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Abstract
Temporal property graphs are graphs whose structure and properties change over time. Temporal graph datasets tend to be
large due to stored historical information, asking for scalable analysis capabilities. We give a complete overview of Gradoop,
a graph dataflow system for scalable, distributed analytics of temporal property graphs which has been continuously developed
since 2005. Its graph model TPGM allows bitemporal modeling not only of vertices and edges but also of graph collections.
A declarative analytical language called GrALa allows analysts to flexibly define analytical graph workflows by composing
different operators that support temporal graph analysis. Built on a distributed dataflow system, large temporal graphs can be
processed on a shared-nothing cluster.We present the system architecture of Gradoop, its datamodel TPGMwith composable
temporal graph operators, like snapshot, difference, pattern matching, graph grouping and several implementation details.
We evaluate the performance and scalability of selected operators and a composed workflow for synthetic and real-world
temporal graphs with up to 283M vertices and 1.8B edges, and a graph lifetime of about 8 years with up to 20M new edges
per year. We also reflect on lessons learned from the Gradoop effort.
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1 Introduction

Graphs are simple, yet powerful data structures to model and
analyze relations between real-world data objects. The analy-
sis of graph data has recently gained increasing interest, e.g.,
for web information systems, social networks [23], business
intelligence [60,69,81] or in life science applications [20,51].
A powerful class of graphs are so-called knowledge graphs,
such as in the current CovidGraph project1, to semantically
represent heterogeneous entities (gene mutations, publica-
tions, patients, etc.) and their relations from different data
sources, e.g., to provide consolidated and integrated knowl-
edge to improve data analysis. There is a large spectrum of
analysis forms for graph data, ranging from graph queries to
find certain patterns (e.g., biological pathways), over graph
mining (e.g., to rankwebsites or detect communities in social
graphs) to machine learning on graph data, e.g., to predict
new relations. Graphs are often large and heterogeneous with
millions or billions of vertices and edges of different types
making the efficient implementation and execution of graph
algorithms challenging [42,73]. Furthermore, the structure
and contents of graphs and networksmostly change over time

1 https://covidgraph.org/.
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making it necessary to continuously evolve the graphdata and
support temporal graph analysis instead of being limited to
the analysis of static graph data snapshots. Using such time
information for temporal graph queries and analysis is valu-
able in numerous applications anddomains, e.g., to determine
which people have been in the same department for a certain
duration of time or to find out how collaborations between
universities or friendships in a social network evolve, how
an infectious disease spreads over time, etc. Like in bitem-
poral databases [37,38], time support for graph data should
include both valid time (also known as application time) and
transaction time (also known as system time), to differentiate
when something has occurred or changed in the real world
and when such changes have been recorded and thus became
visible to the system. This management of graph data along
two timelines allows one to keep a complete history of the
past database states as well as to track the provenance of
information with full governance and immutability. It also
allows to query across both valid and system time axes, e.g.,
to answer questions like “What friends did Alice have on last
August 1st as we knew it on September 1st?”.

Two major categories of systems focus on the manage-
ment and analysis of graph data: graph database systems
and distributed graph processing systems [42]. A closer
look at both categories and their strengths and weaknesses
is given in Sect 2. So graph database systems are typi-
cally less suited for high-volume data analysis and graph
mining [31,53,75] as they often do not support distributed
processing on partitioned graphs which limits the maximum
graph size and graph analysis to the resources of a single
machine. By contrast, distributed graph processing systems
support high scalability and parallel graph processing but
typically lack an expressive graph data model and declar-
ative query support [13,42]. In particular, the latter makes
it difficult for users to formulate complex analytical tasks
as this requires profound programming and system knowl-
edge. While a single graph can be processed and modeled,
the support for storing and analyzing many distinct graphs
is usually missing in these systems. Further, both categories
have typically neither native support for a temporal graph
data model [49,74] nor for temporal graph analysis and
querying.

To overcome the limitations of these system approaches
and to combine their strengths, we started in 2015 already the
development of a new open-source2 distributed graph analy-
sis platform called Gradoop (Graph Analytics on Hadoop)
that has continuously been extended in the last years [29,39–
41,43,65,66]. Gradoop is a distributed platform to achieve
high scalability and parallel graph processing. It is based on
an extended property graph model supporting the processing
both of single graphs and of collections of graphs, as well

2 https://github.com/dbs-leipzig/gradoop.

as an extensible set of declarative graph operators and graph
mining algorithms. Graph operators are not limited to a com-
mon query functionality such as pattern matching but also
include novel operators for graph transformation or grouping.
With the help of a domain-specific language called GrALa,
these operators and algorithms can be easily combinedwithin
dataflow programs to implement data integration and graph
analysis. While the initial focus has been on the creation and
analysis of static graphs, we have recently added support for
bitemporal graphs making Gradoop a distributed platform
for temporal graph analysis.

In this work, we present a complete system overview of
Gradoop with a focus on the latest extensions for tempo-
ral property graphs. This addition required adjustments in
all components of the system, as well as the integration of
analytical operators tailored to temporal graphs, for example,
a new version of the pattern matching and grouping opera-
tors as well as support for temporal graph queries. We also
outline the implementation of these operators and evaluate
their performance. We also reflect on lessons learnt from the
Gradoop effort.

The main contributions are thus as follows:

– Bitemporal graph model We formally outline the bitem-
poral property graph model TPGM used in Gradoop,
supporting valid and transactional time information for
evolving graphs and graph collections.

– Temporal graph operators We describe the extended set
of graph operators that support temporal graph analy-
sis. In particular, we present temporal extensions of the
grouping and pattern matching operator with new query
language constructs to express and detect time-dependent
patterns.

– Implementation and evaluation We provide implemen-
tation details for the new temporal graph operators and
evaluate their scalability and performance for different
datasets and distributed configurations.

– Lessons learned We briefly summarize findings from
five years of research on distributed graph analysis with
Gradoop.

After an overview of the current graph system land-
scape (Sect. 2), the architecture of the Gradoop framework
is described in Sect. 3. The bitemporal graph data model
including an outline of all available operators and a detailed
description of selected ones is given in Sect. 4. After explain-
ing implementation details (Sect. 5), selected operators are
evaluated in Sect 6. In Sect. 7, we discuss lessons learned,
related projects and ongoing work. We summarize our work
in Sect. 8.
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2 Graph system landscape

Gradoop relates to graph data processing and temporal
databases, twoareaswith a huge amount of previous research.
We will thus mostly focus on the discussion of temporal
extensions of property graphs and its query languages and
their support within graph databases and distributed graph
processing systems. We also point out howGradoop differs
from previous approaches.

2.1 Temporal property graphs and query languages

A property graph [11,63] is a directed graph where vertices
and edges can have an arbitrary number of properties that are
typically represented as key-value pairs. Temporal property
graphs are property graphs that reflect the graph’s evolution,
i.e., changes of the graph structure and of properties over
time. There are several surveys about such temporal graphs
[18,32,45] which have also been called temporal networks
[32], time-varying graphs [18], time-dependent graphs [80],
evolving graphs and other names [27,55,66,77,82].

Temporal models are quite mature for relational databases
and support for bitemporal tables and time-related queries
have been incorporated into SQL:2011 [37,38,47]. By con-
trast, temporal graph models still differ in many aspects so
that there is not yet a consensus about the most promis-
ing approach (e.g., [18,27,55,77]). Such differences exist
regarding the supported time dimensions (valid time, transac-
tion time or both/bitemporal), the kinds of possible changes
on the graph structure and of properties, and whether a
temporal graph is represented as a series of graph snap-
shots or as a single graph, e.g., reflecting changes by time
properties.

A temporal property graph model should also include a
query language that utilizes the temporal information, e.g.,
to analyze different states or the evolution of the graph
data. Current declarative query languages for property graph
databases, such as Cypher [26,58], Gremlin [62] or Ora-
cle PGQL [79], are powerful languages supporting mining
for complex graph patterns (pattern matching), navigational
expressions or aggregation queries [10,12]. However, they
assume static property graphs and have no built-in support
for temporal queries that goes beyond the use of time or
date properties. In addition, special interval types are miss-
ing to represent a period in time with concrete start and
end timestamps, and relations between such time intervals,
e.g., as defined by Allen [9]. Another limitation of current
languages is their limited composability of graph queries,
e.g., when the result of a query is a table instead of a
graph.

Gradoop provides a simple yet powerful bitemporal
property graph model TPGM and temporal query support

that avoids the mentioned limitations (see Sect 4). Themodel
supports the processing of not only single property graphs
but also of collections of such graphs. Temporal information
for valid and transaction time is represented within specific
attributes, thereby avoiding the dedicated storage of graph
snapshots (snapshots can still be determined). The processing
of temporal graphs is supported by temporal graph operators
that can be composed within analytical programs. We also
support temporal queries based on TemporalGDL, a Cypher-
like pattern matching language combined with extensions
adapted from SQL:2011 [47] and Allen’s interval algebra
[9] that can use diverse temporal patterns in a declarative
manner (see Sect 4.2).

2.2 Graph database and graph processing systems

Graph database systems are typically based on the property
graph model (PGM) (or RDF [44]) and support a query lan-
guage supporting operations such as pattern matching [10]
and neighborhood traversal. The analysis of current graph
database systems in [42] showed that they mostly focus on
OLTP-likeCRUDoperations (create, read, update, delete) for
vertices and edges as well as on queries on smaller portions
of a graph, for example, to find all friends and interests of a
certain user. Support for graph mining and horizontal scala-
bility is limited since most graph database systems are either
centralized or can replicate the entire database on multiple
systems to improve read performance (albeit some systems
now also support partitioned graph storage). As already dis-
cussed for the query languages, the focus is on static graphs
so that the storage and analysis of (bi)temporal graphs are
not supported.

Graph processing systems are typically based on the bulk
synchronous parallel (BSP) [78] programming model and
provide scalability, fault tolerance and flexibility to express
arbitrary static graph algorithms. The analysis in [42] showed
that they are mainly used for graph mining, while they lack
support for an expressive graph model such as the property
graph model and a declarative query language. There is also
no built-in support for temporal graphs and their analysis so
that the management and use of temporal information is left
to the applications.

Gradoop aims at combining the advantages of graph
database and graph processing systems and to addition-
ally provide several extensions, in particular support for
bitemporal graphs and temporal graph analysis. As already
mentioned, this is achieved with a new temporal property
graph model TPGM and powerful graph operators that can
be used within analysis programs. All operators are imple-
mented based onApache Flink so that parallel graph analysis
on distributed cluster platforms is supported for horizontal
scalability.
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2.3 Temporal graph processing systems

We now discuss systems for temporal graph processing that
have been developed in the last decade. Kineograph [21]
is a distributed platform ingesting a stream of updates to
construct a continuously changing graph. It is based on
in-memory graph snapshots which are evaluated by conven-
tional mining approaches of static graphs (e.g., community
detection). ImmortalGraph [54] (earlier known as Chronos)
provides a storage and execution engine for temporal graphs.
It is also based on a series of in-memory graph snapshots
that are processed with iterative graph algorithms. Snapshots
include an update log so that the graph can be reconstructed
for any given point in time. Chronograph [25] implements a
dynamic graph model that accepts concurrent modifications
by a stream of graph updates including deletions. Each vertex
in the model has an associated log of changes of the vertex
itself and its outgoing edges. Besides batch processing on
graph snapshots, online approximations on the live graph are
supported. A similar system called Raphtory [77] maintains
the graph history in-memory, which is updated through event
streams and allows graph analysis through an API. The used
temporal model does not support multigraphs, i.e., multiple
edges between two vertices are not possible.

Tegra [36] provides ad hoc queries on arbitrary time
windows on evolving graphs, represented as a sequence of
immutable snapshots. An abstraction called Timelapse com-
prises related snapshots, provides access to the lineage of
graph elements and enables the reuse of computation results
across snapshots. The underlying distributed graph store uses
an object-sharing tree structure for indexing and is imple-
mented on theGraphXAPI ofApache Spark.A new snapshot
is created for every graph change and cached in-memory
according to a least recently used approach where unused
snapshots are removed from memory and written back to
the file system. So unlike Gradoop, where the entire graph
is kept in-memory, snapshots may have to be re-fetched
from disk. Furthermore, Tegra does not provide properties
on snapshot objects and focuses on ad hoc analysis on recent
snapshots, while analysis with Gradoop relies more on pre-
determined temporal queries and workflows.

Tink [50] is a library for analyzing temporal property
graphs built on Apache Flink. Temporal information is rep-
resented by single time intervals for edges only, i.e., there
is no temporal information for vertices and no support for
bitemporality. It focuses on temporal path problems and the
calculation of graph measures such as temporal betweenness
and closeness. The systems TGraph [34] and Graphite [27]
also use time intervals in their graph models where an inter-
val is assigned to vertices, edges and their properties. TGraph
also provides a so-called zoom functionality [6] to reduce the
temporal resolution for explorative graph analysis, similar to
Gradoop’s grouping operator (see Sect. 4.2).

Fig. 1 Gradoop high-level architecture

Compared to these systems, Gradoop supports bitempo-
ral graph data to differentiate the graph’s evolution in the
storage (transaction-time dimension) from the application-
oriented meaning of changes (valid-time dimension). The
previous systems also have a less complete functionality
regarding declarative graph operators and the possibility to
combine them in workflows for flexible graph analysis, e.g.,
the retrieval of a graph snapshot followed by a temporal pat-
tern matching and a final grouping with aggregations based
on the graph’s evolution.

3 System architecture overview

With Gradoop, we provide a framework for scalable man-
agement and analytics of large, semantically expressive
temporal graphs. To achieve horizontal scalability of storage
and processing capacity, Gradoop runs on shared-nothing
clusters and utilizes existing open source frameworks for
distributed data storage and processing. The difficulties of
distributing data and computation are hidden beneath a graph
abstraction allowing the user to focus on the problemdomain.

Figure 1 presents an overview of the Gradoop archi-
tecture. Analytical programs are defined within our Graph
Analytical Language (GrALa), which is a domain-specific
language for the Temporal PropertyGraphModel (TPGM).
GrALa contains operators for accessing static and temporal
graphs in the underlying storage aswell as for applying graph
operations and analytical graph algorithms to them. Opera-
tors and algorithms are executed by the distributed execution
enginewhich distributes the computation across the available
machines. When the computation of an analytical program is
completed, results may either be written back to the storage
layer or presented to the user. In the following, we briefly
explain the main components, some of which are described
in more detail in later sections. We will also discuss data
integration support to combine different data sources into a
Gradoop graph.
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Table 1 Subset of frequently used analytical graph operators and algorithms available in Gradoop organized by their input type, i.e., temporal
graph or graph collection. (* auxiliary operators)

Distributed storageGradoop supports several ways to store
TPGM compliant graph data. To abstract the specific stor-
age, GrALa offers two interfaces: DataSource to read and
DataSink to write graphs. An analytical program typically
starts with one or more data sources and ends in at least one
data sink. A few basic data sources and sinks are built into
Gradoop and are always available, e.g., a file-based storage
like CSV that allows reading and writing graphs from the
local file system or the Apache Hadoop Distributed File Sys-
tem (HDFS) [76]. Gradoop in addition supports Apache
HBase [2] and Apache Accumulo [1] as built-in storage,
which provides database capabilities on top of the HDFS.
Data distribution and replication as well as error handling in
the case of cluster failures are handled by HDFS. Due to the
available interfaces,Gradoop is not limited to the predefined
storages. Other systems, e.g., a native graph database like
Neo4j or a relational database, can be used as graph storage
by implementing the DataSource and DataSink interfaces.
Storage formats will be discussed in Sect. 5.5.

Distributed Execution EngineWithinGradoop, the TPGM
and GrALa provide an abstraction for the analyst to work
with graphs. However, the actual implementation of the data
model and its operators is transparent to the user and hid-
den within the distributed execution engine. Generally, this
can be an arbitrary data management system that allows
implementing graph operators.Gradoop usesApache Flink,
a distributed batch and stream processing framework that
allows executing arbitrary dataflow programs in a data paral-
lel and distributed manner [8,16]. Apache Flink handles data
distribution along with HDFS, load balancing and failure
management. From an analytical perspective, Flink provides
several libraries that can be combined and integrated within

a Gradoop program, e.g., for graph processing, machine
learning and SQL. Apache Flink is further described in Sec-
tion 5.1.

Temporal property graph model The TPGM [66] describes
how graphs and their evolution are represented in Gradoop.
It is an extension of the extended property graph model
(EPGM) [40] which is based on the widely accepted property
graphmodel [11,63]. To handle the evolution of the graph and
its elements (vertices and edges), the model uses concepts
of bitemporal data management [37,38] by adding two time
intervals to the graph and to each of its elements. To facili-
tate integration of heterogeneous data, the TPGM does not
enforce any kind of schema, but the graph elements can have
different type labels and attributes. The latter are exposed
to the analyst and can be accessed within graph operators.
For enhanced analytical expressiveness, the TPGM supports
handling of multiple, possibly overlapping graphs within a
single analytical program. Graphs, as well as vertices and
edges, are first-class citizens of the data model and can have
their own properties. Furthermore, graphs are the input and
output of analytical operators which enables operator com-
position. Section 4.1 describes the TPGM model in more
detail.

Graph analytical language Programs are specified using
declarative GrALa operators. These operators can be com-
posed as they are closed over the TPGM, i.e., take graphs
as input and produce graphs. There are I/O operators to read
and write graph data and analytical operators to transform
or analyze graphs. Table 1 shows a subset of frequently
used analytical operators and graph algorithms categorized
by their input [40,66]. There are specific operators for tem-
poral graphs to determine graph snapshots or the difference
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between two snapshots as well as temporal versions of more
general operators such as pattern matching [41] and graph
grouping [43,66]. Furthermore, there are dedicated trans-
formation operators to support data integration [46]. Each
category contains auxiliary operators, e.g., to apply unary
graph operators on each graph in a graph collection or to call
external algorithms. GrALa already integrates well-known
graph algorithms (e.g., page rank or connected components),
which can be seamlessly integrated into a program. Graph
operators will be further described in Sect. 4.2.

Programming interfaces Gradoop provides two options to
implement an analytical program. The most comprehensive
approach is the Java API containing the TPGM abstraction
including all operators definedwithinGrALa. Here, the ana-
lyst has the highest flexibility of interacting with other Flink
and Java libraries as well as of implementing custom logic
for GrALa operators. For a user-friendly visual definition
of Gradoop programs and a visualization of graph results,
we have incorporated Gradoop into the data pipelining tool
KNIME Analytics Platform [14]. This extension makes it
possible to use selected GrALa operators within KNIME
analysis workflows and to execute the resulting workflows
on a remote cluster [67,68]. KNIME and the Gradoop
extension offer built-in visualization capabilities that can be
leveraged for customizable result and graph visualization.

Data integration support Gradoop aims at the analysis of
integrated data, e.g., knowledge graphs, originating from dif-
ferent heterogeneous sources. This can be achieved by first
translating the individual sources into a Gradoop represen-
tation and then performing data integration for the different
graphs. Gradoop provides several specific data transforma-
tion operators to support this kind of data integration, e.g.,
to achieve similarly structured graphs (see Sect. 4.2.6). Fur-
thermore, we provide extensive support for entity resolution
and entity clustering within a dedicated framework called
FAMER [70–72] which is based on Gradoop and Apache
Flink. FAMER determines matching entities from two or
more (graph) sources and clusters them together. Such clus-
ters of matching entities can then be fused to single entities
(with a Fusion operator) for use in an integrated Gradoop
graph. In future work, we will provide a closer integration
of Gradoop and FAMER to achieve a unified data transfor-
mation and integration for heterogeneous graph data and the
construction and evolution of knowledge graphs [59].

4 Temporal property graphmodel

In this section, we present the Temporal Property Graph
Model (TPGM) as the graph model of Gradoop that allows
the representation of evolving graph data and its analysis.We
first describe the structural part of TPGM to represent tem-

poral graph data and then discuss the graph operators as part
of GrALa. The last subsection briefly discusses the graph
algorithms currently available in Gradoop.

4.1 Graph datamodel

The Property Graph Model (PGM) [11,63] is a widely
accepted graph data model used by many graph database
systems [10], e.g., JanusGraph [4], OrientDB [5], Oracle’s
Graph Database [22] and Neo4j [57]. A property graph is a
directed, labeled and attributed multigraph. Vertex and edge
semantics are expressed using type labels (e.g., Person or
knows). Attributes have the form of key-value pairs (e.g.,
name:Alice or classYear:2015) and are referred to
as properties. Properties are set at the instance level with-
out an upfront schema definition. A temporal property graph
is a property graph with additional time information on
its vertices and edges, which primarily describes the his-
torical development of the structure and attributes of the
graph, i.e., when a graph element was available and when
it was superseded. Our presented TPGM adds support for
two time dimensions, valid and transaction time, to differ-
entiate between the evolution of the graph data with respect
to the real-world application (valid time) and with respect to
the visibility of changed graph data to the system managing
the data (transaction time). This concept of maintaining two
orthogonal time domains is known as bitemporality [38]. In
addition, the TPGM supports graph collections, which were
introduced by the EPGM [40], the non-temporal predecessor
of the TPGM. A graph collection contains multiple, possibly
overlapping property graphs, which are referred to as logi-
cal graphs. Like vertices and edges, logical graphs also have
bitemporal information, a type label and an arbitrary number
of properties. Before the data model is formally defined, the
following preliminaries3 have to be considered:

PreliminariesWe assume two discrete linearly ordered time
domains:Ωval describes the valid-timedomain,whereasΩ t x

describes the transaction-time domain. For each domain, an
instant in time is a time point ωi with limited precision, e.g.,
milliseconds. The linear ordering is defined by ωi < ωi+1,
which means that ωi happened before ωi+1. A period of
time is defined by a closed-open interval τ = [ωstart , ωend)

that represents a discrete contiguous set of time instances
{ω|ω ∈ Ω ∧ ωstart ≤ ω < ωend} starting from ωstart and
including the start time, continuing toωend but excluding the
end time. To separate the time intervals depending on the
corresponding dimension, we use the notion τval and τ t x .

Based on this, a TPGM database is formally defined as
follows:

3 The preliminaries are partly based onmodel definitions of the systems
TGraph [55] and Graphite [27].
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Definition 1 (Temporal Property Graph Model
database) A tuple G = (L, V , E, l, s, t, B, β, K , A, κ)

represents a temporal graph database. L is a finite set of
logical graphs, V is a finite set of vertices and E is a finite set
of directed edges with s : E → V and t : E → V assigning
source and target vertex.

Each vertex v ∈ V is a tuple 〈vid, τ val , τ t x 〉, where vid is
a unique vertex identifier, τval and τ t x are the time intervals
for which the vertex is valid with respect to Ωval or Ω t x .
Each edge e ∈ E is a tuple 〈eid, τ val , τ t x 〉, where eid is a
unique edge identifier that allowsmultiple edges between the
same nodes, τval and τ t x are the time intervals for which the
edge exists, analogous to the vertex definition.

B is a set of type labels and β : L ∪ V ∪ E → B assigns
a single label to a logical graph, vertex or edge. Similarly,
properties are defined as sets of property keys K , property
values A and a partial function κ : (L ∪ V ∪ E) × K⇀A.

A logical graph G ′ = (V ′, E ′, τ val , τ t x ) ∈ L represents
a subset of vertices V ′ ⊆ V and a subset of edges E ′ ⊆ E .
τval and τ t x are the time intervals for which the logical graph
exists in the respective time dimensions. Graph containment
is represented by the mapping l : V ∪ E → P(L) \ {∅}
such that ∀v ∈ V ′ : G ′ ∈ l(v) and ∀e ∈ E ′ : s(e), t(e) ∈
V ′∧G ′ ∈ l(e). A graph collectionG = {G1,G2, . . . ,Gn} ⊆
P(L) is a set of logical graphs.

Constraints Each logical graph has to be a valid directed
graph, implying that for every edge in the graph, the
adjacent vertices are also elements in that graph. For-
mally: For every logical graph G = (V , E, τ val , τ t x ) and
every edge e = 〈eid, τ val , τ t x 〉 there must exist some
v1 = 〈v1id, τ val

1 , τ t x1 〉, v2 = 〈v2id, τ val
2 , τ t x2 〉 ∈ V where

s(eid) = v1id and t(eid) = v2id. Additionally, the edge
can only be valid with respect to Ω t x when both vertices
are also valid at the same time: τ t x ⊆ τ t x1 ∧ τ t x ⊆ τ t x2 .
The same must hold for the valid time domain Ωval : τval ⊆
τval
1 ∧ τ t x ⊆ τval

2 .
Vertices are identified by their unique identifier and their

validity in the transaction-time domain Ω t x , meaning that
a temporal graph database may contain two or more ver-
tices with the same identifier but different transaction-time
values. The corresponding intervals of all those vertices
have to be pairwise disjoint, i.e., for every two vertices
v1 = 〈v1id, τ val

1 , τ t x1 〉, v2 = 〈v2id, τ val
2 , τ t x2 〉 ∈ V it must

hold that v1id = v2id ∧ v1 
= v2 �⇒ τ t x1 ∩ τ t x2 = ∅.
Edges may be identified in the same way, meaning that the
graph database can also containmultiple edges with the same
identifier but different transaction time values.

Figure 2 shows a sample temporal property graph repre-
senting a simple bike rental network inspired by the New
York City’s bicycle-sharing system (CitiBike) dataset4. This

4 https://www.citibikenyc.com/system-data.

graph consists of the vertex set V = {v0, . . . , v4} and the
edge set E = {e0, . . . , e10}. Vertices represent rental sta-
tions denoted by corresponding type label Station and are
further described by their properties (e.g., name: Christ
Hospital). Edges describe the relationships or interactions
between vertices and also have a type label (Trip) and prop-
erties. The key set K contains all property keys, for example,
bikeId, userType and capacity, while the value set
A contains all property values, for example, 21233, Cust
and 22. Vertices with the same type label may have different
property keys, e.g., v1 and v2.

To visualize the graph’s evolution, a timeline is placed
below the graph in Fig. 2 representing the valid- and
transaction-time domain Ωval and Ω t x , respectively. Hori-
zontal arrows represent the validity for each graph entity and
domain (dashed forΩ t x and solid forΩval ). One can see dif-
ferent time points of a selected day, as well as the minimum
ωmin and maximum ωmax time as default values. The latter
are used for valid times that are not given in the data record
(e.g., for logical graphs or the end of a station’s validity) or
period ending bounds of transaction times. Edges represent-
ing a bike trip are valid according to the rental period. For
example, edge e2 represents the rental of bike 21233 at sta-
tion v0 at 10 a.m. and its return to station v1 at 11 a.m. The
bike was then rented again from 11:10 a.m. to 12:10 p.m.,
which is represented by edge e5. Completed trips are stored
in the graph every full hour, which is made visible by the
transaction times.

The example graph consists of the set of logical graphs
L = {G0,G1,G2}, where G0 represents the whole evolved
rental network and the remaining graphs represent regions
inside the bicycle-sharing network. Each logical graph has
a dedicated subset of vertices and edges, for example,
V (G1) = {v0, v1, v2} and E(G1) = {e2, e3, e4}. Con-
sidering G1 and G2, one can see that vertex and edge
sets may not overlap since V (G1) ∩ V (G2) = {∅} and
E(G1) ∩ E(G2) = {∅}. Note that also logical graphs have
type labels (e.g., BikeGraph or Region) and may have
properties, which can be used to describe the graph by anno-
tating it with specific metrics (e.g., stationCount:3)
or general information about that graph (e.g., location:
Jersey City). Logical graphs, like those in our exam-
ple, are either declared explicitly or are the output of a graph
operator or algorithm, e.g., graph pattern matching or com-
munity detection. In both cases, they can be used as input for
subsequent operators and algorithms.

4.2 Operators

In order to express analytical problems on temporal property
graphs, we defined the domain-specific language GrALa
containing operators for single logical graphs and graph col-
lections. Operators may also return single logical graphs or
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Fig. 2 Example temporal property graph of a bike rental network with two non-overlapping logical graphs

graph collections (i.e., they are closed over the data model),
thereby enabling operator composition. In the following, we
use the terms collection and graph collection as well as
graph and logical graph interchangeably. Table 2 lists our
graph operators including their corresponding pseudocode
syntax for calling them inGrALa. The syntax adopts the con-
cept of higher-order functions for several operators (e.g., to
use aggregate or predicate functions as operator arguments).
Based on the input of operators, we distinguish between
graph operators and collection operators as well as unary
and binary operators (single graph/collection vs. two graph-
s/collections as input). There are also auxiliary operators to
apply graph operators on collections or to call specific graph

algorithms. In addition to the listed ones, we provide opera-
tors to import external datasets to Gradoop by mapping the
data to the TPGM data model, i.e., creating graphs, vertices
and edges including respective labels, properties and bitem-
poral attributes. In the following, we focus on a subset of the
operators and refer to our publications [40,41,43,65,66] and
Gradoop’s GitHub–Wiki [64] for detailed explanations.

4.2.1 Subgraph

In temporal and heterogeneous graphs, often only a spe-
cific subgraph is of interest for analytics, e.g., only persons
and their relationships in a social network. The subgraph
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Table 2 TPGM graph operators specified with GrALa

operator is used to extract the graph of interest by applying
predicate functions on each element of the vertex and edge
sets of the input graph. Within a predicate function, the user
has access to label, properties and bitemporal attributes of
the specific entity and can express arbitrary logic. Formally,
given a logical graph G(V , E) and the predicate functions
ϕv : V → {true, f alse} and ϕe : E → {true, f alse},
the subgraph operator returns a new graph G ′ ⊆ G with
V ′ = {v | v ∈ V ∧ ϕv(v)} and E ′ = {〈vi , v j 〉 | 〈vi , v j 〉 ∈
E ∧ ϕe(〈vi , v j 〉) ∧ vi , v j ∈ V ′}. In the following exam-

ple, we extract the subgraph containing all vertices labeled
Station having a property capacity with a value less
than 30 and their edges of type Trip with a property
gender which value is equal to female:5

subgraph = g0.subgraph(
(v => v.label == ’Station ’ AND

v.capacity < 30),

5 In our listings, label and property values of an entity n are being
accessed using dot notation, e.g., n.label or n.name.
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(e => e.label == ’Trip ’ AND
e.gender == ’female ’))

Applied to the graph G0 of Fig. 2, the operator returns
a new logical graph described through G ′ = 〈{v2, v3, v4},
{e8, e9}〉. By omitting either a vertex or an edge predicate
function exclusively, the operator is also suitable to declare
vertex-induced or edge-induced subgraphs, respectively.

4.2.2 Snapshot

The snapshot operator is used to retrieve a valid snapshot of
the whole temporal graph either at a specific point in time
or a subgraph that is valid during a given time range. It is
formally equal to the subgraph operator, but allows for the
application of specific time-dependent predicate functions,
which were partly adapted from SQL:2011 [47] and Allen’s
interval algebra [9].

The predicate asOf (t) returns the graph at a specific
point in time, whereas all others, like fromTo(t1, t2), pre-
cedes(t1, t2) or overlaps(t1, t2), return a graph with all
changes in the specified interval. For each predicate func-
tion, the valid-time domain is used by default but can be
specified through an additional argument. Note that a TPGM
graph may represent the entire history of all graph changes.
For analysis of the current graph state, it is therefore advis-
able to use the snapshot operator with the asOf() predicate,
parameterized with the current system timestamp. Bitempo-
ral predicates can be defined through multiple operator calls.
For example, the following GrALa operator call retrieves a
snapshot of the graph for valid time 2020-09-06 at 9 a.m. and
at the current system time as the transaction time:

pastGraph = g0
.snapshot(

asOf(CURRENT_TIMESTAMP()),
TRANSACTION_TIME)

.snapshot(
asOf ( ’2019-09-06 09:00:00 ’) ,
VALID_TIME)

In the timeline of Fig. 2, one can see that edges e1, e6, e8
as well as all vertices and graphs meet the valid-time con-
dition and are therefore part of the resulting graph. All
visible elements exist at the current system time accord-
ing to the transaction-time domain; therefore, the result
does not change. However, if one changes the argument
of the first (transaction time) predicate to ’2019-09-06
09:55:00’, edges e6 and e8 would no longer belong to the
result set, since the information about these trips was not yet
persisted at this point in time.

4.2.3 Difference

In temporal graphs, the difference of two temporal snapshots
may be of interest for analytics to investigate how a graph has
changed over time. To represent these changes, a difference
graph can be usedwhich is the union of both snapshots and in
which each graph element is annotated as an added, deleted
or persistent element.

The difference operator of GrALa consumes two graph
snapshots defined by temporal predicate functions and cal-
culates the difference graph as a new logical graph. The
annotations are stored as a property _diff on each graph
element, whereas the value of the property will be a number
indicating that an element is either equal in both snapshots
(0) or added (1) or removed (-1) in the second snapshot. This
resulting graph can then be used by subsequent operators to,
for example, filter for added elements, group removed ele-
ments or aggregate specific values of persistent elements. For
the given example in Fig. 2, the following operator call cal-
culates the difference between the graph at 9 a.m. and 10 a.m.
of the given day:

diffGraph = g0.diff(
asOf ( ’2019-09-06 09:00:00 ’) ,
asOf ( ’2019-09-06 10:00:00 ’) ,
VALID_TIME)

The operator returns a new logical graph described
through G ′ where V (G ′) = {v0, . . . , v4} and E(G ′) =
{e1, e2, e6, e7, e8}. Further, the property key _diff is added
to K and the values {−1, 0, 1} are added to A. Since all ver-
tices and the edge e8 are valid in both snapshots, a property
_diff:0 is added to them. The edges e6 and e1 are no
longer available in the second snapshot; therefore, they are
extended by the property _diff:-1, whereas the edges e2
and e7 are annotated by _diff:1 to show that they were
created during this time period.

4.2.4 Time-dependent Graph Grouping

For large graphs, it is often desirable to structurally group
vertices and edges into a condensedgraphwhichhelps uncov-
ering insights about hidden patterns [40,43] and exploratory
analyze an evolving graph at different levels of temporal and
structural granularity. Let G ′ be the condensed graph of G,
then each vertex in V ′ represents a group of vertices in V
and edges in E ′ represent a group of edges between the ver-
tex group members in V . Formally, V ′ = {v′

1, v
′
2, . . . , v

′
k}

where v′
i is called a supervertex and ∀v ∈ V , sν(v) is the

supervertex of v.
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Vertices are grouped together based on the values returned
by key functions. A key function k : V → V is a function
mapping eachvertex to a value in some setV . Let {k1, . . . , kn}
be a set of vertex grouping key functions, then ∀u, v ∈
V : sν(u) = sν(v) ⇐⇒ ∧n

i=1 ki (u) = ki (v). Some
key functions are provided by the system, namely label()
= v �→ β(v) mapping vertices to their label, property(key)
= v �→ κ(v, key) mapping vertices to the according prop-
erty value as well as timeStamp(...) and duration(...) used
to extract temporal data from elements. The latter functions
can be used to extract either the start or end time of both time
domains or their duration. It is also possible to retrieve date–
time fields from timestamps, like the corresponding day of
the week or the month. This can be used, for example, to
group edges that became valid in the same month together.
Further, user defined key functions are supported by the oper-
ator, e.g., to calculate a spatial index in form of a grid cell
identifier from latitude and longitude properties to group all
vertices of that virtual grid cell together. The values returned
by the key functions are being stored on the supervertex as
new properties.

Similarly, E ′ = {e′
1, e

′
2, . . . , e

′
l} where e′

i is called a
superedge and sε(u, v) is the superedge for 〈u, v〉. Edge
groups are determined along the supervertices and a set of
edge keys {k1, . . . , km}, where k j : E → V are grouping key
functions analogous to the vertex keys, such that ∀e, f ∈
E : sε(s(e), t(e)) = sε(s( f ), t( f )) ⇐⇒ sν(s(e)) =
sν(s( f )) ∧ sν(t(e)) = sν(t( f )) ∧ ∧m

j=1 k j (e) = k j ( f ). The
same key functions mentioned above for vertices are also
applicable for edges. Additionally, vertex and edge aggre-
gate functions γv : P(V) → A and γe : P(E) → A are used
to compute aggregated property values for grouped vertices
and edges, e.g., the average duration of rentals in a group or
the number of group members. The aggregate value is stored
as new property at the supervertex and superedge, respec-
tively. The following example shows the application of the
grouping operator using GrALa:

1 summary = g0.groupBy(
2 [label(), property(’regionId ’)],
3 (superVertex , vertices =>
4 superVertex[’count ’]
5 = vertices.count(),
6 superVertex[’lat ’]
7 = avg(vertices.lat),
8 superVertex[’lon ’]
9 = avg(vertices.lon)),

10 [label(), timeStamp(
11 VALID_TIME , FROM , HOUR_OF_DAY)],
12 (superEdge , edges =>
13 superEdge[’count ’] = edges.count(),
14 superEdge[’avgTripLen ’] =
15 averageDuration(VALID_TIME ))

The goal of this example is to group Stations and Trips
in the graph of Fig. 2 by region and to calculate the number
of stations and the average coordinates of stations in each

region. Furthermore, we group trip edges by the hour of the
day in which the trip was started and calculate the number
and average duration of trips. For example, we can gain an
insight into how popular each region was and which route
between which regions was the most popular or took the
longest all day. In line 2, we define the vertex grouping keys.
Here, we want to group vertices by type label (using the
label() key function) and property keyregionId (using
the property() key function). Edges are grouped by label
and by the start of the valid time interval. The timeStamp
key function was used for the latter to extract the start of the
valid time interval and to calculate the hour of the day for this
time (lines 10–11). Type labels are added as grouping keys in
both cases, since we want to retain this information on super-
vertices and superedges. In lines 3–9 and 12–15, we declare
the vertex and edge aggregate functions, respectively. Both
receive a superelement (i.e.,superVertex,superEdge)
and a set of group members (i.e., vertices, edges) as
inputs. They then calculate values for the group and attach
them as properties to the superelement. In our example, a
count property is set storing the number of elements in the
group. We also use the avg function to calculate the average
value of a numeric property and the averageDuration
function to get the average length of the valid time interval
for elements. Figure. 3 shows the resulting logical graph for
this example.

4.2.5 Temporal pattern matching

A fundamental operation of graph analytics is the retrieval
of subgraphs isomorphic or homomorphic6 to a user-defined
pattern graph. An important requirement in the scope of
temporal graphs is the access and usage of the temporal
information, i.e., time intervals and their bounds, inside the
pattern. For example, given a bike-sharing network, an ana-
lyst may be interested in a chronological sequence of trips
of the same bike that started at a particular station with
a radius of three hops (stations). To support such queries,
GrALa provides the pattern matching operator [41], where
the operator argument is a pattern (query) graph Q includ-
ing predicates for its vertices and edges. To describe such
query graphs, we defined TemporalGDL7, a query language
which is based on the core concepts of Cypher8, especially its
“MATCH” and “WHERE” clauses. For example, the expres-
sion (a)-[e]->(b) denotes a directed edge e from vertex
a to vertex b and can be used in a MATCH clause. Predi-
cates are either embedded into the pattern by defining type

6 GrALa support different morphism semantics, see [41].
7 TemporalGDL is an extension of the Graph Definition Language
(GDL)which is open source available at https://github.com/dbs-leipzig/
gdl.
8 http://www.opencypher.org/.
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Fig. 3 Result graph of grouping example

labels and properties or expressed in the WHERE clause.
For a more detailed description of the (non-temporal) lan-
guage on which TemporalGDL is based, we refer to our
previous publication [41]. We extended the language by var-
ious syntactic constructs that are partly inspired by Allen’s
conventions [9] and the SQL:2011 standard [47], to support
the TPGM-specific bitemporal attributes. These extensions
enable the construction of time-dependent patterns, e.g., to
define a chronological order of elements or to define Boolean
relations by accessing the element’s temporal intervals and
their bounds. Table 3 gives an overview of a subset of the
TemporalGDL syntax including access options for inter-
vals and their bounds of both dimensions (e.g., a.val
to get the valid time interval of the graph element that is
represented by variable a), a set of binary relations for inter-
vals and timestamps (e.g., a.val.overlaps(b.val) to
check whether the valid time intervals of the graph elements
assigned to a and b overlap), functions to create a duration
time constant of a specific time unit (e.g., Seconds(10)
to get a duration constant of 10 seconds) and binary rela-
tions between duration constants and interval durations, e.g,
a.val.shorterThan(b.val) to check whether the
duration of the valid time interval of a is shorter than the one
of b or a.val.longerThan(Minutes(5)) to check
whether the duration of the interval is longer than five min-
utes.

Pattern matching is applied to a graph G and returns a
graph collection G′, such thatG ′ ∈ G′ ⇔ G ′ ⊆ G∧G ′ � Q,
i.e., G′ contains all isomorphic (or homomorphic) subgraphs
of G that match the pattern. The pattern matching operator
is applied on a logical graph as follows:

matches = g0.query("
MATCH (a:Station {name:’Christ Hospital ’})

-[e:Trip]->(b:Station)
(b:Station)-[f:Trip]->(c:Station)
(c:Station)-[g:Trip]->(d:Station)

WHERE e.bikeId = f.bikeId AND
f.bikeId = g.bikeId AND
e.val.precedes(f.val) AND
g.val.succeeds(f.val)")

Table 3 Overview of TemporalGDL’s syntax to support temporal graph
patterns

The shown TemporalGDL pattern graph reflects the
aforementioned bike-sharing network query. In the exam-
ple, we describe a pattern of four vertices and three
edges, which are assigned to variables (a,b,c,d for ver-
tices and e,f,g for edges). Variables are optionally fol-
lowed by a label (e.g., a:Station) and properties (e.g.,
{name:’Christ Hospital’}). More complex predi-
cates can be expressed within the WHERE clause. Here, the
user has access to vertex and edge properties using their vari-
able and property keys (e.g., e.bikeId = f.bikeId).
In addition, bitemporal information of the elements can
be accessed in a similar way using predefined identifiers
(e.g., e.val) as described before. A chronological order
of the edges is defined by binary relations, for example,
e.val.precedes(f.val). When called for graph G0
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Station
name: 10 Ave & W 28 St
capacity: 49 
lat: 40.75066386
lon: -74.00176802
regionId: 71

Trip
bikeId: 21233
userType: Sub
gender: male
yob: 1971

Station 1
name: E 17 St & Broadway
capacity: 66 
lat: 40.73704984
lon: -73.99009296
regionId: 71

Station 4
name: Christ Hospital
capacity: 22 
lat: 40.734785818
lon: -74.050443636
regionId: 70

Station
name: Essex Light Rail
capacity: 22 
lat: 40.7127742
lon: -74.0364857
regionId: 70

mapping: { a : 4, b : 0, c : 1, d : 3, e : 1, f : 2, g :5}

1

Trip
bikeId: 21233
userType: Sub
gender: female
yob: 1980

Trip
bikeId: 21233
userType: Cust
gender: male
yob: 1981

4

2

5

0

3

Fig. 4 Result graph of temporal pattern matching example

of Fig. 2, the operator returns a graph collection containing
a single logical graph as shown in Fig. 4. Each graph in the
result collection contains a new property storing themapping
between query variables and entity identifiers.

4.2.6 Graph transformation operators

The transformation operator allows simple structure-
preserving in-place selection or modifications of graph, ver-
tex and edge properties, for example, to align different sets
of properties for data integration, to reduce data volume
for further processing or to map property values to tempo-
ral attributes and vice versa. Transformation functions, e.g.,
ν : V → V for vertices, can modify labels, properties and
temporal attributes.

In addition, there are several structural transformation
operators to bring graph data into a desired form, e.g., for data
integration with other graphs or for easier data analysis [46].
For example, a bibliographic network with publications and
their authors can be transformed for an easier analysis of co-
authorships, e.g., by generating a graph with author vertices
and co-authorship edges only. This is achieved with the help
of operator ConnectNeighbors that creates edges between
same type vertices (e.g., authors) with a shared neighbor
vertex, e.g., a co-authored publication. Further operators
are available to transform properties or edges into vertices
(PropertyToVertex, EdgeToVertex) and vice versa (VertexTo-
Property, VertexToEdge), to fuse together matching vertices,
and others. A description of these operators can be can be
found in [46] and Gradoop’s GitHub wiki [64].
4.2.7 Additional graph operators

As shown in Table 2, GrALa provides several additional
compositional graph operators.

Aggregationmaps an input graph G to an output graph G ′
and applies the user-defined aggregate functionα : L → A to
perform global aggregations on the graph. The output graph
stores the result of the aggregate function in a new prop-

erty k, such that κ(G ′, k) = α(G). Common examples for
aggregate functions are vertex and edge count aswell asmore
complex aggregates based onvertex and edge properties, e.g.,
the average trip duration in a region.

Sampling calculates a subgraph of much smaller size,
which helps to simplify and speed up the analysis or visual-
ization of large graphs. Formally, a sampling operator takes a
logical graphG(V , E) and returns a graph sampleG ′(V ′, E ′)
with V ′ ⊆ V and E ′ ⊆ E . The number of elements in G ′ is
determined by a given sample size s ∈ [0, 1], where s defines
the ratio of vertices (or edges) the graph sample contains com-
pared to the original graph. Several sampling algorithms are
implemented, three basic approaches will be briefly outlined
here: random vertex/edge sampling, the use of neighborhood
information and graph traversal techniques. The former is
realized by using s as a probability for randomly selecting a
subset of vertices and their corresponding edges. The same
concept is applied on the edges in the random edge sampling.
To improve the topological locality, random neighborhood
sampling extends the random vertex sampling approach to
include all neighbors of a selected vertex in the graph sample.
Optionally, only neighbors on outgoing or incoming edges of
the vertex will be taken into account. Random walk sampling
traverses the graph along its edges, starting at one or more
randomly selected vertices. Following a randomly selected
outgoing edge of such a vertex, the connected neighbor is
marked as visited. If a vertex has no outgoing edges, or all
of them have already been traversed, the sampling jumps to
another randomly selected vertex of the graph and continues
traversing there. The algorithm converges when the desired
number of vertices has been visited. Amore detailed descrip-
tion of Gradoop’s sampling operators can be found in [29]
and the GitHub wiki [64].

Binary graph operators take two graphs as input. For
example, equality compares two graphs based on their iden-
tifiers or their contained data, combinationmerges the vertex
and edge sets of the input graphs, while overlap preserves
only those entities that are contained in both input graphs.

4.2.8 Graph collection operators

Collection operators require a graph collection as input. For
example, the selection operator filters those graphs from
a collection G for which a user-defined predicate function
φ : L → {true, f alse} evaluates to true. The predicate
function has access to the graph label and its properties.
Predicates on graph elements can be evaluated by compos-
ing graph aggregation and selection. There are also binary
operators that can be applied on two collections. Similar to
graph equality, collection equality determines whether two
collections contain the same entities or the same data. Addi-
tionally, the set-theoretical operators union, intersection and
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difference compute new collections based on graph identi-
fiers.

It is often necessary to execute a unary graph operator on
more than one graph, for example, to perform aggregation for
all graphs in a collection. Not only the previously introduced
operators subgraph, matching and grouping, but all other
operators with single logical graphs as in- and output (i.e.,
op : L → L) can be executed on each element of a graph col-
lection using the apply operator. Similarly, in order to apply
a binary operator on a graph collection, GrALa adopts the
reduce operator as often found in functional programming
languages. The operator takes a graph collection and a com-
mutative binary graph operator (i.e., op : L × L → L) as
input and folds the collection into a single graph by recur-
sively applying the operator.

4.3 Iterative graph algorithms

In addition to the presented graph and collection opera-
tors, advanced graph analytics often requires the use of
application-specific graph algorithms. One application is the
extraction of subgraphs that cannot be achieved by pattern
matching, e.g., the detection of communities [48] and their
evolution [30].

To support external algorithms, GrALa provides generic
call operators (see Table 2), which may have graphs and
graph collections as input or output. Depending on the out-
put type,we distinguish between so-calledcallForGraph
and callForCollection operators. Using the former
function, a user has access to the API and complete library of
iterative graph algorithms of Apache Flink’s Gelly [3], which
is the Apache Flink implementation of Google Pregel [52].
By utilizing Flink’s dataset iteration, co-group and flatMap
functions Gelly is able to provide different kinds of iterative
graph algorithms. For now, vertex iteration, gather–sum–
apply and scatter–gather algorithms are supported. However,
since Gelly is based on the property graph model we use a
bidirectional translation between Gradoop’s logical graph
and Gelly’s property graph, as described in Sect. 5.4. Thus,
Gradoop already provides a set of algorithms that can be
seamlessly integrated into a graph analytical program (see
Table 1), e.g., PageRank, Label Propagation and Connected
Components. Besides, we provide TPGM-tailored algorithm
implementations, e.g., for frequent subgraph mining (FSM)
within a graph collection [61].

5 Implementation

In this chapter, we will describe the implementation of the
TPGM and GrALa on top of a distributed system. Since
Gradoop programs model a dataflow where one or multi-
ple temporal graphs are sequentially processed by chaining

graph operators, the utilization of distributed dataflow sys-
tems such as Apache Spark [84] and Apache Flink [16]
is especially promising. These systems offer, in contrast to
MapReduce [24], a wider range of dataflow operators and the
ability to keep data in main memory between the execution
of those operators. The major challenges of implementing
graph operators in these systems are identifying an appropri-
ate graph representation and an efficient combination of the
primitive dataflow operators to express graph operator logic.

As discussed in Sect. 2, the most recent approaches to
large-scale graph analytics are libraries on top of such dis-
tributed dataflow frameworks, e.g., GraphX [83] on Apache
Spark or Gelly [3] on Apache Flink. These libraries are
well suited for executing iterative algorithms on distributed
graphs in combinationwith general data transformation oper-
ators provided by the underlying frameworks. However, the
implemented graph data models have no support for tempo-
ral graphs, collections and are generic, whichmeans arbitrary
user-defined data can be attached to vertices and edges. In
consequence, model-specific operators, i.e., such based on
labels, properties or the time attributes, need to be user-
defined, too. Hence, using those libraries to solve complex
analytical problems becomes a laborious programming task.

We thus implemented Gradoop on top of Apache Flink
to provide new features for flexible and general-purpose
graph analytics and to benefit from existing capabilities to
large-scale data and graph processing at the same time. The
majority of graph algorithms listed in Table 1 are available in
Flink Gelly. Gradoop adds automatic transformation from
TPGM graphs into Gelly graphs and vice versa, as later
described. In this section, we will briefly introduce Flink
and its programming concepts. We will further show how
the TPGM graph representation and a subset of the intro-
duced operators, including graph algorithms, are mapped to
those concepts. The last section focuses on persistent graph
formats.

5.1 Apache Flink

Apache Flink [8,16] supports the declarative definition and
execution of distributed dataflow programs sourced from
streaming and batch data. The basic abstractions of such pro-
grams are DataSets (or DataStreams) and Transformations.
A Flink DataSet is an immutable, distributed collection of
arbitrary data objects, e.g., Java POJOs or tuple types, and
transformations are higher-order functions that describe the
construction of new DataSets either from existing ones or
from data sources. Application logic is encapsulated in user-
defined functions (UDFs), which are provided as arguments
to the transformations and applied toDataSet elements.Well-
known transformations are map and reduce, additional ones
are adapted from relational algebra, e.g., projection, selec-
tion, join and grouping (see Sect. 4.2). To describe a dataflow,
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a program may include multiple chained transformations.
During executionFlink handles programoptimization aswell
as data distribution and parallel processing across a cluster
of machines.

The fundamental approach of sequentially applying trans-
formations on distributed datasets is inherited by Gradoop:
Instead of generic DataSets, the user applies transformations
(i.e., graph operators and algorithms) to graphs and collec-
tions of those. Transformations create new graphs which in
turn can be used as input for subsequent operators hereby
enabling arbitrary complex graph dataflows. Gradoop can
be used standalone or in combination with any other library
available in the Flink ecosystem, e.g., for machine learn-
ing (Flink ML), graph processing (Gelly) or SQL (Flink
Table).

5.2 Graph representation

One challenge of implementing a system for static and tem-
poral graph analytics on a dataflow system is the design of
a graph representation. Such a representation is required
to support all data model features (i.e., support different
entities, labels, properties and bitemporal intervals) and
also needs to provide reasonable performance for all graph
operators.

Gradoop utilizes three object types to represent TPGM
data model elements: graph head, vertex and edge. A graph
head represents the data, i.e., label, properties and time inter-
vals, associated with a single logical graph. Vertices and
edges not only carry data but also store their graph member-
ship as they may be contained in multiple logical graphs. In
the following, we show a simplified definition of the respec-
tive types:

class GraphHead{id ,label ,props ,
val ,tx}

class Vertex{id ,label ,props ,graphs ,
val ,tx}

class Edge{id ,label ,sid ,tid ,props ,
graphs ,val ,tx}

Each type contains a 12-byte system managed identifier
based on the UUID specification (RFC 4122, Version 1).
Furthermore, each element has a label of type string, a set
of properties (props) and two tuples (val and tx) rep-
resenting time intervals of the valid- and transaction-time
dimension. Each tuple consists of two timestamps that define
the interval bounds. Each timestamp is a 8-byte long value
that stores Unix-epoch milliseconds. Since TPGM elements
are self-descriptive, properties are represented by a key-value
map, whereas the property key is of type string and the
property value is encoded in a byte array. The current imple-
mentation supports values of all primitive Java types as well
as arrays, sets andmaps of those. Vertices and edgesmaintain
their graph membership in a dedicated set of graph identi-

fiers (graphs). Edges additionally store the identifiers of
their incident vertices (i.e., sid/tid).

5.2.1 Programming abstractions

Graph heads, vertices and edges are exposed to the user
through two main programming abstractions: LogicalGraph
andGraphCollection. These abstractions declare methods to
access the underlying data and to execute GrALa opera-
tors. Table 2 contains an overview of all available methods
including those for accessing graph and graph collection
elements as well as to read andwrite graphs and graph collec-
tions from and to data sources and data sinks. The following
example program demonstrates the basic usage of the Java
API:

LogicalGraph graph = new
CSVDataSource (...)

.getLogicalGraph ();

GraphCollection triangles = graph
.snapshot(

new Overlaps (’2019-09-06’,
’2019-09-07’))

.subgraph ((e => e.yob > 1980))

.callForGraph(new PageRank
(’pr ’, 0.8, 10))

.query("
MATCH (p1)-->(p2)-->(p3)<--(p1)
WHERE ((p1.pr + p2.pr + p3.pr) / 3)

> 0.8)
");

new CSVDataSink (...). write(triangles );

We start by reading a logical graph from a specific data
source. We then retrieve a snapshot with all elements that
overlap the given period in the past. After that, we extract an
edge-induced subgraph containing only edges with a prop-
erty yob that is greater than the value 1980 and all source
and target vertices. Based on that subgraph, we call the
PageRank algorithm and store the resulting rank as a new
vertex property pr. Using the match operator, we extract tri-
angles of vertices inwhich the total page rank exceeds a given
value. The resulting collection ofmatching triangles is stored
using a specific data sink. Note that the program is executed
lazily by either writing to a data sink or by executing specific
action methods on the underlying DataSets, e.g., for collect-
ing, printing or counting their elements. In Sect. 6, we will
provide more complex examples as part of our evaluation.

5.2.2 Graph Layouts

While the two programming abstractions provide an
implementation-independent access to theGrALaAPI, their
internal Flink DataSet representations are encapsulated by
specific graph layouts. The most common GVE Layout
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Fig. 5 GVE layout of Gradoop. The accuracy of the timestamps has been reduced for readability reasons

(Graph-Vertex-Edge layout) is the default for single logi-
cal graphs and graph collections. The layout corresponds to
a relational view of a graph collection by managing a dedi-
cated Flink DataSet for each TPGM element type and using
entity identifiers as primary and foreign keys. Operations
that combine data, e.g., computing the outgoing edges for
each vertex, require join operations between the respective
DataSets. Since graph containment information is embedded
into vertex and edge entities, an additional DataSet storing
mapping information is not required. Another experimental
layout is IndexedGVE, a variation of theGVE layout inwhich
vertex and edge data are partitioned into separate DataSets
based on the entity label. Other user-defined graph layouts
can be easily integrated by implementing against a provided
interface.

Figure 5 shows an example instance of the GVE layout
for a graph collection containing logical graphs of Fig. 2.
The first DataSet L stores the data attached to logical graphs,
vertex data is stored in a second DataSet V and edge data in
a third, E . Vertices and edges store a set of graph identifiers
which is a superset of the graph identifiers in L as an entity can
be contained in additional logical graphs (e.g.,G0 andG1). A
logical graph is a special case of a graph collection in which
the L DataSet contains a single element. Each element stores
in addition the two time intervals to capture the visibility for
the valid- and transaction-time dimension.

5.3 Graph operators

The second challenge that needs to be solved when imple-
menting a graph framework on a dataflow system is the
efficient mapping of graph operators to transformations pro-
vided by the underlying system. Table 4 introduces a subset

of transformations available in Apache Flink. Well-known
transformations have been adopted from the MapReduce
paradigm [24]. For example, the map transformation is
applied on a DataSet of elements of type IN and produces
a DataSet containing elements of type OUT. Application-
specific logic is expressed through a user-defined function
(udf: IN -> OUT) that maps an element of the input
DataSet to exactly one element of the output DataSet. Fur-
ther DataSet transformations are well known from relational
systems, e.g., select (filter), join, group-by, project and dis-
tinct.

Subsequently, we will explain the mapping of graph oper-
ators to Flink transformations.Wewill focus on the operators
introduced in Sect. 4: subgraph, snapshot, difference, time-
dependent grouping and temporal pattern matching. For all
operators we assume the input graph to be represented in the
GVE layout (see Sect. 5.2.2).

Subgraph The subgraph operator takes a logical graph and
two user-defined predicate functions (one for vertices, one
for edges) as input. The result is a new logical graph contain-
ing only those vertices and edges that fulfill the predicates.
Figure 6 illustrates the corresponding dataflow program. The
dataflow is organized from left to right, starting from the ver-
tex and edge DataSets of the input graph. Descriptions on
the arrows highlight the applied Flink transformation and its
semantics in the operator context. First,weuse thefilter trans-
formation to apply the user-defined predicate functions on the
vertex and edge DataSets (e.g., (v => v.capacity >=
40)). The resulting vertex DataSet V1 can already be used
to construct the output graph. However, we have to ensure
that no dangling edges exist, i.e., only those filtered edges are
selected where source and target vertex are contained in the
output vertex set. To achieve that, the operator performs a join
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Table 4 Subset of Apache Flink DataSet transformations. We define DataSet<T> as a DataSet that contains elements of type T (e.g.,
DataSet<String>, DataSet<Vertex> or DataSet<Tuple2<Int,Int>>)

Name Description

Map The map transformation applies a user-defined map function to each element of the input DataSet. Since the function
returns exactly one element, it guarantees a one-to-one relation between the two DataSets.

DataSet<IN>.map(udf: IN -> OUT) : DataSet<OUT>

FlatMap The flatMap transformation applies a user-defined flatmap function to each element of the input DataSet. This variant of
a map function can return zero, one or arbitrary many result elements for each input element.

DataSet<IN>.flatMap(udf: IN -> OUT) : DataSet<OUT>

Filter The filter transformation evaluates a user-defined predicate function to each element of the input DataSet. If the function
evaluates to true, the particular element will be contained in the output DataSet.

DataSet<IN>.filter(udf: IN -> Boolean) : DataSet<IN>

Project The projection transformation takes a DataSet containing a tuple type as input and forwards a subset of user-defined
tuple fields to the output DataSet.

DataSet<TupleX>.project(fields) : DataSet<TupleY> (X,Y in [1,25])

Equi-Join The join transformation creates pairs of elements from two input DataSets which have equal values on defined keys
(e.g., field positions in a tuple). A user-defined join function is executed for each of these pairs and produces exactly
one output element.

DataSet<L>.join(DataSet<R>).where(leftKeys).equalTo(rightKeys).
with(udf: (L,R) -> OUT) : DataSet<OUT>

ReduceGroup DataSet elements can be grouped using custom keys (similar to join keys). The ReduceGroup transformation applies a
user-defined function to each group of elements and produces an arbitrary number of output elements.

DataSet<IN>.groupBy(keys).reduceGroup(udf: IN[] -> OUT[]) : DataSet<OUT>

transformation between filtered edges and filtered vertices
for both sourceId and targetId of an edge. Edges that
have a join partner for both transformations are forwarded to
the output DataSet. During construction of the output graph,
a newgraph head is generated and used to update graphmem-
bership of vertices and edges.9

Snapshot The snapshot operator [66] provides the retrieval
of a valid snapshot of the entire temporal graph by applying
a temporal predicate, e.g., asOf or fromTo. We imple-
mented the operator analogous to the subgraph operator
by using two Flink filter transformations. Each transforma-
tion applies a temporal predicate to each record of V and
E , respectively. Remember that a graph in TPGM is fully
evolved and contains the whole history of all changes for
both time dimensions. Therefore, the predicate will check
the valid or transaction time of each graph element, depend-
ing on an optional identifier of the dimension to be used,
and thus decides whether to keep the element or to discard
it. Just like subgraph, the filter may produce dangling edges,
since vertices and edges are handled separately. The subse-
quent verification step (two join transformations) is thus
performed to remove these dangling edges.

9 Depending on the size of the filtered DataSets, the transformations
need to be distributed which might require data shuffling. Since the
join step is used for verification, it also can be disabled if domain
knowledge allows it.

Fig. 6 Dataflow implementation of the subgraph operator using Flink
DataSets and transformations

Difference To explore the changes in a graph between two
snapshots, i.e., states of the graph at a specific time, we
provide the difference operator (see Sect. 4.2), which we pre-
viously introduced [66]. In our case, a snapshot is represented
by the same predicates that can be usedwithin snapshot oper-
ator. The operator is applied on a logical graph and produces
a new logical graph that contains the union of elements of
both snapshots, where each element is extended by a property
that characterizes it as added, deleted or persistent.

The architectural sketch of the difference operator is
shown in Fig. 7. Again, since all temporal information is
stored in the input graph, we can apply the two predicates
on the same input dataset, i.e., V or E , respectively. This
gives us an advantage, as each element only has to be pro-
cessed once in a single flatMap transformation, which has a
positive effect on distributed processing. Now we can check
whether that element exists in both, none, only the first or
only the second snapshot. It will be collected and annotated
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Fig. 7 Dataflow implementation of the difference operator using Flink
DataSets and transformations

with a property as defined in Sect. 4.2, or discarded if it does
not exist in at least one snapshot. The annotation step is also
implemented inside the flatMap function. The resulting set
of (annotated) vertices and edges is thus the union of the ver-
tices and edges of both logical snapshots. Dangling edges are
removed analogous to subgraph and snapshot by two joins.

Time-dependent Graph Grouping The grouping operator is
applied on a single logical graph and produces a new logi-
cal graph in which each vertex and edge represents a group
of vertices and edges of the input graph. The algorithmic
idea is to group vertices based on values returned by group-
ing key functions (or just key functions). Elements for which
every one of these functions returns the same value are being
grouped together. The group is then represented as a so-called
supervertex and a mapping from vertices to supervertices is
extracted. Edges are additionally grouped with their source
and target vertex identifier. Figure 8 shows the corresponding
dataflow program.

Given a list of vertex grouping key functions, we start by
mapping each vertex v ∈ V to a tuple representation contain-
ing the vertex identifier, values returned by each of the key
functions and property values needed for the declared aggre-
gation functions (DataSetV1). In the second step, these vertex
tuples are grouped on the previously determined key function
values (position 1 in the tuple). Each group is then processed
by a ReduceGroup function with twomain tasks: (1) creating
a supervertex tuple for each group and (2) creating amapping
from vertices to supervertices via their identifier. The super-
vertex tuple has a similar structure to the vertex tuple, except
that it stores the supervertex identifier, the grouping keys and
calculated aggregate values for every aggregation function.
In the final step for vertices, we construct supervertices from
their previously calculated tuple representation. We there-
fore filter out those tuples from the intermediate DataSet V2
and apply a map transformation to construct new Vertex
instances for each tuple.

After applying another filter to DataSet V2, we get a map-
ping from vertex to supervertex identifier (DataSet V3) which
can in turn be used to update the input edges inDataSet E and
to group them to get superedges E ′. Similar to the first step
for vertices, DataSet E1 stores a representation of edges as
tuples, including their source and target identifier, values of
grouping key functions and property values used for aggrega-

Fig. 8 Dataflow implementation of the grouping operator using Flink
DataSets and transformations. Lists of property values are denoted by
the type A[]

tion functions. We can then join this DataSet with V3 twice,
first to replace each source identifier with the identifier of
the corresponding supervertex and again to replace the target
identifier. Since the resulting edges (now stored in DataSet
E2) are logically connecting supervertices, we can group
them on source and target identifier as well as key function
values. This step yields tuple representations of superedges,
which finally mapped to the new Edge instances, represent-
ing the final superedges.

Similar to the other operators, the resulting vertex and
edge DataSets are used as parameters to instantiate a new
logical graph G ′ including a new graph head and updated
graph containment information.

Temporal graph pattern matching The graph pattern match-
ing operator takes a single logical graph and a Cypher-like
pattern query as input and produces a graph collection where
each contained graph is a subgraph of the input graph that
matches the pattern. As Flink already provides relational
dataset transformations, our approach is to translate a query
into a relational operator tree [33,41] and eventually in a
sequence of Flink transformations. For example, the label
and property predicates within the query

MATCH (a:Station) WHERE a.capacity = 25

are transformed into a selection with two conditions
σlabel=′Station′∧capacity=25(V ) and evaluated using a filter
transformation on the vertex DataSet. Structural patterns are
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being decomposed into join operations. For example the fol-
lowing query

MATCH (a)-->(b)

is transformed into two join operations on the vertex and edge
DataSets, i.e., V ��id=sid E ��tid=id V .

Figure 9 shows a simplified10 dataflow program for the
following temporal query:
MATCH (a:Station)<-[e:Trip]-(c:Station)

(b:Station)<-[f]-(c)
WHERE e.val.asOf(Timestamp (2019 -09 -06)) AND

e.val.overlaps(f.val) AND
a.capacity > b.capacity

We start by filtering vertices and edges that are required
to compute the query result. Predicates are evaluated as
early as possible. Especially when specifying temporal
predicates with constant time values the amount of data
is often enormously reduced by the filtering. In addition,
only property values needed for further predicate evalua-
tion are being kept. For example, to evaluate (e:Trip)
and e.val.asOf(...)), we introduce a Filter transfor-
mation on the input vertex DataSet E0 and a subsequentMap
transformation to convert the edge object into a tuple contain-
ing only the edge id, source id and target id for subsequent
joins and the val interval (that represents the edge’s valid
time) for later predicate evaluation (DataSet E1). Join trans-
formations compute partial structural matches (DataSet Mi )
and subsequent Filter transformations validate the edge iso-
morphism semantics that demands a Filter transformation
on DataSet M2. Predicates that span multiple query variables
(e.g.,a.capacity > b.capacity) can be evaluated as
soon as the required input values are contained in the partial
match (DataSet M4). Each row in the resulting DataSet rep-
resents a mapping between the query variables and the data
entities and is converted into a logical graph in a postpro-
cessing step.

Since there is generally a huge number of possible
execution plans for a single query,Gradoop supports a flex-
ible integration of query planners to optimize the operator
order [41]. Our reference implementation follows a greedy
approach which iteratively constructs a bushy query plan by
estimating the output cardinality of joined partial matches
and picking the query plan with minimum cost. Cardinal-
ity estimation is based on statistics about the input graph
(e.g., label and property/id distributions). Predicate evalua-
tions and property projections are generally planned as early
as possible.

10 Several steps are being simplified for clarifying the operator logic.
For example, the filter and map transformations are actually imple-
mented using a single flatMap transformation to avoid unnecessary
serialization. Morphism checks are being executed in a flatJoin trans-
formation that allows to implement a filter on each join pair in a single
UDF.

Fig. 9 Dataflow representation of a pattern matching query

5.4 Iterative graph algorithms

Gelly, the Graph API of Apache Flink, uses iteration
operators to support large-scale iterative graph process-
ing [3]. It provides a library of graph algorithms as well
as methods to create, transform and modify graphs. In
Gradoop, iterative graph algorithms, e.g., PageRank, Con-
nected Components or Triangle counting, are implemented
by using this Graph API. We provide a base class called
GradoopGellyAlgorithm which includes transforma-
tion functions to translate a logical graph to a Gelly graph
representation. Various algorithms are already available in
Gradoop and can be integrated into an analytical GrALa
pipeline using the Call operator (see auxiliary operators in
Table 2). Custom or other Gelly algorithms can also be inte-
grated simply by extending the aforementioned base class
and using the provided graph transformations. Algorithm
results, e.g., the PageRank scores of vertices, the component
identifiers or the number of triangles, are typically integrated
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in the resulting logical graph by adding new properties to the
graph (head), vertices or edges.

5.5 Graph storage

Following the principles of Apache Flink, Gradoop pro-
grams always start with at least one data source, end in one
or more data sinks and are lazily evaluated, i.e., program
execution needs to be triggered either explicitly or by an
action, such as counting DataSet elements or collecting them
in a Java collection. Lazy evaluation allows Flink to optimize
the underlying dataflow program before it is being executed
[16]. To allow writing to multiple sinks within a single job,
a Gradoop data sink does not trigger program execution.

To define a common API for implementers and to easily
exchange implementations, Gradoop provides two inter-
faces: DataSource and DataSink with methods to read
and write logical graphs and graph collections, respectively
(see the listing in Sect. 5.2.1). Notwithstanding, Gradoop
contains a set of embedded storage implementations, includ-
ing file formats and NoSQL stores.

We provide several formats to store graphs and graph
collection within files. A prominent example is the CSV for-
mat which stores data optimized for the GVE layout (see
Sect. 5.2.2). A separate metadata file contains information
about labels, property keys and property value types. Gener-
ally, a sensible approach is to store the graph in HDFS using
theCSV format, run analytical programs and export the result
using the CSV data sink for simpler postprocessing.

In addition to the file-based formats, Gradoop supports
two distributed database systems for storing logical graphs
and graph collections: HBase [2] and Accumulo [1]. Both
storage engines follow the BigTable approach allowing wide
tables including column families and fast row lookup by pri-
mary keys [19].

Another supported format which is purely used for visu-
alization purpose is the open graph description format DOT
[28]. A detailed description of both sources and sinks can be
found in Gradoop’s GitHub wiki [64].

6 Evaluation

This section is split into two parts. First we show scalability
results for a subset of individual TPGM operators, namely
snapshot, difference, time-dependent grouping and temporal
pattern matching. In the second part, we analyze the per-
formance evaluation for an analytical program composing
several operators. In both cases, we evaluate runtimes and
horizontal scalability with respect to increasing data volume
and cluster size. The experiments have been run on a cluster
with 16 worker nodes. Each worker consists of a E5-2430
6(12) 2.5 Ghz CPU, 48GB RAM, two 4 TB SATA disks

Table 5 Dataset characteristics

Name SF |V | |E | Disk size

LDBC 1 3.3M 17.9M 4.2GB

LDBC 10 30,4M 180.4M 42.3GB

LDBC 100 282.6M 1.77B 421.9GB

CitiBike – 1174 97.5M 22.6GB

and runs openSuse 13.2, Hadoop 2.7.3 and Flink 1.9.0. On
a worker node, a Flink Task Manager is configured with 6
task slots and 40GBmemory. The workers are connected via
1 Gigabit Ethernet.

We use two datasets referred to as LDBC and CitiBike
in the evaluation. The LDBC dataset generator creates het-
erogenous social network graphs with a fixed schema and
structural characteristics similar to real-world social net-
works, e.g., p-law distribution [35]. CitiBike is a real-world
dataset describing New York City bike rentals since 201311.
The schema of this dataset corresponds to the one in Fig 2
in Sect. 4. Table 5 contains some statistics about the two
datasets considering different scaling factors (SF) for LDBC.
The largest graph (SF=100) has about 283 million vertices
and 1.8 billion edges. The CitiBike graph covers data over
almost eight years with up to 20M new edges per year.

To evaluate individual operators, we execute each work-
flow as follows: First we read a graph from a HDFS data
source, execute the specific operator and finally write all
results back to the distributed file system. The graph ana-
lytical program is more complex and used to answer the
following analytical questions: What are the areas of NYC
where people frequently or rarely ride to, in at least 40 or 90
minutes? What is the average duration of such trips and how
does the time of the year influence the rental behavior?

The exemplified GrALa workflow for this analysis is
shown in Listing 1. The input is the fully evolved CitiBike
network as a single logical graph. First, we extract a snapshot
containing only bike rentals happened in 2018 and 2019 with
operator Snapshot (line 2–3). In lines 4–5, we add a specific
cellId calculated from the geographical coordinates in its
properties to each vertex (rental station) with the Transfor-
mation operator. The Temporal Pattern Matching operator
in lines 6–14 uses the enriched snapshot to match all pairs
of rentals with a duration of at least 40 or 90 minutes, each
where the first trip starts in a specific cell (2883) in NYC
and the second trip starts in the destination of the first trip
after the end of the first trip. Since the result of the Tempo-
ral Pattern Matching operator is a graph collection we use
a Reduce operator (line 15) to combine the results to a sin-
gle logical graph. We further group the combined graph by
the vertex properties name and cellId (line 17) and the

11 https://www.citibikenyc.com/.
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1outGraph = citiBikeGraph
2.snapshot(
3Overlaps (’2017-01-01’, ’2019-01-01’))
4.transform(
5v => v[’cellId ’] = getGridCellId(v))
6.query(
7"MATCH (v1:Station)-[t1:Trip]
8->(v2:Station)
9(v2)-[t2:Trip]->(v3:Station)
10WHERE v1.cellId == 2883 AND
11v2.id != v1.id AND
12v2.id != v3.id AND
13t1.val.precedes(t2.val) AND
14t1.val.lengthAtLeast
15(Minutes(X)) AND
16t2.val.lengthAtLeast
17(Minutes(X))")
18.reduce(g, h => g.combine(h))
19.groupBy(
20[label(),prop(’name ’),prop(’cellId ’)],
21(),
22[label(),timestamp(val -from , MONTH)],
23(superEdge , edges =>
24superEdge[’count ’] = edges.count(),
25superEdge[’avgDur ’]
26= edges.avgDur ()))
27.subgraph(e => e[’count ’] > 1)

Listing 1 CitiBike Analytical (CBA) program. (X defines the minimum
duration of the bike rentals)

edge creation per month (line 19) using the time-dependent
grouping operator. By applying two aggregation functions
on the edges (lines 20–22), we determine both the number of
edges represented by a superedge and the average duration
of the found rentals. Finally, we apply a Subgraph operator
to output only superedges with a count greater than 1 (line
23). The corresponding source code is available online12.

Figures 10, 11 and 12 show the performance results for
both the execution of individual operators (snapshot, differ-
ence, grouping and pattern matching (query)) for the LDBC
dataset and for the analytical program on the real-world Citi
Bike dataset (CBA40 and CBA90). We run each experiment
five times and report average execution times. Figure 10
shows the impact of the LDBC data size on the runtime of
individual operators. Figures 11 and 12 show runtimes and
speedup for different cluster sizes with LDBC SF 100 (for
individual operators) and the CitiBike dataset (for the CBA
program).

Snapshot and difference Both temporal operators scale well
for both increasing data volume (Fig. 10) and cluster size
(Figs. 11 and 12). In general, the execution of Difference is
slower than Snapshot since it has to evaluate two predicates
as intermediate results and add a property to each element.

Figure 12 shows the speedup for LDBC.100 grows nearly
linearly until 4 parallel workers and is slightly declining then
for more workers. This behavior is typical for distributed
dataflow engines since a higher worker count increases the
communication overhead over the network (especially for the

12 https://git.io/JULPM.

 10

 100

 1000

LDBC.1 LDBC.10 LDBC.100

R
un

tim
e 

[s
]

Dataset

Snapshot
Difference
Grouping

Query (Hash)
Query (Label)

Fig. 10 Increase data volume

 0

 2500

 5000

 7500

 10000

 1  2  4  8  16

R
un

tim
e 

[s
]

Number of Workers

Snapshot
Difference
Grouping

Query (Hash)
Query (Label)

CBA90
CBA40

Fig. 11 Increase worker count

 1

 2

 4

 8

 16

 1  2  4  8  16

S
pe

ed
up

Number of Workers

Linear
Snapshot
Difference
Grouping
Query (Hash)
Query (Label)
CBA90
CBA40

Fig. 12 Speedup over workers

semi-join performed in the verification step), while the useful
work per worker becomes smaller with larger configurations.

Grouping The evaluated Grouping operator on the LDBC
datasets uses two grouping key functions: one on label values
and one that extracts the week timestamp of the lower bound
of the valid time interval. The grouping result thus consists
of supervertices and superedges that show the weekly evolu-
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tion of created entities and their respective relationships over
several years. For aggregation, we count the number of new
entities and relationships per week.

Figure 10 shows that Grouping also scales nearly linearly
for increasing data size (from LDBC.10 to LDBC.100) sim-
ilar to the two previously discussed operators. The runtime
reductions for smaller graphs are limited due to job initial-
ization times. The execution time for LDBC.100 is reduced
from 8,097 seconds on a single worker to 967 seconds on 16
workers (Fig. 11) resulting in a speedup of more than 8. Fig-
ure 12 shows that the speedup for Grouping is almost linear
for up to 8 workers, while more workers result only in mod-
est improvements. These results are similar to the original
evaluation of the non-temporal grouping operator in [43].

The shown performance results are influenced by the com-
munication overhead to exchange data, in particular for the
join and group-by transformations in our operator implemen-
tations. This overhead increases and becomes dominant for
moreworkers. In addition, the usage of aReduceGroup trans-
formation on the grouped vertices (see Sec 5.3) can lead to
an unbalanced workload for skewed group sizes. We already
addressed this issue in [43]; however, a more comprehensive
evaluation of the influence of skewed graphs is part of future
work.

Pattern matching (query) In this experiment, we execute
a predefined temporal graph query on the LDBC data on
various cluster sizes and two partitioning methods: First,
hash-partitioned, which uses Flink’s default partitioning
approach combined with Gradoop’s basic GVE Layout and
second, label-partitioned, a custom partitioning approach
which combines benefits of data locality and Gradoop’s
experimental IndexedGVELayout (see Sect. 5.2.2). The used
TemporalGDL query is shown below and determines all per-
sons that like a comment to a post within partly overlapping
periods.

MATCH (p:person)-[l:likes]->(c:comment),
(c)-[r:replyOf]->(po:post)

WHERE l.val_from >= Timestamp
(2012 -06 -01) AND

l.val_from <= Timestamp
(2012 -06 -02) AND

c.val_from >= Timestamp
(2012 -05 -30) AND

c.val_from <= Timestamp
(2012 -06 -02) AND

po.val_from >= Timestamp
(2012 -05 -30) AND

po.val_from <= Timestamp
(2012 -06 -02)

Regarding the default hash partitioning, Fig. 10 shows that
the execution of this query scales linearly with a larger data
size from LDBC.10 (78s) to LDBC.100 (733s). Increasing
the cluster size for LDBC.100 reduces the query runtime
from 6857s for one worker to 733 seconds using 16 workers

(Fig. 11). The speedup behavior (Fig. 12) is perfect for up
to 4 workers and levels out for more workers to 7.8 for 16
workers due to increasing communication overhead resulting
from semi-joins.

Applying the experimental label-partitioned approach,
both the runtimes and the speedup results improve signifi-
cantly compared to the use of hash partitioning. As shown
in Fig. 10, the runtime improvements increase with growing
data volume from a factor of 2 for LDBC.10 (37 instead of
78s) to a factor of 4 for LDBC.100 (178 vs. 733s).

This significant improvement is mainly achieved by a
reduced complexity during semi-join execution, since our
Indexed GVE Layout provides an indexed access via type
labels. Therefore, Flink is able to optimize the execution
pipeline by avoiding complex data shuffling and minimizing
intermediate result sets. This is also confirmed by ana-
lyzing the impact of a growing number of workers on
runtimes (Fig. 11) and speedup (Fig. 12) for LDBC.100.
For 16 workers, our label-partitioned approach achieves an
excellent speedup of 13.5 compared to only 7.8with the hash-
partitioned GVE Layout.

Overall, the results of the hash-partitioned experiment are
similar to the ones of the other operators, while the label-
partitioned experiment significantly improves runtimes and
speedup by reducing the semi-join complexity and commu-
nication effort. A more comprehensive evaluation including
selectivity evaluation for different queries and partitioning
approaches is left for future work.

CBA The results for the more complex analytical pipelines
CBA40 and CBA90 are shown in Figs 11 and 12. Note that
both analytical programs contain the same operator pipeline
but with different rental durations for the query operator
resulting in largely different result sets of 10M (CBA40)
and 150K (CBA90) matches (i.e., matching subgraphs of
the query graph) representing trips with a duration of at least
40 or 90min.

The more selective CBA90 program could be executed
in 223s on a single worker and only 42s on 16 workers,
while CBA40 takes 1336 and 352s for 1 and 16 workers,
respectively. The sequence of multiple operators within the
program leads to smaller speedup value compared to the
single operators. This is especially pronounced for CBA40
leading to large intermediate results to be processed by
the operators coming after the pattern matching operator.
Intermediate results are graphs kept in-memory as input for
subsequent operators, and the execution time of these opera-
tors is strongly dependent on the size and also the distribution
of their input.

Generally, the size and distribution of the graph data have a
significant impact on the analysis performance in Gradoop.
Assume, we ask for a grouping of vertices on type labels but
there are only 4 different type labels for vertices available.

123



Distributed temporal graph analytics with GRADOOP

An execution of grouping on a cluster of 16 machines will
see that only 4 machines of the cluster can be well utilized,
while the othermachines remain largely idle. Suchbottleneck
operators can easily occur with analytical programs and limit
the overall runtime. Resolving such problems would ask for
more scalable implementations of operators, e.g., for a par-
allel grouping of one label on several workers and for an
optimized dynamic data distribution for intermediate graph
results within analytical programs.

7 Lessons learned and ongoing work

We achieved the main goals of the Gradoop project to
develop a comprehensive open-source framework for the
distributed processing and analysis of large temporal prop-
erty graphs. This way we combine positive features of graph
database systems andof distributed graph processing systems
and extend these systems in several ways, e.g., with support
for graph collections and bitemporal graphs as well as with
built-in analysis capabilities including structural graph trans-
formations and temporal graph analysis operators. Given that
this project runs already over 5 years we will now reflect on
some of our design decisions concerning technology selec-
tion, data model, operator concept, etc. Finally, we give an
outlook to ongoing and future work.

Apache Flink One of the first and important design deci-
sions was the selection of a suitable processing framework to
enable the development of a comprehensive, extensible and
horizontally scalable graph analysis framework. At that time,
Apache Flink was shortlisted and finally chosen because its
rich set of composable (Flink) transformations and support
for automatic program optimization without the need for
deeper system knowledge.

In recent years, however, Apache Flink has focused to
become a pure stream processing engine so that the DataSet
API used by Gradoop is planned to be deprecated. We have
therefore begun to evaluate alternate processing frameworks
such as the DataStream and Table APIs of Apache Flink.
Although a re-implementation of a large part of Gradoop
and its operators would be necessary, the reorientation can
also provide advantages for improving Gradoop’s perfor-
mance and feature set: The streaming model of Apache
Flink already supports two different notions of time (pro-
cessing and event time, similar to the bitemporal model of the
TPGM), watermarks for out-of-order streams, several win-
dow processing features and state backends to materialize
intermediate results. Such a major change could thus allow
better support for processing, analysis and continuous queries
on graph streams [15] that we plan to address in the future.

Logical graphs and collections A unique selling point of
Gradoop’s original EPGM and the temporal TPGMmodels

is the introduction of logical graphs as an abstraction of a
subgraph that can be easily semantically enhanced without
changing the structure of the graph by adding new vertex or
edge types or adding redundant properties.Graph collections,
i.e., sets of logical graphs, have been found to be a hugely
valuable data structure for modeling (possibly overlapping)
logical graphs. Graph collections also facilitate the use of
binary graph operations, an essential part of graph theory,
for property graphs. In addition, they are used as a result of
analytical operators that produce multiple graphs, for exam-
ple, graph pattern matching, where each match represents a
logical graph.

Operator concept Another core design decision was the
methodology to introduce operators that can be combined
to define analytical workflows. Similar to the transforma-
tions between datasets in distributed processing engines, we
developed single analytical operators that are closed over
the model. The internal logic of an operator is a composi-
tion of (Flink) transformations and hidden to the analyst,
thus providing a top level abstraction of the respective func-
tion. The large number of operators provided, which contain
both simple analyzes and graph algorithms, can therefore be
used as a tool kit for composing complex analysis pipelines.
An analyst with programming experience can write new
or modify existing operators (which requires knowledge of
the implementation details) to extend the functional scope
of Gradoop. Further, a typical feature of distributed in-
memory systems is a scheduler that translates and optimizes
the dataset transformations used in the program to a directed
acyclic graph (DAG). Such transformations, represented by
vertices in the DAG, are combined and chained to optimize
the overall data flow. This, however, results in a disadvantage
of the operator concept since the relation between transfor-
mations and operators often gets diluted. As a consequence,
performance issues with specific operators and its dataset
transformations are hard to identify.

Temporal extensions The evolution of entities and relation-
ships is a natural characteristic of many graph datasets that
represents a real-world scenario [73]. A static graph model
like the PGM or the initial EPGM of Gradoop is in most
cases unsuitable for performing analyzes that specifically
examine the development of the graph over time. We found
that an extension of the data model and the respective oper-
ators (including new operators for solely temporal analysis)
was covering many requirements of frequently used tempo-
ral analysis, for example, the retrieval of a snapshot, without
building a completely newmodel andprototypical implement
a new framework. In addition, through the operator concept,
it is possible to combine static and temporal operators, for
example, to first filter for entities and relationships of interest
and then analyzing their evolution with the grouping opera-
tor and its temporal aggregations. In future work, we plan to
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develop alternatives to the GVE data layout without separat-
ing vertices and edges so that TPGM integrity conditions can
be checked more efficiently. We will also investigate the sep-
aration of the newest graph state from its history for increased
performance.

Scalability The evaluations so far showed that Gradoop
generally scales very well with increasing dataset sizes. On
the other hand, the speedup when increasing the number of
machines on a fixed dataset reaches its limit relatively fast.
(For the considered workloads and datasets, the speedup was
mostly lower than 10 with the default hash-based data par-
titioning.) A main reason for this behavior can be seen in
the strong dependency on the underlying Flink system and
its optimizer and scheduler that are not tailored to graph data
processing. For example, data distribution is by default based
on a hash partitioning, in particular for intermediate results
in an analytical pipeline that prevents the utilization of data
locality for our graphoperators but can result in large commu-
nication overhead even for traversing edges. For that reason,
we prepared a possibility to partition a graph by label to
reduce execution complexity for large-scale graphs. How-
ever, experience shows that a single partition strategy is not
suited for all analytical operators Gradoop provides. Part
of our future research will thus be to develop improved data
distribution and load balancing techniques to achieve a better
speedup behavior for single operators as well as for analysis
pipelines.

Usage and acceptanceGradoop is an open-source (Apache
License 2.0) research framework that has been co-developed
by developers from industrial partners and many students
within their bachelor, master and Ph.D. theses, which led
to a good number of publications. It has been used by us
and others within different industrial collaborations [67] and
applications and serves as basis for other research projects,
e.g., on knowledge graphs [72].

Furthermore, concepts of Gradoop operators have been
adopted by companies. For example, the graph group-
ing operator from Neo4j’s APOC library was inspired by
Gradoop’s grouping operator [56]. The implementation
of Gradoop’s pattern matching operator [41] as a proof
of concept for the distributed execution of Cypher(-like)
queries, directly influenced the development of Neo4j’sMor-
pheus13 project, which provides the OpenCypher grammar
for Apache Spark by using its SQL DataFrame API.

To make it easier to start using Gradoop, we deploy the
system weekly to the Maven Central Repository14. Thus, it
can be used in own projects by solely adding a dependency
without any additional installation effort. We provide further
a “getting started” guideline and many example programs in

13 https://github.com/opencypher/morpheus.
14 https://mvnrepository.com/artifact/org.gradoop.

the GitHub repository of Gradoop and in its GitHub wiki
[64] to support the usage.

The provided analytical language GrALa can be used in
two ways, via Java API or KNIME extensions, to define an
analytical program. Consequently, analysts with and without
programming skills can use the system for graph analysis.
Operators can be configured in many ways, whereby it can
be difficult to find out which special configuration should be
used for the desired analysis result. Further, many possible
combinations of the operators may also represent a challenge
for the analyst. We therefore provide example operator con-
figurations and a detailed documentation in the GitHub wiki
[64] to assist for finding the right combination and configu-
ration.

Ongoing work In the future, we will investigate how the
TPGM and its operator concept can be realized by alter-
nate technologies, e.g., using a distributed streaming model
or Actor-like abstractions such as Stateful Functions15 [7],
to process temporal graphs. The continuous analysis of
graph streams, where events indicate vertex and edge addi-
tions, deletions and modifications, is an emerging research
area [17] and will be considered in our future research.
Besides, we will integrate machine learning (ML) methods
on temporal and streaming graphs, e.g., to identify dimin-
ishing and recurring patterns or to predict further evolution
steps. Another area that we will work more on is to extend
Gradoop to realize temporal knowledge graphs integrating
data from different sources and to continuously evolve the
integrated data. A further extension is the addition of lay-
outing algorithms for the visualization of logical graphs and
graph collections to offload the expensive calculation from
frontend application. Finally, we will investigate more in
overall performance optimization of Gradoop and add tem-
poral graph algorithms as further operators to the framework.

8 Conclusion

Weprovided a systemoverviewof Gradoop, an open-source
graph dataflow system for scalable, distributed analytics of
static and temporal property graphs. The core of Gradoop is
the TPGM, a property graph model with bitemporal version-
ing and graph collection support, which is formally defined in
this work.GrALa, a declarative analytical language, enables
data analysts to build complex analytical programs by con-
necting a broad set of composable graph operators, e.g.,
time-dependent graph grouping or temporal patternmatching
with TemporalGDL as a query language. Analytical pro-
grams are executed on a distributed cluster to process large
(temporal) graphswith billions of vertices and edges. Several

15 https://statefun.io.

123

https://github.com/opencypher/morpheus
https://mvnrepository.com/artifact/org.gradoop
https://statefun.io


Distributed temporal graph analytics with GRADOOP

implementation details show how the parts of the framework
are realized using Apache Flink as distributed dataflow sys-
tem. Our experimental analyses on real-world and synthetic
graphs demonstrate the horizontal scalability of Gradoop.
By applying a suitable custom partitioning, we were able
to speed up the performance of our pattern matching oper-
ator by a large margin. We finally reflect on several lessons
learned during our 6-year experienceworking on that project.
Besides more performance optimizations and graph parti-
tioning, future research directions we consider are: (i) using
alternative technologies for Gradoop, its model and opera-
tors, (ii) extend our analysis from temporal graphs to graph
streams, and (iii) the integration of analysis using graph ML.
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