selected operator implementations
of Section 6 with respect to increasing data volume and
computing resources in this section. Since the application
of both operators results in a reduction in the number of
graph elements, we also evaluate the influence of the filter
selectivity on operator scalability.

Setup. The evaluation was performed on a shared-nothing
cluster with 16 workers connected via 1 GBit Ethernet.
Each worker consists of an Intel Xeon E5-2430 6 x 2.5
Ghz CPU, 48 GB RAM, two 4 TB SATA disks and runs
openSUSE 13.2. We use Hadoop 2.6.0 and Flink 1.6.0. We
run Flink with 6 threads and 40 GB memory per worker.

We use the LDBC-SNB data set generator [3] to create
three datasets with different scale factors (SF). A resulting
graph forms a heterogeneous social network with a fixed
schema. We extracted the temporal dimension from vertex
and edge properties that are holding their creation times-
tamp to define the valid times. The synthetic graphs rep-
resent structural and temporal characteristics of real-world
graphs, e.g., successively creation of instances over time
and relations as well as skewed property value distribu-
tions. Elements are created in the range of the year 2010
to 2012. Table 3 shows some statistics of the three datasets
used throughout this evaluation. In addition to the SF used,
the cardinality of vertex and edge sets, the dataset size on
hard disk as well as the overhead compared to the orig-
inal EPGM size are specified. Each dataset is stored in
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Fig. 7 Runtime of the diff and snapshot operator using predicates P1
through P4 for different numbers of workers. (Dataset LDBC.100)

Fig. 8 Speedup of the diff and snapshot operator using predicates P1
through P4 for different numbers of workers. (Dataset LDBC.100)

the Hadoop distributed file system (HDFS). We run three
executions per setup and report the average runtimes. Run-
times are measured by Flink’s execution environment and
include loading the graph from HDFS, executing the oper-
ator and writing the resulting graph back to HDFS. In our
experiments, we vary the number of workers by setting the
parallelism parameter to the respective number of threads
(e.g., 2 workers correspond to 12 threads).

Table 4 shows the different predicates used in the ex-
periments. We chose two pre-defined predicate functions
(see Table 2) with varying query timestamps which are in
the range of the dataset’s valid times. The resulting selec-
tivities vary between 0.01% for P1 and 30% for P4. For ex-
ample, a selectivity of 30% means, that the resulting graph
contains about 30% of graph elements compared to the in-
put graph. The selectivities persist for all scaling factors of
the datasets.
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Fig. 9 Runtime of the diff and snapshot operator using predicates P1
through P4 for different datasets. (Numbers of workers = 16)

Experimental results We first evaluate the absolute runtime
and relative speedup of our snapshot and diff operator im-
plementation. The operators are executed on each dataset
using an increasing number of workers (from 1 to 16) and
all predicates of Table 4. The results for the largest dataset
LDBC.100 are shown in Fig. 7 and Fig. 8, respectively.

The results show that our Flink-based operator imple-
mentations have good scalability. The comparison between
snapshot and diff shows that the former has slightly better
scalability. This is because filtering within the diff opera-
tor generally produces a greater result than filtering within
snapshot, because only those elements are removed that do
not meet both predicates A and B (see Fig. 6). This makes
the subsequent verification step (semi join) more complex.

For both operators, we are using different predicates to
prove that the scalability only slightly depend on the selec-
tivity (see Fig. 8). However, Fig. 7 shows that the running
time increases proportionally with selectivity. This can be
explained by the fact that the write process part is included
in the runtime measurement and that more data has to be
written for greater selectivity.

In a second experiment, we varied the datasets for a
fixed number of workers (16). Fig. 9 shows the runtimes
for both operators using different predicates. We observe
an almost linear dependence of the runtime on the size of
the respective data sets. For example, diff(P2, P4) takes 128
seconds for LDBC.10 and 1,222 seconds for LDBC.100.

Fig. 10 shows the speedup results for different num-
bers of workers depending on the selectivity of the pred-
icate used. We observe an almost constant speedup, i. e.,
the speedup is independent of the predicate’s selectivity.
Only when using 16 workers, a slight decline in speedup
is noticeable but that is probably due to the increased com-
municative overhead for large number of workers.

Again, through the characteristic of a distributed dataflow
engine the duration of a single operator can not be mea-
sured, but only the entire workflow. Thus, in the mea-
surement results, it is not possible to distinguish exactly
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Fig. 10 Relative speedup of the snapshot operator with respect to the
selectivity of the predicate used. (Dataset LDBC.100)

between the process of reading the graph, applying the op-
erator and writing the result. Further, different selectivities
result in different amounts of data that have to be written,
which in turn leads to different time investment for writing.

8 Conclusion

We reported on our work in progress on temporal graph
analysis within the distributed graph analytic system
GRADOOP. To this end, we introduced the flexible temporal
property graph model TPGM that supports bitemporal time
semantics. Furthermore, we extended existing and intro-
duced new GRADOOP operators to answer time-respecting
analytical questions over evolving graphs. We illustrated
the use of these operators within common building blocks
of analysis workflows and provided first implementation
details and evaluation results that prove a good speedup in
a distributed environment.

Temporal graphs and their analysis is an important and
promising field of research. In future work we will further
extend GRADOOP by temporal features such as operators
and algorithms to make GRADOOP a powerful and flexible
system for temporal graph analysis.
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